
Yugoslav Journal of Operations Research
 14 (2004), Number 2, 273-288

REALIZATION OF THE CHESS MATE SOLVER
APPLICATION

Vladan V. VUČKOVIĆ

Faculty of Electronic Engineering,
University of Niš, Niš, Serbia & Montenegro

vladan@bankerinter.net

Received: July 2003 / Accepted: June 2004

Abstract: This paper presents details of the chess mate solver application, which is a part
of the author’s Geniss general chess application. The problem chess is an important
domain connected with solving of the chess problems. The Geniss Mate Solver (G.M.S.)
application solves Mate-in-N-move problems. Main techniques used for the
implementation of the application are full-width searching with Alpha-Beta pruning
technique and zero evaluation function. The application is written in Delphi for Windows
programming environment and the searching engine is completely coded in assembly
language (about 10000 lines). This hybrid software structure enables efficient program
development by using high-level programming environment and the realization of a very
fast searching engine at the same time. The machine code is manually coded and could
achieve above 7 million generated positions per second on the 1Ghz Celeron PC.

Keywords: Computer chess, game tree searching, alpha-beta optimization algorithm, decision
theory.

1. INTRODUCTION

The problem chess is one of the important fields of a chess game regardless of
its relative minor popularity compared to classic chess. It comprises some interesting
disciplines like self-mates, helpmates or mate-in-N-move problems. The common
characteristics of these disciplines and the main goal of the problem chess are to find the
shortest sequence of moves providing a mate against the opponent king, commonly black
one. In the great amount of problems the white side is on the move trying to mate the
black king with or without opponents help. Composition and solving of the chess
problems require great imagination and creativity (Grand, 1986; Schlosser, 1988;
Wiereyn, 1985.) Problem chess tournaments (including the World Championship) are

 V.V. Vučković / Realization of the Chess Mate Solver Application 274

constantly organized and solvers are ranked. The most important difference between
classic and problem chess is that in problem chess solver tries to solve the position on the
board in specified number of moves; he does not play against an opponent. That fact is
very important to simplify procedures and requirements when we try to formalize
problems for the computer solver (Beal and Botvinnik, 1986).

Introducing computers into the problem chess is useful in different ways.
Firstly, computer could be a perfect assistant in solving and composition of chess
problems; checking all possible variants and finding the alternate combinations, if they
exist. Secondly, the problem is much simpler then the situation is classic chess, and so
the implementation is easier and the search engine could achieve higher efficiency (PPS
factor). On the other side, general approaches suggest using of a brute-force searching
techniques with the purpose of finding all possible variants - solutions in concrete chess
problem. Of course, in such a situation the exponential explosion of the chess tree
requires fast searching algorithm and efficient implementation in low-level programming
language.

This paper treats suitable solution of the above mentioned problems realized in
G.M.S. application. The composition of the paper is as follows: The definition of
problem chess is given in Section 2. In Section 3. different searching techniques are
described with an accent on the Alpha-Beta pruning as one of the most important parts of
the search engine. In Section 4. details of the basic procedures are presented and some
original approaches and solutions in application implementation are described. the
implementation and the options of the G.M.S. are presented in Section 5. In Section 6.
some experiments are performed to illustrate some abilities of the application.

2. THE PROBLEM CHESS

As it was mentioned, problem chess is a special category of general chess
concerned mostly with searching for mates in specified number of moves. Positions in
chess problems are composed and design connected with some main idea and could be
rarely created by accident, in some tournament games. For instance the diagram in
Figure 1. presents the 3-move problem (mate in 3). The former world chess champion
Alexander Alekhin composed this problem (it is the only chess problem he had ever
created). The right solution is a beautiful queen sacrifice Qf5!! with the principal
variation: 1. Qf5 B:f5 2. Ra7 K:e6 3. Nf4++. The key move (Qf5) applied in this
position is not direct threat - check, capture, king attack or mate treat. Also it is “clear”
queen sacrifice “obviously” creating the lost position for White after Black bishop
captures White Queen. The radius of piece movement is short, just one square. But all of
these conclusions are based on some static characteristics. In fact, in the view of future
dynamic occasions, the position is lost for Black.
 It is obvious that intelligent and sophisticated move generator would hardly select

