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Abstract: This paper presents an extended production inventory model in which the 
production rate at any instant depends on the demand and the inventory level. The effects 
of the time value of money are incorporated into the model. The demand rate is a linear 
function of time for the scheduling period. The proposed model can assist managers in 
economically controlling production systems under the condition of considering a 
discounted cash flow. A simple algorithm computing the optimal production-scheduling 
period is developed. Several particular cases of the model are briefly discussed. Through 
numerical example, sensitive analyses are carried out to examine the effect of the 
parameters. Results show that the discount rate parameter and the inventory holding cost 
have a significant impact on the proposed model.  
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1. INTRODUCTION 

The standard Economic Manufacturing Quantity (EMQ) model assumes a 
constant and known demand rate over an infinite planning horizon. Mak [16] proposed a 
production lot size inventory model with a uniform demand rate over a fixed time 
horizon. However, most items experience a variable demand; they are varied with time. 
Numerous research efforts have been undertaken to extend the basic EMQ model by 
relaxing various assumptions so that the model conforms more closely to a real world 
situation. Bhunia and Maiti [2] and Goswami and Chaudhuri [9][10] relaxed the 
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assumption of a constant demand. They considered the inventory model of the 
assumptions that the demand rate changes linearly with time. Hariga [13], Bose et al. [3] 
and Hong et al. [15] considered the inventory model with time-proportional demand. 
Wee [26], Mandal and Phaudar [17] and Urban [24] discussed the inventory model with 
an inventory-level-dependent demand rate. In addition, Su and Lin [22] solved a 
production inventory model for variable demand and production. In this model, three 
market demand rates are addressed. 

The effect of production rate is so vital in many production inventory systems 
that it cannot be disregarded. To incorporate the production rate, Goswami and 
Chaudhuri [10] developed an order-level inventory problem of time dependent 
deteriorating item with and without backlogged shortages in which the finite production 
rate is proportional to the time dependent demand rate. Balkhi and Benkherouf [1] 
considered a production lot size inventory model with arbitrary production and demand 
rate depending on the time function. Furthermore, Bhunia and Maiti [2] assumed that the 
production rate is a variable. They also presented inventory models in which the 
production rate depends on either on-hand inventory or demand. In practice, demand and 
inventory level may influence the production. The demand decreases (or increases) may 
cause the manufacturers’ decision to decrease (or increase) their production as well. 
Besides, the production rate may either increase or decrease with the inventory level. 
Thus, the effect of inventory on production rate warrants further study. In the meantime, 
Su et al. [21] developed a production inventory model in which considers the dependence 
of production rate on the demand and inventory level. 

Although the assumptions underlying the standard EMQ inventory models seem 
restrictive, the model has been widely used in practice. However, they almost neglected 
the time values of cash flow. In other words, the same cash amount will possess different 
money value at different future time. This situation generally arises in the case of 
inventories of highly demandable products. When market demand goes up, the customers 
obviously consume more, thus the managers have to increase the production and 
inventory. The production scheduling and periodic inventory of the items are in need of 
operating the system economically. 

Sarker et al. [19] developed an optimal payment time under the permissible 
delay in payment for products with deterioration. Gurnani [12] applied the discounted 
cash flow (DCF) approach to the finite planning horizon model in which it is a given 
constant. Trippi and Lewin [23] adopted a DCF over an infinite horizon. Dohi et al. [7] 
proposed optimal inventory policies for an infinite time span taking account of time value 
that differs from Trippi and Lewin [23] and Gurnani [12]. Chung and Kim [5] also 
suggested that the assumption of the infinite planning horizon is not realistic and called 
for a new model that relaxes the assumption of the infinite planning horizon. To be more 
realistic, Moon and Yun [18] examined the DCF over the finite planning horizon, which 
is a random variable. They did not present a production inventory model under the 
condition of considering a DCF. Hence, the EMQ computed from the standard model 
would have to be extended to reflect this DCF. To eliminate the cost of holding, the firm 
may undertake detailed production schemes. 

