
Yugoslav Journal of Operations Research 
            15 (2005), Number 1, 53-63 

LARGE NEIGHBORHOOD LOCAL SEARCH  
FOR THE P-MEDIAN PROBLEM 

Yuri KOCHETOV, Ekaterina ALEKSEEVA 
Tatyana LEVANOVA, Maxim LORESH 

Sobolev Institute of Mathematics, Russia 

Presented at XXX Yugoslav Simposium on Operations Research 
Received: January 2004 / Accepted: January 2005 

Abstract: In this paper we consider the well known p-median problem. We introduce a 
new large neighborhood based on ideas of S.Lin and B.W. Kernighan for the graph 
partition problem.  We study the behavior of the local improvement and Ant Colony 
algorithms with new neighborhood. Computational experiments show that the local 
improvement algorithm with the neighborhood is fast and finds feasible solutions with 
small relative error. The Ant Colony algorithm with new neighborhood as a rule finds an 
optimal solution for computationally difficult test instances.  
Keywords: Large neighborhood, Lagrangean relaxations, ant colony, p-median, benchmarks. 

1. INTRODUCTION 

In the p-median problem we are given a set I ={1,…, m} of m potential locations 
for p facilities, a set J ={1,…, n} of n customers, and a n×m matrix (gij) of  transportation  
costs for servicing the customers by the facilities. If a facility i can not serve a customer j 
then we assume gij = +∞. Our gain is to find a feasible subset S ⊂ I, |S| = p such that 
minimizes the objective function 

( ) min .iji Sj J
F S g

∈∈
=∑  

This problem is NP-hard in strong sense. So, the metaheuristics such as Ant 
Colony, Variable Neighborhood Search and others [7] are the most appropriate tools for 
the problem.  

In this paper we introduce a new large neighborhood based on ideas of S.Lin 
and B.W. Kernighan for the graph partition problem [9]. We study the behavior of the 
local improvement algorithm with different starting points: optimal solutions of 
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Lagrangean relaxation randomized rounding of optimal solution for the linear 
programming relaxation, and random starting points. Computational experiments show 
that the local improvement algorithm with new neighborhood is fast and finds feasible 
solutions with small relative error for all starting points. Moreover, the Ant Colony 
heuristic with new neighborhood as a rule finds an optimal solution for computational 
difficult test instances.  

The paper is organized as follows. In section 2 we describe Swap, k-Swap and 
Lin-Kernighan neighborhoods for the p-median problem. Section 3 presents Lagrangean 
relaxation and randomized rounding procedures for selecting of starting points for the 
local improvement algorithm. The framework of Ant Colony heuristic is considered in 
section 4. Finally, the difficult test instances and computational results are discussed in 
sections 5 and 6. In section 7 we give conclusions and further research directions. 

2. ADAPTIVE NEIGHBORHOODS 

Standard local improvement algorithm starts from an initial solution and moves 
to a better neighboring solution until it terminates at a local optimum. For a subset S the 
Swap neighborhood contains all subsets S′ , |S′ | = p, with Hamming distance from S′  to 
S at most 2: 

{ }Swap ( )   | ' | ,  ( , ) 2S S I S p d S S′ ′= ⊂ = ≤ . 

By analogy, the k-Swap neighborhood is defined as follows: 

{ }Swap ( )   | | ,  ( , ) 2 .k - S S I S p d S S k′ ′ ′= ⊂ = ≤  

Finding the best element in the k-Swap neighborhood requires high efforts for 
large k. So, we introduce a new neighborhood which is a part of the k-Swap 
neighborhood and based on the greedy strategy [1]. 

Let us define the Lin-Kernighan neighborhood (LK) for the p-median problem. 
For the subset S it consists of k elements, k ≤ n – p, and can be described by the following 
steps. 
 
Step 1. Choose two facilities iins∈ I \ S  and  irem∈S  such that  F(S ∪{iins}\{irem}) is 

minimal even if it greater than  F(S). 
Step 2. Perform exchange of   irem  and  iins.   
Step 3. Repeat steps 1, 2   k times so that a facility can not be chosen to be inserted in S if 

it has been removed from S in one of the previous iterations of step 1 and step 2. 
 
The sequence  {( , )}remins ki iτ τ

τ ≤  defines k neighbors Sτ  for the subset S. The best 
element in the Swap neighborhood can be found in O(nm) time [12]. Hence, we can find 
the best element in the LK-neighborhood in O(knm) time. We say that S is a local 
minimum with respect to the LK-neighborhood if F(S) ≤ F(Sτ) for all τ ≤ k. Any local 
minimum with respect to the LK-neighborhood is a local minimum with respect to the 
Swap neighborhood and may be not a local minimum with respect to the k-Swap 
neighborhood.  
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3. STARTING POINTS 

Let us rewrite the p-median problem as a 0-1 program: 

min ij ij
i I j J

g y
∈ ∈
∑∑  (1) 

s.t. 

