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Abstract: Modeling of human choice mechanism has been a topic of intense discussion 
in the transportation community for many years. The framework of modeling has been 
rooted in probability theory in which the analyst’s uncertainty about the integrity of the 
model is expressed in probability. In most choice situations, the decision-maker (traveler) 
also experiences uncertainty because of the lack of complete information on the choices. 
In the traditional modeling framework, the uncertainty of the analyst and that of the 
decision-maker are both embedded in the same random term and not clearly separated. 
While the analyst's uncertainty may be represented by probability due to the statistical 
nature of events, that of the decision maker, however, is not always subjected to 
randomness; rather, it is the perceptive uncertainty. This paper proposes a modeling 
framework that attempts to account for the decision maker’s uncertainty by possibility 
theory and then the analyst's uncertainty by probability theory. The possibility to 
probability transformation is performed using the principle of uncertainty invariance. The 
proposed approach accounts for the quality of information on the changes in choice 
probability. The paper discusses the thought process, mathematics of possibility theory 
and probability transformation, and examples. 

Keywords: Choice model, random utility theory, uncertainty treatment, fuzzy sets, possibility theory. 
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1. INTRODUCTION 

Understanding of the choice process of humans is an essential component of the 
transportation planning process. Given a set of stimuli in the form of transportation 
service alternatives, humans, individually or collectively, make certain responses or 
choices. To predict these responses and choices, models of human stimulus-response 
pattern are used. Traditionally, such models estimate human choice based on the 
stochastic modeling framework. 

Questions have been raised regarding the interpretation and structure of such 
choice models - in particular, handling of uncertainty in the model. Over the years, 
various formulations with different degrees of sophistication have been devised to handle 
the uncertainty embedded in human choice process. The basic mathematical framework 
of the models, however, has always been probability theory with the probability 
distribution used to characterize the uncertainty of the analyst. One of the problems of the 
traditional approach has been the lack of an appropriate representation of confidence in 
the result that reflects the analyst’s uncertainty. 

This paper examines the nature of uncertainty considered in the traditional 
choice model and questions the appropriateness of using probability theory as the sole 
mathematical framework for the model of choice. It then proposes an alternative 
approach based on possibility theory, and shows that this approach can incorporate 
various levels of uncertainty. The paper then shows that possibility measure can be 
transformed to the probability measure through an appropriate mathematical treatment, 
so that the choice can still be predicted in terms of probability. This is useful for practical 
application of the model. The issues discussed in the paper are generic with regard to the 
treatment of uncertainty, and, hence, the underlying logical bases should be valid for any 
human choice modeling. 

2. MOTIVATION AND BACKGROUND 

2.1. Motivation  

The traditional stochastic choice model uses utility as the agent to measure the 
decision-maker’s preference of one alternative over the others. Utility is generally 
expressed by a linear combination of the performances of the attributes of the alternatives 
with each attribute weighted by a coefficient. Added to these terms is a random variable 
that is assumed to follow a certain probability density function, and it is called the 
random term. 

While there are variations with respect to the assumptions of the probability 
distributions for the random terms and other details, the basic mathematical framework to 
deal with uncertainty is the same for all the models. It is based on probability theory. The 
question posed at the outset of this paper is whether the uncertainty of the analyst is 
reflected truthfully in the result. As seen later, in stochastic models only the fixed terms 
of the attributes of the alternatives affect the probability of choice. Consequently, the 
degree of the analyst’s uncertainty does not appear to matter in the end.  
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2.2. Background 

In choice processes, uncertainty affects a person’s decision since the knowledge 
of alternatives is rarely complete and precise. Traditionally, randomness is the 
characteristics associated with uncertainty, and therefore, it is the potential for 
manifestation of different choices. First, in early 1970’s, relevant theoretical works have 
been carried out about random utility models and, in particular, about the multinomial 
logit model. These works were formalized by Domencich and McFadden [9], while 
theoretical fundamentals of random utility models have been analyzed by Stopher and 
Meyburg [23], Williams [24], Ben Akiva and Lerman [2] Nested logit models have been 
investigated by Ortuzar [17] and Sobel [22], and the probit model has been deeply 
analyzed by Daganzo [7].  

Uncertainty imbedded in different situations of choice has been studied by these 
stochastic approaches: De Palma, Ben Akiva, Lefevre, and Litinas [8] developed a model 
for stochastic equilibrium for departure time choice. Afterwards, Ben Akiva, De Palma and 
Kanaroglou [3] extended this model including route choice and the option of not making 
the trip. More recently, Cascetta [4] has analyzed day-to-day dynamics and Cascetta and 
Cantarella [5] within-day dynamics in a transportation network. Influence of Information - 
or its dual uncertainty - on users’ behavior has also been studied by means of simulation 
frameworks proposed by Kaysi [11] for ATIS services and by Hu and Mahamassani [10]. 