move like Qf5 in its searching list, especially deeper in search tree. Also, similar
moves could later appear in combination. These facts implicate that the safest way to
design chess problem solving algorithm is to include all legal moves for both sides
into the calculation - to implement Shannon type-A brute-force searcher. This
method does guarantee that all variants (including all sorts of sacrifices, tactical and
positional moves) will be examined to the fixed depth and all possible mates, if they

 V.V. Vučković / Realization of the Chess Mate Solver Application 275

exist, be found in that range. It is very simple to prove that the solution of chess
problem (Figure 1.) can be found automatically by searching all possible moves and
replies by White and Black to the specified depth (3 moves apropos 6+1 PLY where
PLY is search depth in moves (depth=2*ply-1)).

Figure 1: Alekhine problem. Queen sacrifice Qf5!! leads to the mate in 3 moves.

There are many possible ways to implement data structures and procedures to
perform this brute-force type of algorithm. We shall demonstrate how these
implementation problems were solved in G.M.S. application.

3. THE SEARCHING TECHNIQUES

This Section presents some basic procedures and algorithms needed for
construction of the problem chess solver. The main procedures used for the
implementation of G.M.S. searcher are MiniMax and fixed-depth (full-width) algorithm
with Alpha-Beta pruning technique. Some of the theoretical concepts of these procedures
are also presented in sequel.

3.1 MiniMax and NegaMax

The MiniMax procedure determines which move is the best at some level of
chess game tree. After evaluation of all legal continuations from some tree node, the best
move is chosen as a move with maximum value of the available evaluations if the White
side is on the move and with minimum value if the Black side is on the move. Because of
the nature of chess game, tree search is an alternation between maximizing and
minimizing the evaluations, so the operation is often called MiniMaxing. To integrate two
procedures, the value of a position is often evaluated from the standpoint of a player to
move, so the opponent evaluation is negated. This procedure is called NegaMaxing. The
standard procedure is illustrated by the following pseudo-Pascal code:

 V.V. Vučković / Realization of the Chess Mate Solver Application 276

procedure NegaMax (Position, Depth): integer;
var …
 { Position – Current position }
 { Depth – Depth in chess tree }

begin
 if (depth=0) then
 begin
 Evaluate(Position); { Base node evaluation, exit from procedure }
 Exit;
 end;
 best: = -INFINITY; { Setup for maximizing }
 succ: = Successors(Position); { Find successor }
 while not Empty(succ) do { Until all legal succesors are processed }
 begin
 Position: = RemoveOne(succ); {Remove one succesor from the list }
 Value: = -NegaMax(Position, depth-1); {Recursive call with negated value

(depth-1 !)}
 if (value > best) then best: = value; { New best move }
 end;
NegaMax:=best; { Return Maximum (Minimum) }
end;

Figure 2: NegaMax standard recursive algorithm.

To avoid the recursive call which always generates some technical problems in
programming, especially with assembly language, the classic MiniMax procedure is used
in G.M.S application.

3.2. Full-width search

Machine representation of a chess game is based on decision trees theory
(Bruin, A. de, Pijls, W. and Plaat, A., 1994). Tree search is one of the central algorithms
in a chess game-playing program. The term is based on looking at all possible game
positions as a tree. The legal chess game moves create the branches of a game tree. Each
possible position represents tree node. The leaves of the tree are all final positions, called
terminal positions, where the consequence (evaluation) of the game is known. If all legal
move sequences in game tree are searched to the fixed depth the strategy is called full-
width searching. The synonym for that kind of search is brute-force searching.

The main problem in machine chess tree representation is that size of the chess
tree is extremely large, approximately like WD, where W is the average number of moves
per position (width) and D is depth of the tree. For instance, in the opening phase of a
chess game with average 25 moves per position, after depth 8 (combinations with only 4
moves ahead) around 153 billion terminal positions are to be evaluated. If we presume
that processing of a single position lasts one microsecond, the complete calculation will
consume about 42 hours!