We extended the models of Su and Lin [22] and Bhunia and Maiti [2], allow the 
time value of money and incorporate a finite production rate which is proportional to 
both the demand rate and the inventory level. A finite time-horizon production inventory 
model follows the approach of Su and Lin [22] and Bhunia and Maiti [2] with a linear 
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time-dependent demand rate. The mathematical formula of the expected cost function is 
derived. Then, the optimal production scheduling period, maximum inventory level can 
be easily solved by using Intermediate Value Theorem method and the theory of 
majorization. A numerical example is given to illustrate the use of the proposed model. 
Finally, we also briefly discuss the sensitivity of these solutions to changes in underlying 
parameter values as well as the advantages of the proposed model are addressed in the 
conclusions. 

2. ASSUMPTIONS AND NOTATIONS 

The mathematical model of the production inventory problem considered in this 
paper is developed on the basis of the following assumptions and notations. Additional 
notations will be introduced later when needed. 

1. A single item is considered over a prescribed period of T  units of time, 
where 1 2T t t= + ; 1t  and 2t  are the durations of the production scheduling 
period and after the production period, respectively. 

2. The demand rate ( )D t changes linearly with time t , i.e. ( )D t tα β= + , 
where , 0α β > . 

3. At time (0 )t t T≤ ≤ , the on-hand inventory is ( )I t . 
4. Production rate, ( )P t , at any instant depends on both the demand and the 

inventory level. That is at time 1(0 )t t t≤ ≤ , ( ) ( ) ( )P t a bD t cI t= + − , a > 0, 
0 1b≤ < , and 0 1c≤ < . 

5. Shortages are not allowed. 
6. The inventory system involves only one stocking point; mI  represents the 

maximum inventory level. 
7. A DCF approach is adopted to consider the time value of money. The 

discount rate r  is compounded continuously, 0 1r≤ ≤ , where the present 
value of a unit of cost after a time t  is rte− . 

8. The relevant costs are the inventory holding cost iC  per unit per time unit 
and the setup cost sC  per new cycle, which are all known and constant 
during the period T . 

 

3. THE MATHEMATICAL MODEL  

Based on the above assumptions and notations, the inventory level starts at a 
time 0t =  and reaches mI  maximum level after 1t  time units have elapsed. Then the 
production is stopped, the stock level declines continuously and the inventory level 
becomes zero at time 1 2 ( )t t T+ = . Our purpose is to find out the optimal values of 1t , T  
and mI  that minimize the average cost K  over the time horizon [0, ]T . 



 C.-T. Su, C.-W. Lin / Production Inventory Policy Under a Discounted Cash Flow 292

The change in the inventory level, ( )dI t  during a small interval of time dt  is a 
function of the production rate ( )P t , demand rate ( )D t , and the remaining inventory. 
Thus, the expression for the differential equations governing the stock status during 
period [0, ]T  can be written as 

( ) ( ) ( )dI t P t D t
dt

= − ( )1 ( ) ( )a b t cI tα β= + − + − ,  10 t t≤ ≤ , (1) 

and 

( ) ( )dI t t
dt

α β= − + ,  1 1 2t t t t≤ ≤ + . (2) 

Using the boundary conditions, i.e. ( ) 0I t =  at 0t = ; 1( ) mI t I=  at 1t t= ; and 
( ) 0I T =  at t T= . After having adjusted the constants of integration, Eqs. (1) and (2) are 

clearly equivalent to the following equations 

( ) ( )
0

0
1

( ) t

t ctdt

ctdt

a b t e dt
I t

e

α β ∫+ − +⎡ ⎤⎣ ⎦=
∫

∫  

( )
0

1 1 ( )
tct ct cta e b e t e dt

c
α β− −⎡ ⎤= − + − +⎣ ⎦ ∫ 1 ctM e Nt−⎡ ⎤= − +⎣ ⎦ , 10 t t≤ ≤ ,  (3) 

where 2

( 1) ( 1)a b bM
c c

α β+ − −= − , and ( 1)bN
c

β−= , 

and 

1 2( ) ( )
t t

t
I t t dtα β

+
= − +∫ 2 2( ) ( )