During the same period, a set of new paradigms of uncertainty was being 
developed. This development started with fuzzy set theory in the late 1960’s and 
evidence theory in the 1970’s. Different measures of uncertainty emerged in the 1980’s, 
and in the 1990’s, treatment of uncertainty has been systematized by Klir [16]. These 
new paradigms are developed in the context of the evidence–proposition connection. 
While the field is not yet fully matured in terms of real world applications, a unified 
theory of uncertainty have provided a better insight into the understanding of uncertainty 
and redefined the place of probability theory when dealing with uncertainty. 

Among the new theories, possibility theory is said to be amenable to the 
framework for representation of human perceptive uncertainty. This point has been 
suggested by prominent systems scientists such as Shackle [19, 20] and Cohen [6]. They 
argue that the traditional approaches for choice modeling using probability theory do not 
completely represent the true level of uncertainty in people’s behavior. Possibility theory 
deals with uncertainty when the evidence points to a nested set of propositions; and 
hence, it can deal with propositions that refer to an interval as well as a single value. 
Under this framework, the measures of possibility and necessity are used to capture the 
optimistic and conservative views of the truth of a proposition. Furthermore, the new 
paradigm of uncertainty invariance allows for conversion of possibility measure to 
probability, and vice versa. These developments in theories of uncertainty provide an 
opportunity for us to examine handling of uncertainty in the choice model critically and 
to improve its logical integrity.  
 
2.3. Review of the Terms of Uncertainty in the Traditional Choice Model 

The stochastic choice models express utility of alternative i, iU , as sum of two 
terms: a fixed term iV  and a random term ε. The random term represents all the 
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uncertainties in the model. The fixed term on its turn is expressed, for a given person, as 
a linear function of the attributes of the alternative: 

0 1 1 2 2
i i i i i i i

i m mV a a x a x a x= + + + +  

Therefore, utility of alternative i can be written as: 

0 1 1 2 2
i i i i i i i

i i m mU V a a x a x a xε ε= + = + + + + +  (1) 

 
The IID Assumption for the Uncertainty Term ε  

This section reviews the nature of ε in terms of its mathematical property. We 
will use logit model as the platform, but this discussion is valid for other probability 
based choice models as well. Given the utility function as shown above and a set of 
alternatives, the probability that the alternative i is chosen over the others by an 
individual is found by:  

Prob( ; ; , )iq iq jq qP U U i j i j A= > ≠ ∈     or 

Prob( ; ; , )iq iq iq jq jq qP V V i j i j Aε ε= + > + ≠ ∈  (2) 

where, for the q-th decision-maker: 
  i and j are alternatives; 
 qA  is the set of alternatives;  
 iqU  and jqU  are the utilities of alternatives: 
 iqV  and jqV , are the fixed terms; 
 iqε  and jqε  are the random terms.  

 
iqε  and jqε  are assumed to be independent and identically distributed (IID). The IID 

assumption suggests that iqε  and jqε  are not correlated and the analyst’s degree of 
uncertainty about the representation of the choice situation is the same for all the 
alternatives. 

The outcome, the probability that one chooses an alternative, is given by: 

iq

jq

V

iq V
j

eP
e

=
∑

 (3) 

The above approach is based on the assumption that only the expected values 
are known for the attributes associated with each alternative. In such a case, it is perhaps 
reasonable to assume that the uncertainty associated with the utility is the same among 
alternatives, and hence, the assumption of the IID property may be upheld.  

However, different attributes and different alternatives harbor different patterns 
of variations in most cases. In these cases, the decision-maker’s imprecise perception of 
the attributes is not compatible to the concept of IID. Consequently, from a theoretical 
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point of view, logit model in the form of eq. (3) cannot adequately deal with situations in 
which the variances in the attributes are different.  

Consider a situation in which a bus route shares the freeway lane with private 
cars. In this case, a conventional logit model application would assume the same variance 
in travel time for both buses and cars. Suppose now that a proposal to construct an 
exclusive bus lane is to be analyzed. The exclusive lane would bring about better 
reliability of travel resulting in reduced variance in travel time without really changing 
the mean travel time. The conventional logit model would show no effect on the share of 
bus rider ship, since it should use the same variance for all alternatives. This aspect has 
been pointed out in the past by several authors, among them Abdel-Aty, Kitamura, and 
Jovanis [1]. 