 V.V. Vučković / Realization of the Chess Mate Solver Application 277

Obviously, searching of the entire game tree is not rational even on the fastest
computers. All practical search algorithms are approximations of doing such a complete
tree search.

3.3. Selective search

Different methods for reducing and pruning are invented with an aim to avoid
the calculation of complete chess tree. Some of these methods are applied in chess
searching algorithm and the strategy is called selective-search. Some of the most
prominent techniques are forward-pruning, different kinds of knowledge based heuristic
pruning, best-n-moves pruning techniques based on high-quality plausible move
generators (Fray, 1977,1978) and null-move pruning (Donninger, 1993). If we compare
full-width search and selective-search (Kaindl, Horacek and Wagner, 1986) the most
important conclusions could be accomplished:

 Selective-search could significantly reduce the magnitude of the game tree

suppressing the exponential explosion. For instance, if plausible-move generator
selects the 10 best moves at each node, the depth 8 search will produce about
100 million positions. This is 0.00065% of the tree size generated by 8 ply full-
width searching example in previous section.

 The selective algorithms must contain large portions of expert chess knowledge

to produce efficient selection of plausible moves. Unfortunately, the selecting
and programming the expert knowledge into the concrete application is very
difficult task considering the complicity of the chess game itself. Regardless the
quality of the move selector procedure there is always some probability that
some excellent move (piece sacrifice etc.) could be pruned generating the gross
errors in move selection. Many researchers have abandoned the heuristic and
knowledge-based selective search mostly due to the potential hazard of those
techniques.

 The most promising selective searching techniques nowadays are based on null-

move heuristic. This technique is not based on specific chess knowledge
implementation and could be applied with other logic games. The main
characteristic of null-move searchers is possibility to prune efficiently unreal
lines of the game tree. In combination with the chess knowledge implemented in
evaluation function (Althöfer, 1991,1993), those kinds of searchers could
achieve very high quality of play.

 Full-width searchers avoid the problems of move selecting because all legal

moves are plausible and all combinations are examined to the fixed depth. Two
main principles have to be achieved: good move ordering and fast node
processing. The programming of the full-width searcher is much simpler
compared with selective searcher. The main shortcoming of the technique is the
request for extremely efficient programming (in machine language) or
specialized hardware.

 V.V. Vučković / Realization of the Chess Mate Solver Application 278

The experience does not confirm the clear priority of any mentioned techniques.
Both approaches have enabled building machines and achieving the grandmaster
strength. The most powerful brute-force machine IBM Deep Blue calculated 200 million
positions per second and won the match again the World Chess Champion GM Garry
Kasparov in 1997. Last two matches between Chess Champions GM Vladimir Kramnik
and GM Garry Kasparov against PC based parallel chess computers Deep Junior and
Deep Blue respectively both ended draw. The machines used selective, null-move-based
algorithms achieving about 3-4 million positions per sec.

3.4. Alpha-Beta pruning technique

The combinatory explosion problem connected with game decision trees was
noticed early in Shannon works (Shannon, 1949,1950). The Alpha-Beta algorithm is the
first significant effort and contribution with the purpose of reducing the number of
positions that has to be searched. This technique enables achieving greater depths in the
same amount of time without the decreasing of a play quality. The main idea is that large
parts of a tree do not influence to the best move decision and that could be pruned
without any affect on final result. The algorithm does not require all terminal positions to
be evaluated because cut-offs are generated earlier in game tree. The value of the position
along the principal variation has to be exactly determined and other ones are interested
only if they are better or worse than evaluation that has been done before.

(Definition - Principle variation is the alternation of the best own moves and best
opponent moves from the root to the depth of the tree).