1,ij
i I

y
∈

=∑   j J∈  (2) 

0,i ijx y≥ ≥   ,i I∈ j J∈  (3) 

i
i I

x p
∈

=∑  (4) 

, {0,1},ij iy x ∈  ,i I∈ .j J∈  (5) 

In this formulation xi =1 if i∈S and xi = 0 otherwise. Variables yij define a facility 
that serves the customer j. We may set yij =1 for a facility i that achieves mini∈S gij and set 
yij = 0 otherwise. Lagrangean relaxation with multipliers uj which correspond to equations 
(2) is the following program: 

( ) min ( )ij j ij j
i I j J j J

L u g u y u
∈ ∈ ∈

= − +∑∑ ∑  

s.t.  (3), (4), (5). 

It is easy to find an optimal solution x(u), y(u) of the problem in polynomial time [6].  
The dual problem 

max ( )
u

L u  

can be solved by subgradient  optimization methods, for example, by the Volume 
algorithm [2,3]. It produces a sequence of Lagrangean multipliers t

ju , t =1,2,…,T, as well 
as a sequence of  optimal solutions x(ut), y(ut) of the problem L(ut). Moreover, the 
algorithm allows us to get an approximation  ,x y  of the optimal solution for the linear 
programming relaxation (1)–(4). In order to get starting points for the local improvement 
algorithm we use optimal solutions x(ut) or apply the randomized rounding procedure  to 
the fractional solution x . 

 
4. ANT COLONY OPTIMIZATION 

The Ant Colony algorithm (AC) was initially proposed by Colorni et al. [5, see 
also 7]. The main idea of the approach is to use the statistical information of previously 
obtained results to guide the search process into the most promising parts of the feasible 
domain. It is iterative procedure. At the each iteration, we construct a prescribed number 
of solutions by the following Randomized Drop heuristic (RD): 
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Randomized Drop Heuristic  

1. Put :S I=  
2. While | |S p>  do 

2.1  Select i S∈  at random 
2.2  Update : \{ }S S i=  

3. Apply the local improvement algorithm to S. 
 

The step 2.1 is crucial in the heuristic. To select an element i we should bear in 
mind the variation of the objective function ( ) ( \{ })iF F S F S iΔ = −  and additional 
information about attractiveness of the element i from the point of view a set of local 
optima obtained at the previous iterations. To realize the strategy, we define a candidate 
set by the following: 

( ) { | (1 ) min max }i l ll S l S
S i S F F Fλ λ λ

∈ ∈
= ∈ Δ ≤ − Δ + Δ  for (0,1)λ ∈ . 

At the step 2.1, the element i is selected in ( )S λ  instead of the set S . 
Probability ip  to draw an element i depends on the variation iFΔ  and a value iα  that 
expresses a priority of i  to remove from the set S . More exactly, the probability ip  is 
defined as follows: 

( )

(max )

(max )
i l il S

i
k l kl Sk S

F F
p

F F
λ

α ε

α ε
∈

∈∈

Δ − Δ +
=

Δ − Δ +∑
,     ( )i S λ∈ , 

where ε  is a small positive number. To define iα  we present the framework of AC. 
 

AC algorithm 0( , , , )T K Kα  

1. Put *: 1, , :i i I Fα = ∈ = +∞  
2. While t T<  do 

2.1 Compute local optima 1, , KS S…  by the RD heuristic 
2.2 Select K minimal local optima: 1 2( ) ( ) ( ),KF S F S F S K K≤ ≤ ≤ <…  
2.3 Update ,i i Iα ∈  using 1, , KS S…  

2.4 If *
1( )F F S>  then 

2.4.1 *
1: ( )F F S=  

2.4.2 *
1:S S=  

2.4.3 0 *: , i Siα α= ∈  

       3. Return *S  
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The algorithm has four control parameters: 
0 :α  the minimal admissible value of , ;i i Iα ∈  
:T  the maximal number of the iterations; 
:K  the number of local optima obtained with fixed values of ,i i Iα ∈ ; 

K : the number of local optima which used to update of ,i i Iα ∈ . 
 
At the step 2.3, we have the local optima 1, , KS S…  and compute the frequency 

iγ  of opening facility i  in the solutions 1, , KS S… . If 0iγ =  then the facility i is closed in 
all solutions 1, , KS S… . To modify iα  we use the following rule: 

0 0( )
: ,

i
i

i
q

i I
γα α αα

β
+ −

= ∈ , 

where control parameters 0 1, 0 1q β< < < <  are used to manage the adaptation. 
 