In summary, use of ε with the IID property is valid under the following 
conditions: given everything the same, what the analyst cannot capture in the model is 
identical across the alternatives. Therefore, to be consistent with the IID assumption, any 
differences in the uncertainty of the characteristics of the alternatives should be 
represented in the fixed term. The fixed term captures all the differences in the decision-
maker’s behavior and what is left is the same for all the alternatives.  

 

3. THE PROPOSED MODEL: APPROACH 

Given the observations above, we develop a choice model with the following 
objectives in mind. Terms used in this discussion, such as possibility theory and 
uncertainty invariance will be explained in later sections. 

 
3.1. The Objective 

Our aim is to develop a mathematical framework that captures uncertainty more 
faithfully than the existing models. The proposed model has the same basic axioms as the 
traditional choice model that the decision-makers are rational and choose the alternative 
with the highest value of utility. However, it will differ in the following aspects: 

1. Approximate values (or interval of values), which represent decision maker's 
perception of the attributes, are introduced. Therefore, utility is expressed as an 
approximate number (or an interval) not a random number; 

2. Choice of an alternative is then performed by comparing utilities expressed in 
approximate numbers (or intervals). The difficulty in comparing two 
approximate numbers signifies the difficulty of making choices when two 
alternatives have very close values of utility; 

3. The choice probability is computed along with the confidence that the analyst 
can place to the conclusion. 

 
3.2. Use of intervals and approximate numbers for comparing utilities 

Intervals and approximate numbers are used to represent the imprecision in the 
information about the attributes as perceived by the decision-maker and by the analyst. 
Consequently, an approximate number, not the random value, characterizes the value of 
the utility. We then propose possibility theory, not probability theory, as the 
mathematical framework to compare the utilities expressed in approximate numbers. 
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Possibility theory provides a means to preserve uncertainty when comparing 
numbers (in our case, the values of utility) that are expressed in an interval or an 
approximate value. It introduces two measures, the possibility measure and the necessity 
measure, to capture the optimistic and conservative views when comparing two 
approximate values whose intervals overlap. These measures, when combined, yield a 
measure of confidence of the decision-maker when choosing one alternative over the 
others. Further, these measures are converted to the probability of choice using the 
principle of uncertainty invariance. 

4. THE PROPOSED MODEL: MATHEMATICAL FRAMEWORK 

Consider that n alternatives ( 1,..., )iA i n=  exist, and each is characterized by a 

vector of m attributes 1 2, ,...,i i i
mx x x . Thus 1 1 1 2 2 2

1 1 2 2 1 2{ , ,..., }, { , ,..., }m mA x x x A x x x= =  etc. 

Utility of alternative i is expressed by: 0 1 1 2 2
i i i i i i i

i m mU a a x a x a x= + + + + . This section 
explains mathematical operations of the model. 

 
4.1. Use of a Fuzzy Number for Representation of an Approximate Value 

The values assigned to ( 1,..., ; 1,..., )i
jx i n j m= =  are given either as an 

approximate number (interval) or as an exact number. The fuzzy number is introduced to 
represent the imprecise feeling for the values for some of the attributes. A fuzzy number 
is characterized by the membership function that defines the range and the compatibility 
of a specific number with the linguistic notion of the approximate value.  

While the details of fuzzy set theory must be referred to many references on 
fuzzy sets, it must be pointed out that the membership function and the probability 
density function are fundamentally different. The former is the characteristic function of 
a fuzzy set, while the latter indicates the distribution of available evidence pointing to 
clearly define random events; it is a measure function. The shape of the membership 
function needs to be defined either subjectively or by one of several methods using data, 
such as the use of the neural networks. The triangular shaped membership function, 
defined by the center value and the spread, may be a simple and practical assumption and 
it is often used in the application of fuzzy logic. Fundamentals of fuzzy set theory are 
found in Klir and Yuan [15], Zadeh [26], and Klir [13]. 

 
4.2. Utility Expressed as an Approximate Number 

Utility is now computed as a sum of fuzzy numbers according to the linear 
utility formulation. The arithmetic operations of fuzzy numbers representing combination 
of weight and attributes are performed by the extension principle of fuzzy theory. The 
operation is as follows: 

-1
1 2

1 1 2 2
( , , ... ) ( )

( ) max min { ( ),  ( ),.... ( )}
i

m i

i i i
U m m

x x x f x
h x h x h x h x

∈
=  (4) 

where   
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1 2 0 1 1 2 2( , ,..., ) i i i i i i i
i m i m mf x x x U a a x a x a x= = + + + + ; 

1 1 2 2( ), ( ),..., ( )m mh x h x h x  are the membership functions of 1 2, ,..., mx x x , 
respectively; 

( )iU xh  is the membership function of utility of the alternative i. 