The Alpha-Beta search procedure gets two main arguments (Alpha,Beta)
indicating the bounds where the exact values for a position have to be searched. The
illustration of the standard Alpha-Beta algorithm is presented in sequel:

procedure AlphaBeta (position, depth, alpha, beta):integer;
var …
 { Position – Current position }
 { Depth – Depth in chess tree }
 { Alpha – Upper bound }
 { Beta – Lower bound}

begin

if (depth=0) then
 begin
 Evaluate(Position); { Base node evaluation, exit from procedure }
 Exit;
 end;
 best: = -INFINITY; { Setup for maximizing }
 succ: = Successors(Position); { Find successor }

while ((not Empty(succ)) and (best < beta)) do {Searching while move list is not empty,
or best value is lower then bound}

 V.V. Vučković / Realization of the Chess Mate Solver Application 279

begin
 position: = RemoveOne(succ); {Removing one move}
 if (best > alpha) then alpha: = best;
 value: = -AlphaBeta(Position, depth-1, -beta, -alpha); {Recursive call with negated
 values of bounds}
 if (value > best) then best: = value; {New best value}
end;
 AlphaBeta:= best; {The exit from the procedure is best value}
end;

Figure 3: Fail-soft Alpha-Beta recursive algorithm

This version of algorithm is also known as fail-soft Alpha-Beta. It can return
values outside the Alpha - Beta range that can be used as upper or lower bounds for
researching. In combination with different memory hash schemas it could achieve high
pruning efficiency. The gain from Alpha-Beta proceeds from the earlier exit of the move
list-scanning loop. The best value that exceeds (or equals) Beta bound is called a cut-off.
These cut-offs are completely safe because they indicate that this branch of the tree is
worse than the principal variation and could never be played. The largest gain is reached
when at each level of the tree the best successor position is searched first. The main
reason for this conclusion is that the position generated by best successor will either be a
part of the principal variation or it will cause a cut-off to be as early as possible. Under
favorable circumstances Alpha-Beta has to search W(D+1)/2 + WD/2 - 1 positions (W is
average number of legal moves per position and D is search depth). Of course, this is
exponential dependence but much less than basic MiniMax search algorithm (WD). It
allows reaching about twice the depth in the same amount of time. To achieve maximum
pruning efficiency move ordering has to be near perfect at every generated position in the
game tree.

4. THE BASIC PROCEDURES

This Section reflects some functions and procedures that are implemented in
G.M.S. application. Three basic procedures are abstracted: move generator, searcher and
evaluation function. The theory and implementation reclines on methods and algorithms
presented in previous sections.

4.1. Move Generator

One of the most important procedures in every chess program is move
generator. This function generates all legal moves from current position into the move
list. When the move list is formed the next step is to calculate move weights to achieve
efficient move ordering. In G.M.S. application these two steps are integrated; all moves
are generated simultaneously with their weights. The moves with greater weights will be
examined firstly. Weights are tuned thus power king attacks, check moves, captures and
mate treats get maximal values.

 V.V. Vučković / Realization of the Chess Mate Solver Application 280

Figure 4: Move generator function, developing and testing application

Unsafe moves get negative weights. The secondary parameters for move
ordering are pion promotions, double attacks (forks), opponent king proximity (especially
for knights and queens) and piece position on the board. The Figure 4. illustrates how
move generator performs one simple position. The key move, power check E1H1+ that
leads to mate in 6, has maximum weight (+10011) and it is examined first. Otherwise,
move weights are 16-bit integers within the range -32768..+32767. The good move
ordering has direct positive consequence on searching speed. This implicates usage of
large portions of heuristic knowledge into the move generator. Nevertheless, the move
generator must be simple enough to attain high position per second rate. This confronted
requests determine need to balance knowledge and performance in generator procedure.
The G.M.S. application has good equilibrium between those two requirements. The
assembly coded and manually improved move generator contains sophisticated heuristics
and high execution speed at the same time. On test 1Ghz Celeron PC platform, move
generator overtakes 7 million positions per seconds.