5. COMPUTATIONALLY DIFFICULT INSTANCES 

5.1. Polynomially solvable instances 

Let us consider a finite projective plane of order k [8]. It is a collection of n =  
k2 + k + 1 points p1,…, pn and lines L1,…, Ln. An incidence matrix A is an n×n matrix 
defining the following: aij = 1 if pj ∈ Li and aij = 0 otherwise. The incidence matrix A 
satisfying the following properties:  

 A has constant row sum k + 1;  
 A has constant column sum k + 1; 
 the inner product of any two district rows of A is 1; 
 the inner product of any two district columns of A is 1. 

These matrices exist if k is a power of prime. A set of lines Bj = {Li | pj ∈ Li} is 
called a bundle for the point pj. Now we define a class of instances for the p-median 
problem. Put I = J = {1,…, n}, p = k + 1 and  

,    if 1,

  otherwise,
ij

ij

a
g

ξ =⎧⎪= ⎨
+∞⎪⎩

         

where ξ  is a random number taken from the set {0, 1, 2, 3, 4} with uniform distribution. 
We denote the class of instances by kFPP . From the properties of the matrix A we can get 
that an optimal solution for kFPP  corresponds to a bundle. Hence, an optimal solution 
for the corresponding p-median problem can be found in polynomial time. 

Every bundle of the plane accords with a feasible solution of the p-median 
problem and vice versa. For any feasible solution S, the (k-1)-Swap neighborhood has 
one element only. So, the landscape for the problem with respect to the neighborhood is a 
collection of isolated vertices. This case is hard enough for the local search methods if k 
is sufficiently large. 
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5.2. Instances with exponential number of strong local optima 

Let us consider two classes of instances where number of strong local optima 
grows exponentially as dimension increases. The first class uses the binary perfect codes 
with code distance 3. The second class is constructed with help a chess board. 

 
5.2.1. Instances based on perfect codes 

Let Bk be a set of words or vectors of length k over an alphabet {0, 1}. A binary 
code of length k is an arbitrary nonempty subset of Bk. Perfect binary code with distance 
3 is a subset C ⊆ Bk, |C|=2k/(k+1) such that Hamming distance d(c1,c2) ≥ 3 for all c1, c2 ∈ 
C, c1 ≠ c2. These codes exist for k=2r–1, r > 1, integer. 

Put n = 2k, I = J = {1,…, n}, and p=|C|. Every element i∈I corresponds to a 
vertex v(i) of the binary hyper cube 2

kZ . Therefore, we may use Hamming distance 
d(v(i), v(j)) for any two elements i, j ∈ I. Now we define 

,    if ( ( ), ( )) 1,
  otherwise,ij

d v i v j
g

ξ ≤⎧
= ⎨+∞⎩

     

where ξ  is a random number taken in the set {0, 1, 2, 3, 4} with uniform distribution. 
The number of perfect codes ℵ(k) grows exponentially as k increases. The best known 
lower bound [10] is  

1 3 5
log ( 1) log ( 1)2 22 4 42 2 2( ) 2 3 2 .

k k k
k k

k
+ − +

− + − +

ℵ ≥ ⋅ ⋅  

Each feasible solution of the p-median problem corresponds to a binary perfect 
code with distance 3 and vice versa. The minimal distance between two perfect codes or 
feasible solutions is at least 2(k+1)/2. We denote the class of benchmarks by PCk. 

 
5.2.2. Instance based on a chess board 

Let us glue boundaries of the 3k×3k chess board so that we get a torus. Put r = 
3k. Each cell of the torus has 8 neighboring cells. For example, the cell (1,1) has the 
following neighbors: (1,2), (1,r), (2,1), (2,2), (2,r), (r,1), (r,2), (r,r). Define n = 9k2, I = J 
= {1,…,n}, p = k2 , and 

,    if the cells  ,   are neighbors
  otherwise,ij

i j
g

ξ⎧
= ⎨+∞⎩

 

where ξ  is a random number taken from the set {0, 1, 2, 3, 4} with uniform distribution. 
The torus is divided into k2 squares by 9 cells in each of them. Every cover of the torus 
by k2 squares corresponds to a feasible solution for the p-median problem and vise versa. 
The total number of feasible solutions is 2·3k+1–9. The minimal distance between them is 
2k. We denote the class of benchmarks by CBk. 
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5.3. Instances with large duality gap  

Let the n×n matrix (gij) has the following property: each row and column have 
the same number of non-infinite elements. We denote this number by l. The value l/n is 
called the density of the matrix. Now we present an algorithm to generate random 
matrices (gij) with the fixed density. 