A fuzzy number now expresses the value of the utility of an alternative; this 
means that the value of utility is an interval characterized by the membership function. In 
the case of logit model, the value of utility is defined as a random number distributed 
according to a distribution function.  

 
4.3. Comparison of Utility: Use of Possibility Theory  

To compare the values of utility expressed in fuzzy number is not simple, 
because each value is not a single number but an interval (or an approximate number). 
This may be the reason why one experiences anxiety when faced by a choice situation, 
particularly true when the intervals overlap. We introduce possibility theory to measure 
the truth that one approximate value is greater than the other.  

The truth of a proposition is measured based on the available evidence. The 
patterns that a body of evidence points to different sets (or alternative outcomes) can be 
grouped into three as shown in Figure 1. They are called the conflicting pattern, the nested 
pattern, and the mix of these two. Each is associated with different theories of uncertainty.  

When all pieces of evidence are independent of one another and each point to one 
and only one set as shown in Figure 1a), the body of evidence is said to be in conflict. The 
truth of a proposition (referring to one of the sets) is measured by the total amount of 
evidence pointing to the set. The mathematical framework that deals with uncertainty in 
this pattern of evidence is the frequency based probability theory. This situation allows us 
to add probabilities to obtain the probability of the union of sets (additive principle). Klir 
and Yuan [15] note that “probability theory is the ideal tool for formalizing uncertainty in a 
situation where class frequencies are known or where evidence is based on outcomes of a 
sufficiently long series of independent random experiments”. 

If the pieces of evidence point to the sets in a nested manner as shown in Figure 
1b, then the evidence is generally in agreement and consistent, so that a piece of evidence 
supporting one set also supports its supersets and subsets. The mathematical framework 
that deals with the truth of a proposition in this type is called possibility theory.  The 
important difference between probability and possibility theory is that the latter can treat 
uncertainty when evidence supports an interval instead of a single value or event. Klir 
and Yuan [15] also state “Possibility theory is ideal for formalizing incomplete 
information expressed in terms of fuzzy proposition…” This means that it can deal with 
uncertainty associated with a vague proposition, for example a proposition such as, the 
travel time is “less than approximately 60 min.” This is the framework we propose in this 
paper.  
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Evidence 

Proposition

a) Probability Theory b) Possibility Theory c) Dempster-Shafer Theory 

Probability Density
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Possibility Distribution
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Conflict Nested Mixed 
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Figure 1: Three Patterns of Evidence-Proposition Connection. 

When the pieces of evidence are both in conflict and nested, then the appropriate 
theory of uncertainty is Dempster-Shafer theory. Hence, this theory subsumes probability 
theory and possibility theory. For the Dempster-Shafer theory a number of references is 
available, among them are Shafer [21] and Yager, Fedrizzi and Kacprzyk [25]. 
 

4.4. Possibility and necessity measures  

Given n alternatives, 1A  thorough nA , suppose that the analyst’s uncertainty 
regarding the value of utility of each alternative is represented by possibility; then, as the 
degree of uncertainty increases, the possibility measure (possibility that iA  is chosen) 
should approach one: this is the case of “anything is possible”. The possibility and 
necessity are expressed by: 

Poss 1( ) 1A =  and Nec ( ) 0iA =    for all 1 2{ , ,..., }ni A A A=  

In this case, the principle of uncertainty invariance (explained later) provides:  

Poss 1( ) 1A =   for all 1i =  to n   ⇒   Prob ( ) 1/iA n=   for all 1i =  to n. 

This indicates that as uncertainty increases to the point that the analyst is totally 
uncertain, the choice probability approaches uniform among all alternatives. This seems 
reasonable. 

Under possibility theory, the truth of a proposition can be stated in two ways 
depending on how the evidence is weighted. One way is to weigh all pieces of evidence 
that at least point to the proposition including ones that point to the superset as well as 



 M. Dell’Orco, S. Kikuchi / An Alternative Approach for Choice Models in Transportation 9 

the ones pointing to the subsets. The other way is to weigh only the evidence that 
exclusively points to the proposition (the subsets). The former is called the possibility 
measure and the latter is called the necessity measure with the value of the former being 
always equal or greater than the latter. The following are basic characteristics of 
possibility and necessity measures:  

Poss ( ) maxA B∪ = {Poss ( )A , Poss ( )B } and  

Nec ( ) minA B∩ = {Nec ( )A , Nec ( )B } 

where Poss ( )A  and Poss ( )B  are possibility measures and Nec ( )A  and Nec ( )B  are 
necessity measures for A and B, respectively. 