4.2. Searcher

Main procedure in every chess application is game tree searcher. It performs
searching round the game tree in purpose to find best continuation for each side, using
minimizing function. The G.M.S. tree searcher has the following characteristics:

 V.V. Vučković / Realization of the Chess Mate Solver Application 281

 It is full-width Shannon type-A searcher. The orientation to brute-force type of
searching is based on high move generator performances, described previously.
This type of searching insures that all mate combinations, if exist, will be found
within the pre-defined horizon. Nevertheless, the shortcomings in move
ordering are not fatal - they influence only to the search efficiency. The desire
for simplicity and efficiency was also additional arguments for choosing such a
type of searcher.

 The quiescence search (Beal, 1984) beyond the horizon is not performed. This
shallow search orientation enables to find mates precisely in pre-defined number
of moves.

The variation of non-recursive Alpha-Beta pruning algorithm is embedded into the
searcher. This technique is absolutely safe and in combination with fast and simple
terminal evaluation function as well as near-perfect move ordering from move generator,
it achieves very high pruning percentage. Because of the non-material nature of the
evaluation function, Alpha-Beta cut-off and MinMax procedure could be integrated.

The searcher uses stack as the basic memory structure, which coupled with fast
machine code access routines contributes to the high execution efficiency. The external
hash structures are not supported. Some experiments in that direction confirm that
external hash memory does not conduce to the searching efficiency because of the
specific conception of the evaluation function. The searcher nucleus code (in Pascal) is
enclosed in Appendix. This type of searcher performs deep first, full-width searching
round the game tree. Procedure uses stack as the main data structure and assembly sub-
procedures (GENERATOR, EVALUATOR, MOVE_FORWARD, MOVE_BACK) to
accelerate tree searching. The searcher used in G.M.S. application is one variant of the
illustrated algorithm therewith the machine code is used instead of Pascal for concrete
implementation.

4.3. The Evaluation Function

An adequate circumstance with chess problem solver is that complicated
evaluation of terminal positions could be avoided. Namely, in a chess game, mate is
defined as the situation where king is in check and has not even one legal move to play.
Searching for mates adds up finding those situations. In G.M.S. search procedure has
responsibility to handle mate situations because it has information about the number of
legal moves at each node in game tree provided by move generator procedure. Due to the
fact that searching result must be “mate found” or “mate not found” all terminal positions
are evaluated to zero value. There are two main implications of the terminal zero-
evaluation. Firstly, evaluation function is extra-fast because it is reduced to only one
machine instruction. Secondly, Alpha-Beta pruning mechanism becomes extremely
efficient because all terminal positions have equivalent values. The status of non-terminal
nodes is slightly different because searcher could find some mates upwards the game
tree. MinMax node variable could get 3 different values -MATE, 0, +MATE, where
MATE value indicates that mate for black/white was found. Experiments prove that
usage of the rough evaluation with a few different values significantly increase number
of pruning in game tree generated by Alpha-Beta algorithm. In classic chess application,

 V.V. Vučković / Realization of the Chess Mate Solver Application 282

the complex evaluation has to be used in purpose of computing the static and other non-
material factors that add much more nodes into the game tree. The combination of
extremely efficient zero-evaluator, machine coded near-perfect move ordering provided
by move generator and Alpha-Beta pruning mechanism enables the realization of the
G.M.S full-width searcher possible.

5. THE IMPLEMENTATION

Geniss Mate Solver (G.M.S) is the author’s contribution to the problem chess
programming. The most of the chess applications, amateur or professional are concerned
with classic chess and only a few have implemented routines for chess problem solving.
Some of the mate solver engines are embedded in the standard environments (Deep
Fritz).