 
Random matrix generator (l,n) 

1. J  ← {1,…, n} 
2. Column [j] ← 0 for all j ∈ J 
3. g[i,j] ← + ∞ for all i, j ∈ J  
4. for i ← 1  to  n 
5.        do l0 ← 0 
6.          for j ← 1 to  n 
7.                  do if  n – i + 1 = l – Column [j] 
8.                           then g[i, j] ← ξ  
9.                                    l0 ← l0+1 
10.                                  Column [j] ← Column [j]+1 
11.                                  J ← J \ j 
12.       select a subset J′ ⊂ J,  | J′| =l – l0 at random and  
            put g[i,j] ←ξ   for j∈ J′ 

 
The array Column [j] keeps the number of small elements in j-th column of the 

generating matrix. Variable l0 is used to count the columns where small elements must be 
located in i-th row. These columns are detected in advance (line 7) and removed from the 
set J (line 11). Note that we may get random matrices with exactly l small elements for 
each row only if we remove lines 6–11 from the algorithm. By transposing we get 
random matrices with this property for columns only. Now we introduce three classes of 
benchmarks: 

Gap-A: each column of the matrix (gij) has exactly l small elements 
Gap-B: each row of the matrix (gij) has exactly l small elements 
Gap-C: each column and row of the matrix (gij) has exactly l small elements. 
 
For each instance we define p as a minimal value of facilities which can serve 

all customers. In computational experiments we put l = 10, n = m = 100 and  p = 12 ÷15. 
 
The instances have significant duality gap: 

100%,opt LP

opt

F F
F

δ
−

= ⋅  

where FLP is an optimal solution for the linear programming relaxation. In average, we 
observe δ ≈ 35.5% for class Gap-A, δ ≈ 37.6% for class Gap-B, δ ≈ 41.5% for class Gap-
C. For comparison, δ ≈ 9.84% for class FPP11, δ ≈ 14.9% for class CB4, δ ≈ 1.8% for 
class PC7.  
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6. COMPUTATIONAL EXPERIMENTS 

All algorithms were coded and tested on instances taken from the electronic 
benchmarks libraries: the well-known OR Library [4] and new library “Discrete Location 
Problems” available by address: http://www.math.nsc.ru/AP/bench-marks/P-median/p-
med_eng.html. All instances are random generated and were solved exactly. For OR 
Library instances, the elements gij are Euclidean distances between random points on two 
dimensional Euclidean plane. The density of the matrices is 100 %. The problem 
parameters range from instances with n = m = 100, p = 5, 10 and up to instances with n = 
m = 900, p = 5. Our computational experiments show that the instances are quite easy. 
The local improvement algorithm with random starting points and simple restart strategy 
with 100 trials finds an optimal solution for instances with n = 100 ÷ 700 if we use Swap 
neighborhood. For the LK-neighborhood, the algorithm finds an optimal solution for all 
OR Library instances.  

The new library “Discrete Local Problems” contains more complicated 
instances for the p-median problem. For every class discussed above, 30 test instances 
are available. The density of matrices (gij) is small, about 10 % – 16 %. We study the 
behavior of the local improvement and Ant Colony algorithms for these tests. Three 
variants of local improvement algorithm are considered: 

LR:  Local improvement with starting points x(ut). 
RR: Local improvement with starting points generated by the randomized 

rounding procedure applied to the fractional solution x . 
Rm: Local improvement with random starting points. 
 

In computational experiments every algorithm finds 120 local optima. The best 
of them is returned. 

 

Table 1: Average relative error for the algorithms with Swap neighborhood 
Benchmarks n, p RR LR Rm AC 
Gap-A 100, 12-13 1.31 1.34 1.12 0.00 
Gap-B 100, 14-15 4.79 4.48 5.45 0.00 
Gap-C 100, 14 6.53 5.19 8.65 0.00 
FPP11 133, 12 0.09 0.07 0.15 0.00 
PC7 128, 16 0.07 0.05 3.49 0.00 
CB4 144, 16 1.32 1.32 0.96 0.00 
Uniform 100, 12 0.11 0.05 0.01 0.00 

 
Table 1 presents the average relative error for the algorithms with Swap 

neighborhood. For comparison, we include additional Uniform class of test instances. 
The elements gij are taken in interval [0, 104] at random with uniform distribution. The 
density of the matrices is 100% and p = 12. 
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Table 2: The percent of trials when no feasible solutions obtained by Swap neighborhood 
Benchmarks n, p RR LR Rm AC 
Gap-A 100, 12-13 33.50 19.17 15.50 16.11 
Gap-B 100, 14-15 37.22 37.22 36.11 27.44 
Gap-C 100, 14 34.40 38.07 26.93 20.88 
FPP11 133, 12 0.00 0.00 0.00 0.00 
PC7 128, 16 0.00 0.00 0.33 0.00 
CB4 144, 16 6.17 0.50 0.00 0.00 
Uniform 100, 12 0.00 0.00 0.00 0.00 

 
Table 2 presents a percent of trials when no feasible solutions can be obtained. 