These two measures have the following dual relations: 

Possibility of 1A = − Necessity of  “not A”   or    Poss ( ) 1A = − Nec(“not A”) 

Necessity of 1A = − Possibility of  “not A“   or    Nec ( ) 1A = − Poss(“not A”) 

This can be interpreted that necessity of A is impossibility of “not A”. It should 
be noted that the fuzzy set and possibility theory have a close link. Zadeh [26] states that 
a membership function of fuzzy set A, ( )Ah x , induces a possibility distribution, ( )xπ ; 
hence, numerically, ( ) ( )Ah x xπ= . Given the evidence in possibility distribution, ( )xπ , 
the truth of a proposition Z is computed by: 

Poss ( ) max ( ),Z x x Zπ= ∈     if Z is a crisp set  (5) 

or, if Z is a fuzzy set expressed by ( )Zh x  

Poss ( ) max ( ( ), ( )),ZZ h x x x Zπ= ∈ .   (6) 

4.5. Application to comparison of two values   

Explanations of these operations are found in many references of fuzzy theory. 
Comparing two fuzzy numbers is in effect the same as determining the truth of the event 
that one number is greater than the other. The possibility that fuzzy number B is greater 
than A is found by the truth that B is included in a fuzzy set of “greater than A”. Applying 
Eq (6) above: 

Poss ( ) max min( ( ), ( ))BB A h x xπ≥ =  for x X∈  (7) 

where X is the range in which x is considered, ( )Bh x  is the fuzzy set of B and ( )xπ  is the 
possibility distribution derived from fuzzy set “greater than A”: ( ) ( )Ax h xπ >= .  

Because of the dual relationship, the necessity that B is greater than A is:  

Nec ( ) {1 Poss (Not )} or {1 Poss ( )}
1 max min( ( ), '( )) forB

B A B A B A
h x x x Xπ

≥ = − ≥ − <
= − ∈

  (8) 

where '( )xπ  is the possibility distribution derived from a fuzzy set “less than A”, '( )xπ =  
( )Ah x< . This indicates that the necessity of ( )B A≥  is the impossibility that B belongs to 
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the set of less than A.  Using the principles shown in Eq. (7) and (8), Figure 2 illustrates 
the way to calculate Poss ( )B A≥  and Nec ( )B A≥  for various shapes of membership 
functions for A and B.   

 
 

Π (B<A) 

Necessity: 
Ν (B>A) 
=1 −Π (B<A)   

Π (B>A) α 1 α 1 1 1 

α 1 α 1 1 

1− α 0 1− α 0 0 

h B ( x ) h A ( x ) h A ( x ) hB(x) hB(x) hA(x) hA(x) hB(x)

A B 
A 

B A A B B
A A

B B

hA(x)

hB(x)
h B ( x ) 

h A ( x ) 

1 

0 

hB(x ) h >A ( x ) h>A(x)

hB(x)
hB(x)

hB(x)
hB(x)

h B ( x ) α α

h>A(x) h>A(x) h>A(x) h >A ( x ) 

> A >A >A >A >A > A 

h B ( x ) 
hB(x)

hB(x)
hB(x) hB(x) h B ( x ) α α

h>A ( x ) h >A ( x ) h>A(x) h>A(x) h>A(x) h >A ( x ) 

< A <A<A<A< A < A 

Possibility 
B is less 
than A 

Possibility 
B is greater 
than A 

Comparing 
A and B 

Note:   h >A ( x ) =  π ( x) h<A(x) = π’(x)  

  
Figure 2: Possibility and Necessity Measures of “B is greater than A”: Π(B≥A) and 

N(B≥A). 

Based on the derivation by Perincherry [18], the confidence level associated 
with the proposition Z is computed by the amount of the evidence that strictly pointing to 
the proposition:  

( ) Poss( ) Poss(Not ) Poss( ) {1 Nec( )} Poss( ) Nec( ) 1C Z Z Z Z Z Z Z= − = − − = + −  (9) 

Applying this formula, the confidence of the proposition that B is greater than A 
is found:  

( ) Poss( ) Nec( ) 1C B A B A B A≥ = ≥ + ≥ −   (10) 

The principle of uncertainty invariance links different modalities of 
mathematical representations of uncertainty.  The principle, systematized by Klir and 
Wang [14], specifies that the uncertainty (or demand for additional information) in a 
given situation should be the same irrespective of what mathematical formulation is used 
to describe the situation. In the traditional probabilistic choice modeling situations, the 
amount of uncertainty associated with the probabilities can be assessed in terms of 
entropy of the probability distribution: 
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2( log ( ))i ii
H p p= ∑   (11) 

where H is the entropy measure and pi is the probability of choosing alternative iA . 
The same choice situation can be represented in terms of possibilities of 

choosing each of the alternatives. The principle of uncertainty invariance states that the 
U-uncertainty measure associated with the possibility distribution should be equivalent to 
the entropy measure of the corresponding probability distribution. The U-uncertainty 
measure of a possibility distribution is the counterpart of entropy in a probability 
distribution and it is given as: 

1 2[{Poss( ) Poss( )}log ]i ii
U A A i+= −∑   (12) 

where U is the U-Uncertainty associated with the possibility distribution of choice, and 
Poss ( )iA  and Poss 1( )iA +  are possibilities that alternatives i and 1i +  are the best 
alternatives when the alternatives are ranked in descending order from 1 to n. 