The G.M.S. application consists of two major parts. The interface is written in
Borland Delphi programming language under MS Windows operating system. Program is
compatible with all Windows OS-s up from Windows 3.11. This solution enables the
usage of all accommodations provided by graphic operating system. The largest segments
of the searching engine are implemented in assembly language containing about 10000
code lines. The core functions (move generator and searcher) are fully manually coded
and debugged. Machine routines are connected with main Pascal program interface using
ASM directives. Data transmission between two languages is realized through common
(shared) memory structures. Thus, all system, interface and engine could be mutually
developed and compiled using Delphi environment. The example of the G.M.S. hybrid
software organization is presented in following listing:

function save_combination(i:integer):integer; { I is input variable… }
var s:integer; { S is accessory variable… }
begin
asm { From this point assembly language is used… }
 push ds { Segment registers are pushed to the stack… }
 push es
 MOV AX,I { 16-bit Pascal input variable is transferred directly to AX register}
 pop es
 pop ds { Segment registers are loaded from the stack… }
 MOV S,AX { The contains of the AX register is transferred to Pascal S variable…}
end; { Back to Pascal code… }
 save_combination:=s; {Now, the function gets the value of S variable…}
end;

Figure 5: Direct data transfer between Pascal and machine language (example).

This example is the prototype of connection between two languages used in
realization of the G.M.S. and illustrates the transfer of 16-bit integer from the input
variable I to SAVE_COMBINATION function via the assembly-coded segment. Of
course, the assembly part of the procedure could process the input values using machine

 V.V. Vučković / Realization of the Chess Mate Solver Application 283

code instructions providing high efficiency in executing. The presented programming
strategy that use Delphi Pascal for interface, organization and data structure handling,
and the assembly language for chess engine implementation, proved to be appropriate for
the realization of G.M.S. application.

5.1. The Interface and Main Application Organization

Application interface is presented in the following figure:

Figure 6: Geniss Mate Solver v2.0 – main application interface

The main window is separated into the four main sections: chessboard, move
control buttons, report arrays and piece palette. The chess engine is integrated with the
interface in common executable file. All standard options connected with position and
combination management are supported. The use of application generally follows 3
phases:

 Set-up of the start position using piece palette (Figure 6, right window). Positions

also could be stored or loaded from disk,
 Starting the solver engine,
 Analyzing of the results (if the combination was found).

The example in Figure 6. shows the solution of the Sam Loyd’s problem, Qd4-g1!!. This
extraordinary move is the only solution for that mate-in-4 problem.

 V.V. Vučković / Realization of the Chess Mate Solver Application 284

5.2. The Mate Solver Engine

The many details of the realization and implementation of the G.M.S. solver engine are
specified in previous sections so only the most important characteristics will be
emphasized:

 G.M.S. uses full-width, Shannon type-A searching algorithm. All legal moves
are examined to the pre-defined depth that increases in each iteration. Program
solves all type of chess problems in minimal number of moves.

 Alpha-Beta pruning technique is used. In combination with zero-evaluation
function it achieves high pruning ratio.

 Zero evaluation function includes only one machine instruction so it is
extremely fast. Move generator function has responsibility to generate all legal
moves with their weights enabling the efficient move ordering. If move
generator detects check and no legal moves existing, the mate situation is
signalized.

 The engine is completely programmed in machine language maximizing the
usage of CPU. The code is the mixture of 16 and 32-bit instructions using the
segment-oriented addressing. The tests demonstrate that AMD Athlon XP
family of processors slightly dominates over Intel P4 running that kind of code.

6. EXPERIMENT AND RESULTS

Some comparative results confirm that G.M.S. running on average PC platform
easily exceeds strong human opponents in chess problem solving (limited time
conditions). It is the main reason why this or similar application (Lindner, 1983,1985)
will not be allowed to participate and compete against human opponents in regular
problem solving tournaments.