2
T t T tβα= − + − ,  1 1 2t t t t≤ ≤ + . (4) 

Again 1( ) mI t I= ; thus  

mI 1
11 ctM e Nt−⎡ ⎤= − +⎣ ⎦

2
2 2 1 2( 2 )

2
t t t tβα= + + . (5) 

The relationship between 1t  and 2t  is defined by the equation 

12
1 1 1

2

( ) ( ) 2 (1 )ctt t M e Nt
t

α β α β β

β

−⎡ ⎤− + + + + − +⎣ ⎦= . (6) 

The present value of the holding cost during the period [0, ]T  is obtained by 

discounting ( )iC I t  at a rate of r , i.e. ( ) rt
iC I t e− . According to the above arguments, the 

present value of the holding cost can be shown as 
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1 1 2

10
( ) ( )

t t trt rt
i i t

C I t e dt C I t e dt
+− −+∫ ∫  

{ }1

0
1

t ct rt
iC M e Nt e dt− −⎡ ⎤= − +⎣ ⎦∫

1 2

1

2 2( ) ( )
2

t t rt
i t

C T t T t e dtβα
+ −⎡ ⎤+ − + −⎢ ⎥⎣ ⎦∫ . (7) 

Hence, the total average cost of the inventory system is 

K = setup cost + holding cost  

( ) ( )1 1 1 1( ) 1
2

1 2 1 2

1 1 1rt c r t rt rts iC C NtM M Ne e e e
t t t t r c r rr

− − + − −⎧ ⎫⎡ ⎤= + − − − + − −⎨ ⎬⎣ ⎦+ + +⎩ ⎭
 

1 2 1 2 1 1( ) ( )1 2 2
2 3

1 2

( ) r t t r t t rt rtiC t t t
e e e e

t t rr r
α β αβ− + − + − −+ +⎧ ⎡ ⎤+ + − +⎨ ⎣ ⎦+ ⎩

 

 1 1

2
1 2 1 2

2

( 2 )
2

rt rtt t t t
e e

rr
α β β− − ⎫+ +

− + ⎬
⎭

. (8) 

 
4. SOLUTION PROCEDURE 

The above cost function K  is a function of two variables 1t  and 2t . However, 
they are not independent and are related by Eq. (5). The problem is to determine the 
optimal value of 1t  that minimizes the total average cost K . We take the first and second 
derivative of K  with respect to 1t  as follows: 

2
2

1 11 2

[1 ]
( )

sC dtdK
dt dtt t

= − +
+

1 1 1

2
( ) 2 1 2

1 2
1 2

( 2 )
( )

2
rt c r t rtiC t t t

M Nt e Me t e
t t

βα− − + −⎧ ⎡ ⎤+⎪+ + − − +⎨ ⎢ ⎥+ ⎪ ⎣ ⎦⎩

1 1 2( )1 2 2

1

( )
1 rt r t tt t dt

e e
r dt

α β − − + ⎫⎛ ⎞+ +⎡ ⎤ ⎪⎡ ⎤+ + − ⎬⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎪⎝ ⎠ ⎭
 

( )
( ) ( )1 1 1( )

2 2
1 2

1 1 1rt c r t rtiC M M Ne e e
r c r rt t

− − + −⎧ ⎡ ⎤− − − − + −⎨ ⎣ ⎦+⎩+
 

1 1 2 1 2 1( ) ( )1 1 2
2 3

( )rt r t t r t t rtNt t t
e e e e

r r r
α β β− − + − + −+ + ⎡ ⎤− + + −⎣ ⎦  

1 1 1

2
2 1 2 1 2 2

2
1

( 2 )
1

2
rt rt rtt t t t t dt

e e e
r r dtr

α α β β− − − ⎫⎛ ⎞+ +
+ − + +⎬⎜ ⎟

⎝ ⎠⎭
, (9) 

and 
2

2
1

0d K
dt

> . (The detail of mathematical given in Appendix) 
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Let 1
1

( ) dKq t
dt

= , then q  increases with respect to 1t , and *
1t  is the optimal value 

if and only if *
1( ) 0q t = . Since K  is convex with respect to 1t , the Newton-Raphson 

method can be used to find the optimal value of 1t . However, it may not be easy for a 
practitioner with limited mathematical knowledge to understand the Newton-Raphson 
method. In this section, we shall present a simple algorithm to compute the optimal value 
of 1t . Before describing the algorithm, we need the following theorem. 
 