The Principle of Uncertainty Invariance suggests that for the two distributions 
(Probability and Possibility) to describe the same situation, entropy and U-Uncertainty 
are equal; in other words, the following condition must be satisfied. 

H U=   (13) 

Basic ideas regarding uncertainty-preserving transformation between probability 
and possibility have been developed by Klir [12]. He found that interval and log-interval 
scales are potentially unique under the requirement of uncertainty equivalence. Given the 
n-tuples 1 2( , ,..., )np p p p=  and 1 2( , ,..., )nπ π π π= , denoting respectively ordered 
probability and possibility distributions that do not contain zero components, log-interval 
scale transformations have the form: 

1, 2,...,i ip i nαπ β= ⋅ =  

where α and β are positive components. Hence: 
1/( / )i ip απ β=  

From probabilistic normalization, we obtain 1/ 1/
k k

α αβ π= Σ  and then, putting 1/γ α= : 

1

  i
i n

k
k

p
γ

γ

π

π
=

=

∑
  (14) 

This relation yields that when Poss 1( )A , Poss 2( )A ,…Poss ( )nA  are given, the 
corresponding probability that 1A  will be chosen is: 

1
1

1

Poss ( )  
Poss ( )

n

k
k

Ap
A

γ

γ

=

=

∑
  (15) 
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The value of parameter γ is calculated by solving numerically Eq.(13), in which 
the right-hand side is a constant and each ip  on the left-hand side is replaced by the 
corresponding expression of Eq.(15). Further, the values of Possibility and Necessity 
measures provide the upper and the lower bounds of the probabilities. Possibility theory 
may be interpreted in terms of interval-valued probabilities if the normalization 
requirement is applied.   

Nec ( ) Prob ( ) Poss ( )i i iA A A≤ ≤ .  (16) 

Thus, once Possibility and Necessity measures are derived, then the range for 
the value of probability can be derived. 

 
Treatment when two alternatives have similar utilities 

When the utilities of two alternatives are near equal, in the classical probabilistic 
choice model, the probability of choice between the two alternatives approaches 0.5. It is 
interesting to see that when the decision-maker has no information about the attributes of 
the alternatives, then his/her choice probability should become 0.5 also. Therefore, in the 
probability based modeling the distinction between the complete ignorance (lack of 
information) and the case of equal attributes (under the full information) cannot be made 
clearly.  

In the proposed modeling framework, the confidence that one utility is greater 
than the other can be used to indicate the preference between two alternatives. Suppose 
that the fuzzy sets of utility for two alternatives are A and B, and they share the same 
center value. According to Eq. (9), as Poss ( )A B<  approaches 1, and at the same time, 
Nec ( )A B<  approaches 0, and then ( ) {Poss( ) Nec( ) 1}C A B A B A B< = < + < −  
approaches 0. This indicates that the utility values are more or less equal, and in this case, 
the confidence of the proposition that one alternative is better than the other is very low 
(unknown). But, if the two utilities are in fact near equal (with full information), then the 
confidence that one is better than the other is –1, or highest confidence of negation 
(because Poss( ) 0, Nec( ) 0A B A B< = < =  in Eq(10)). This conclusion makes sense. 

In this situation, if we assume the decision-maker’s preference as “the larger 
utility is more or less acceptable”, then the ambiguity of selecting one alternative over the 
others is represented better by the most possible framework than the case of probabilistic 
models, in which “one alternative must be absolutely better than the others”. If such a 
preference is represented by a fuzzy set with a membership function that looks as a 
downward slope or one side of a triangle on the axis of utility (this fuzzy set may be 
called “small utility”), then this membership function can be used as the reference for 
comparing the membership functions of two nearly equal utilities.  

Let us assume two nearly equal utility values of two alternatives, A and B, and 
the vague preference of the decision-maker, “the larger value is more or less acceptable”, 
C. Let the membership function of fuzzy set C be a slope or one side of a triangle. Then 
the degree of compatibility between A and C, and B and C is measured separately. It is 
measured by  

Poss( ) max min{ ( ), ( )}
Poss( ) max min{ ( ), ( )}

A C

B C

A C h x h x
B C h x h x

⊆ =
⊆ =
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Similarly the necessity measures are computed for the compatibility between A 
and C, and B and C respectively.  