Figure 7: Mate-in-6 problem (example)

 V.V. Vučković / Realization of the Chess Mate Solver Application 285

The efficiency and accuracy of G.M.S. is tested on many chess problems (Chess Informant,
2000). The program has solved all samples, finding some extra solutions, if they were
existed. For the illustration, one mate-in-6-moves problem is chosen (Figure 7):

Table 1: Experiment results
PLY GEN EVL S (G/T) T (sec)

1 922 28 - << 1 sec
2 24034 678 - << 1 sec
3 320008 8463 - < 1sec.
4 3973630 103514 4077144 1
5 44689880 1141950 7638638 6
6 99323877 2457682 7270111 14
- - - - -

1-6 148332046 3712315 7240207 21

The solution (1. Nd6+ Kc5 2. Nb5 Kc4 3. Bf5! Re3 4. Nd6+ Kc5 5. Ne4+
Kc4 6. Nd2++) is complicated containing some unexpected, maneuvering moves. The
experiment is conducted using G.M.S. v2.0 application. The searching depth is increased
in each iteration, from 1 to 6. The first found mate sequence is the problem solution. The
hardware used in experiment is PC 128Mb platform with 1Ghz Pentium Celeron CPU.
The results of experiment are shown in Table 1. The symbols denoted in table header
have following signification:

 PLY - search depth in moves (depth=2*ply-1),
 GEN - number of generated positions,
 EVL - number of evaluated terminal positions,
 S (G/T) - generated positions per second,
 T - total time for computing (in seconds).

The solution is found on depth 6, computing 10% from the total chess tree owing to good
move ordering. The analyze of the experiment results refers to some major conclusions:

 The overall application efficiency is very high. On depth 6, the program
achieves about 7.3 million generated positions per second and about 175548
terminal positions/evaluations per second.

 Depending on position, all 2-4 movers are solved within a seconds and 5-6
movers rarely exceeds a minute to be solved. For the complex (tournament) set
of problems G.M.S. attains much better time solving all proposed problems then
strong human problemist.

 The chess tree grows exponentially. Due to the efficient pruning techniques and
near-perfect move ordering the exponent is decreased but the combination
explosion problem still remains. For instance, for the complete computation on
ply=5 (depth=9), G.M.S. has generated about 44.7 million positions and 1.1
million terminal nodes in game tree. If we suppose that each node of game tree
has 20 legal moves; the total terminal nodes at depth 9 will be roughly 209=512
billions! Due to the efficient pruning only about 0.0002% of the total tree size is
processed.

 V.V. Vučković / Realization of the Chess Mate Solver Application 286

 All legal moves are examined to the fixed depth, so all mate sequences will be
found in that range, if they exist. If the searching depth is increased gradually
from 1-6, the mates in minimal number of moves will be found. Essentially, the
first found mate sequence in that case is the minimal solution of the problem.

7. CONCLUDING REMARKS

The novelty presented in this paper is the author’s conception of the zero
evaluation function, presented in Section 4.3. The new idea is to use zero function instead
of classical material/positional evaluator commonly used in different chess engines. In
combination with efficient searcher techniques coded in assembly language, the high
performance mate solver searcher is constructed.

The Geniss Mate Solver v2.0 is the last successor of the G.M.S. v1.0 author’s
mate solver application. The application is full-width, Shannon type-A problem searcher
completely coded in machine language. The approach and techniques used for the
realization are designed efficiently to solve all kinds of chess problems.

Application has basic intention to support human chess problemists and
composers as an automatic chess problem-solving tool. In that purpose, G.M.S. v2.0 is
equipped with human-friendly interface including all standard options for position
editing, searching and report analyzing. Program has not special hardware requests but it
is recommended minimum 800Mhz Pentium II/Celeron PC platform to achieve
appropriate program strength. Memory and disk capacity and speed are not crucial
because algorithm does not support hash tables.

The latest version of G.M.S. is embedded into the author’s Geniss Axon XP
application designed for classic chess. The idea is to use G.M.S. abilities to find mate
combinations in minimal number of moves when main searcher has already detected
mate-in-N-move sequence. The other possible research directions will be implementation
of some other type of chess problems like helpmates and self-mates.

Acknowledgements. The author wishes to thank the anonymous referee for the very
useful suggestions that improved the quality of this paper.