By the experiments we may conclude that Ant Colony approach shows the best results. 
As a rule, it finds optimal solutions. The local improvement algorithm is weaker. 
Nevertheless, it can find feasible solutions with small relative error. It is interesting to 
note that LR and RR algorithms [3] without local improvement procedure can not find 
feasible solutions for difficult test instances. So, the stage of local improvement is very 
important for the p-median problem. 

 
Table 3:  Average relative error for the algorithms with LK- neighborhood 

Benchmarks n, p RR LR Rm AC 
Gap-A 100, 12-13 0.33 0.51 0.20 0.00 
Gap-B 100, 14-15 1.08 1.16 0.97 0.00 
Gap-C 100, 14 1.69 1.44 1.61 0.00 
FPP11 133, 12 0.09 0.07 0.09 0.00 
PC7 128, 16 0.05 0.04 2.35 0.00 
CB4 144, 16 0.13 0.09 0.00 0.00 
Uniform 100, 12 0.00 0.00 0.00 0.00 

 
Table 4. The percent of trials when no feasible solutions obtained by LK- neighborhood 

Benchmarks n, p RR LR Rm AC 
Gap-A 100, 12-13 10.67 5.78 3.78 4.33 
Gap-B 100, 14-15 9.67 7.56 7.56 13.44 
Gap-C 100, 14 0.00 0.00 0.00 0.00 
FPP11 133, 12 0.00 0.00 0.00 0.00 
PC7 128, 16 0.00 0.00 0.00 0.00 
CB4 144, 16 0.00 0.00 0.00 0.00 
Uniform 100, 12 0.00 0.00 0.00 0.00 
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Table 5: The average number of steps by the Swap neighborhood to reach a local optimum 

Benchmarks n, p RR LR Rm AC 

Gap-A 100, 12-13 6.76 7.70 10.69 5.11 
Gap-B 100, 14-15 10.24 11.24 11.92 5.85 
Gap-C 100, 14 9.78 10.74 10.74 5.80 
FPP11 133, 12 7.52 7.89 9.24 5.02 
PC7 128, 16 4.77 7.72 12.17 6.39 
CB4 144, 16 7.19 8.02 13.93 7.64 
Uniform 100, 12 6.01 6.25 13.08 5.12 

 
Table 6: The average number of steps by the LK- neighborhood to reach a local optimum 

Benchmarks n, p RR LR Rm AC 
Gap-A 100, 12-13 7.85 7.81 9.28 0.67 
Gap-B 100, 14-15 11.84 11.68 2.59 0.84 
Gap-C 100, 14 10.78 10.50 11.70 0.89 
FPP11 133, 12 0.39 0.34 0.29 0.017 
PC7 128, 16 0.4 0.85 2.04 0.19 
CB4 144, 16 11.00 10.95 15.72 0.58 
Uniform 100, 12 4.57 4.18 7.49 0.38 

 
Table 3 and 4 show results for the LK-neighborhood. Comparison these tables 

and two previous ones persuade that the LK-neighborhood allows to improve the 
performance of the algorithms indeed. We get feasible solutions more often. The relative 
error decreases. Tables 5 and 6 present average number of steps by Swap and LK- 
neighborhoods to reach a local optimum. As we can see, a path from starting points to 
local optima is shot enough.  

7. CONCLUSIONS 

In this paper we have introduced a new promising neighborhood for the p-
median problem. It contains at most n–p elements and allows the local improvement 
algorithm to find near optimal solutions for difficult test instances and optimal solutions 
for Euclidean instances with middle dimensions.  We hope this new neighborhood will be 
useful for more powerful meta-heuristics [7]. For example, the Ant Colony algorithm 
with LK-neighborhood shows excellent results for all test instances considered. 

Another interesting direction for research is computational complexity of the 
local search procedure with Swap and LK-neighborhoods for the p-median problem. It 
seems plausible that the problem is PLS-complete from the point of view of the worst 
case analysis [15], but is solvable polynomially in average case [14].   
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