Not

Not

Nec( ) 1 Poss( ) 1 max min{ ( ), ( )}
Nec( ) 1 Poss( ) 1 max min{ ( ), ( )}

A C

B C

A C A C h x h x
B C B C h x h x

⊆ = − ⊄ = −
⊆ = − ⊄ = −

 

After calculating the confidence of A C⊆  and B C⊆ , the alternative that has 
the higher confidence is considered the acceptable alternative, because this alternative is 
compatible with set C. Then, the possibility and necessity measures for A B⊆  are used 
to define a probability interval.  

The concept of choosing an alternative with maximum utility is reasonable 
when the decision-maker clearly has the objective of “only the maximum utility is 
acceptable” (the winner takes all) regardless how close the utilities of two alternatives is. 
If, on the other hand, the decision-maker does not have such a clear conviction, and 
rather, he has an idea of “the larger utility is more or less acceptable”, then the 
alternatives can be compared by the method we propose above. The latter may indeed be 
the case of travel path choice process of most daily trips, in which the trip maker does not 
have the absolute preference, and the choice criterion itself is vague.  

5. EXAMPLE: USE OF THE PROPOSED FRAMEWORK  

Assume an urban area road network as shown in Figure 3. A fuzzy number with 
a triangular shaped membership function indicates the estimated travel time ( )iT A  on the 
generic link i. The travel times in minutes are represented by two-tuples with mid-values 
and spread. For example, (10,2) is a fuzzy number with a mid-value of 10 and a spread of 
2 on either side. Thus, the lower value is 8 and the upper value is 12.  

 

A 

B
A1 (18,11)

A2

(4,2) 

A3

(11,3)
(4,1) 

(6,2) 

(5,3)
(6,1)

(3,1)
(15,5)

(10,5)

(8,5)

 
 

Figure 3: Hypothetical Travel Times and Three Paths. 

Let us consider the route choice from node A to node B. Three alternative paths 
are indicated as 1 2 3, ,A A A . The driver is to select the shortest path. 

 



 M. Dell’Orco, S. Kikuchi / An Alternative Approach for Choice Models in Transportation 14 

5.1. Expressing the travel times and comparing travel times 

Travel time on each path is given as a fuzzy number with mid-value and spread. 
The membership functions of these values are shown in Figure 4. 

Path 1    T(A1) = (4,2) + (8,5) + (18,11) = (30,18) 
Path 2    T(A2) = (15,5) + (10,5) + (5,3) = (30,13)  (17) 
Path 3    T(A3) = (4,1) + (6,2)+(11,3)+(3,1) +(6,1) = (30,8)        

Since travel times are the same, in comparing the travel times among the paths 
we introduce the vague preference of the decision-maker as a downward slope C. The 
travel time of each path (given in fuzzy values) is compared to C and then the possibility 
and necessity measure that the travel time on path i belongs to the preference set, 
Poss( ( ) )iT A C⊆  and Nec( ( ) )iT A C⊆ , are computed referencing Figure 4. 

1

2

3

1

2

3

( ( ) ) 0.743;
( ( ) ) 0.725;
( ( ) ) 0.705;
( ( ) ) 0;
( ( ) ) 0;
( ( ) ) 0;

T A C
T A C
T A C
T A C
T A C
T A C

Π ⊆ =
Π ⊆ =
Π ⊆ =
Ν ⊆ =
Ν ⊆ =
Ν ⊆ =

  (18) 

where 1( ( ) )T A CΠ ⊆  is identical to 1Poss( ( ) )T A C⊆ , and 1( ( ) )T A CΝ ⊆  is identical to 

1Nec( ( ) )T A C⊆ . 
 

 

0 10 20 30 40 50 60 70 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0.8 
0.9 

1 

Travel time (min) 

Po
ss

ib
ili

ty
 user’s 

preference 

0.743

0.725

0.705

A1=(30, 18) 
A2=(30, 13) 
A3=(30, 8) 

 

Figure 4. Comparison between travel time and decision-maker's preference 
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What we see above is the possibilistic and necessity views of preference of each 
route. For example, the truth that path A1 is the preferred one is given by the two 
measures, the possibilistic view 0.743 ( 1( ( ) ) 0.743T A CΠ ⊆ = ), and necessity view 0 
( 1( ( ) ) 0T A CΝ ⊆ = ). 