REFERENCES

[1] Althöfer, I., “An additive evaluation function in chess”, ICCA Journal, 14 (3) (1991) 137-141.
[2] Althöfer, I., “On telescoping linear evaluation functions”, ICCA Journal, 16 (2) (1993) 91-94.
[3] Beal, D.F., “Mating sequences in the quiescence search”, ICCA Journal, 7 (3) (1984) 133-137.
[4] Beal, D.F., and Botvinnik, M.M., “Computers in chess - solving inexact search problems”,

ICCA Journal, 9 (2) (1986) 88-89.
[5] Bruin, A., Pijls, W., and Plaat, A., “Solution trees as a basis for game-tree search”, ICCA

Journal, 17 (4) (1994) 207-219.
[6] Chess Informant: Anthology of Chess Problems, http://www.sahovski.co.yu/acp.htm., 2000.
[7] Donninger, C., “Null move and Deep Search: selective-search heuristics for obtuse chess

programs”, ICCA Journal, 16 (3) (1993) 137-143.

 V.V. Vučković / Realization of the Chess Mate Solver Application 287

[8] Fray, P.W., Chess Skill in Man and Machine, Texts and Monographs in Computer Science,
Springer-Verlag, New York, U.S.A, 1978.

[9] Grand, H., “The impact of computers on chess-problem composition”, ICCA Journal, 9 (3)
(1986) 152-153.

[10] Kaindl, H., Horacek, H., and Wagner, M., “Selective search versus brute force”, ICCA
Journal, 9 (3) (1986) 140-145.

[11] Lindner, L., “Experience with the second human-computer problem test”, ICCA Journal, 6 (3)
(1983) 10-15.

[12] Lindner, L., “A test to compare human and computer fairy-chess problem solving”, ICCA
Journal, 8 (3) (1985) 150-155.

[13] Shannon, C.E., “Programming a computer for playing chess”, National IRE Convention,
March 9, New York, U.S.A, 1949.

[14] Shannon, C.E., “A chess-playing machine”, reprinted with permission, Scientific American,
U.S.A., 1950.

[15] Schlosser, M., “Computers and chess-problem composition”, ICCA Journal, 11 (4) (1988)
151-155.

[16] Wiereyn, P.H., “Inventive problem solving”, ICCA Journal, 8 (4) (1985) 230-234.

 V.V. Vučković / Realization of the Chess Mate Solver Application 288

APPENDIX

The nucleus of the searcher in Pascal with assembly extension directives is
presented in sequel:

procedure searcher; {Performing full-width Shannon type-A chess tree search}
label l1,l2,l3,lup,lend;
var move,alter:word;
begin
 depth:=0; analized_moves:=0; stack[0].alter:=0; { Reset basic variables…}

L1: GENERATOR; { <- Move generator. Move weights are automatically generated
by the same routine. }

 if stack[depth].full=0 then
 begin
 stack[depth].minmax:=CUTOFF; {If base nod, CUTOFF constant is

moved to minmax variable}
 goto L3;
 end;

 L2: alter:=stack[depth].alter; { ALTER is index of current move }
 move:=stack[depth].moves[alter].move; { MOVE is current move }
 combination[depth]:=move; { Combination (principal variation) are stored. }

 asm
 mov dx,move
 call MOVE_FORWARD; { Assembly routine for playing one moves forward }
 end;

 inc(depth); fluid:=fluid+next_raw; { Increase depth }
 if depth<max_depth then goto L1; { If depth overcome maximum depth, go to
evaluation }

 EVALUATOR; { Terminal evaluation is performing. }

LUP: if depth=0 then goto LEND; {If evaluation is performed on base node, exit !}

L3: MOVE_BACK; {Assembly routine for playing back one move.}

 dec(depth); fluid:=fluid-next_raw; {Decrease depth, go upwards the game tree }

 alter:=stack[depth].alter;
 stack[depth].moves[alter].evaluation:=stack[depth+1].minmax;

 inc(stack[depth].alter);
 if stack[depth].alter>=stack[depth].full then goto LUP; {If all moves are processed

at this node, go upwards the game tree}
 goto L2;

LEND: { End of program. }
end;

Figure 8: Geniss Mate Solver v2.0 – Shannon type-A searcher nucleus