The confidence that each path is the preferred one is found using Eq (10): 

( ) ( ) ( ) 1i i iC A C A C A C⊆ = Π ⊆ + Ν ⊆ −  

accordingly,   

1 2 3( ) 0.257; ( ) 0.275; ( ) 0.295C A C C A C C A C⊆ = − ⊆ = − ⊆ = −   (19) 

The negative values of confidence indicate that the truth that each of these 
routes is the preferred is negated, and the degree of negation is the absolute value of the 
confidence. Based on the computation above, the alternative 1A  has the higher (although 
negative) value of confidence and therefore would be the route preferred by a traveler 
who has no other biases in choosing the route.  

 
5.2. Transformation to the Probability Measure 

The possibility values for the choice of individual routes, can now be computed 
according to the uncertainty invariance as described before. 

The probabilities that Paths A1, A2 and A3 are chosen are given by Eq. (14):  

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

( ) ( ) /[ ( ) ( ) ( ) ]

( ) ( ) /[ ( ) ( ) ( ) ]

( ) ( ) /[ ( ) ( ) ( ) ]

p A A C A C A C A C

p A A C A C A C A C

p A A C A C A C A C

γ γ γ γ

γ γ γ γ

γ γ γ γ

= Π ⊆ Π ⊆ + Π ⊆ + ⊆

= Π ⊆ Π ⊆ + Π ⊆ + ⊆

= Π ⊆ Π ⊆ + Π ⊆ + ⊆

  (20) 

and the value of parameter γ is calculated by:  

( ( )) ( ( ))i iH p A U A C= Π ⊆   (21) 

where ( ( ))iH p A  represents the entropy of the probability distribution about iA , and 
( ( ))iU A CΠ ⊆  represents the U-Uncertainty of the possibility distribution about iA C⊆ . 

The entropy corresponding to this probability distribution is, according to Eq. 
(11): 

1 2 1 2 2 2 3 2 3( ) log ( ) ( ) log ( ) ( ) log ( )H p A p A p A p A p A p A= + +   (22) 

The U-Uncertainty of the possibility distribution is obtained according to Eq. 
(12), given the values of possibilities from Eq (18), 1 2Poss( ) 0.743, Poss( ) 0.725A A= = , 
and 3Poss( ) 0.705A = : 

2 2 2(0.743 0.725) log (1) (0.725 0.705) log (2) (0.705 0) log (3)U = − ∗ + − ∗ + −  

or 

2 20.02 log (2) 0.705 log (3) 1.14U = ∗ + ∗ =   (23) 
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Equating H and U, entropy and U-Uncertainty we obtain, γ = 42.6 and 

1 2 3( ) 0.69, ( ) 0.24, ( ) 0.07p A p A p A= = =               (24) 

In terms of the range of probability: 

1 1 1 1

2 2 2 2

3 3 3 3

Nec( ) ( ) Poss( ) 0 ( ) 0.743
Nec( ) ( ) Poss( ) 0 ( ) 0.725
Nec( ) ( ) Poss( ) 0 ( ) 0.705

A p A A p A
A p A A p A
A p A A p A

< < ⇒ < <
< < ⇒ < <
< < ⇒ < <

  (25) 

What is shown here is a simple example that involves three choices (routes) and 
the travel time as the only attribute or decision criterion. Each value of the travel times, 
however, is considered an interval incorporating the notion of variation. Possibility and 
necessity that each route will be chosen by the decision-maker are computed. The 
confidence associated with the decision is also computed. Finally, the corresponding 
probability of choice is derived. We believe that this presentation provides more 
information as to the nature of uncertainty of the estimate.  

6. SUMMARY 

The proposed approach differs from the traditional approach to model choice in 
three aspects. First, the decision-maker's perceptive uncertainty about the information on 
the attributes is accounted for by the use of the approximate number (fuzzy number). 
Second, the values of utility of different alternatives (expressed in fuzzy numbers) are 
compared in terms of the possibility and necessity measures. Third, the possibility and 
necessity-based comparison of the utilities are converted to the probability that utility of 
an alternative is greater than the other, using the technique of uncertainty invariance. The 
obtained value of probability has a range. This range is derived as a result of the 
possibilistic and necessity views. Further, confidence associated with the probability is 
provided. 

The proposed framework will be useful in dealing with choice situation when 
the information about the value of attributes is incomplete, e.g., in approximate number, 
interval, or linguistic expression. The approach can respond to the degree of accuracy of 
the data, and yields choice probabilities faithfully to the quality of information. It is the 
authors' belief that different mathematical frameworks are possible depending on the 
nature of uncertainty embedded in the problem situation. The authors do not undermine 
the classical stochastic choice model approach if the nature of uncertainty in the problem 
is purely probabilistic. This research presents what possibility theory and uncertainty 
invariance can offer in dealing with situation in which the quality of information about 
the attributes and the decision-maker's perception of the information is in question.  
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