Intermediate Value Theorem: Let q  be a continuous function on [ , ]L U , and let 

( ) ( ) 0q L q U < . Then, there exits a number [ , ]d L U∈  such that ( ) 0q d = . 
Since ( )q t  is strictly increasing, the following algorithm is based on the above 

theorem and the uniqueness of the root of equation (9). Recall that (0) 0q <  and 
( ) 0Uq t > . We are in a position to outline the algorithm. 

 
Step 1. Let 0δ > . 
Step 2. Let 0Lt =  and 1Ut t= . 

Step 3. Let 
2

L Ut t
t

+
= . 

Step 4. If ( )q t δ< , go to Step 6. Otherwise, go to Step 5. 
Step 5. If ( ) 0q t > , set Ut t= . If ( ) 0q t < , set Lt t= . Then, go to Step 3. 

Step 6. *
1t t=  and exit the optimal value. 
 
We obtain the optimal value of 1t  by Intermediate Value Theorem method using 

a computer. The optimal values of T , mI  and the minimum total average cost K  can be 
obtained from equations (5) and (8) respectively. 
 
Special case 

In this section, we study some important cases that follow from the problem considered 
in the previous sections. 

 
Case A. If we assume 0r → , that is ignoring the time value of money. We then obtain 
the model which is the same as that given by Su and Lin’s [22] increasing demand 
pattern (growth market), the total average cost of system during [0, ]T  is 

1

12

( 1) ( 1) 1ct
s iC C a b b eK t

T T c cc
α β −⎧ ⎛ ⎞+ − − −⎪⎡ ⎤= + − +⎨ ⎜ ⎟⎢ ⎥⎣ ⎦⎪ ⎝ ⎠⎩

 

2 2 2 3
1 2 1 2 2( 1)

2 2 2 3
b t t t t t

c
β α β β ⎫−

+ + + + ⎬
⎭

. (10) 
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Case B. If we assume 0β =  in case A, the model changes to an inventory system with 
the uniform demand pattern; the model is the same as Su and Lin’s [22] uniform demand 
pattern (maturity market). 

1 2
2

1
( 1) 1

2

ct
s iC C ta b eK t

T T c c
αα −⎧ ⎫⎛ ⎞+ − −⎪ ⎪= + + +⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭
. (11) 

Case C. If we assume 0b =  in case A, the model changes to an inventory system where 
the production rate depends on the on-hand inventory. The model is the same as Bhunia 
and Maiti’s [2] first model, i.e., the production rate varies depending on the amount 
stocked in the go down. 

1 2 2 2 3
1 2 1 2 2

12

1
2 2 2 3

ct
s iC C t t t t ta eK t

T T c c cc
β α β βα β −⎧ ⎫⎛ ⎞− −⎪⎡ ⎤= + + + − + + +⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦⎪ ⎝ ⎠ ⎭⎩

, (12) 

where 0c → , we then obtain the model the same as that given by Bhunia and Maiti’s [2] 
second model, that is the model reducing to an inventory system where the production 
rate depends on demand. 

[ ] 2 3 2 2 3
1 1 2 1 2 2( 1) ( 1)

2 6 2 2 3
s i a b tC C b t t t t t

K
T T

α β α β β⎧ ⎫+ − −⎪ ⎪= + + + + +⎨ ⎬
⎪ ⎪⎩ ⎭

. (13) 

Case D. Again, if we assume 0b c= =  in case B, that is the model changes to an EMQ 
model with uniform production and constant demand. In this situation, the cost function 
becomes 

2 2
1 2( )

2 2
s iC C a t t

K
T T

α α⎧ ⎫−
= + +⎨ ⎬

⎩ ⎭
. (14) 

 
 

5. NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 

To illustrate the results so far, we use the following example, which is adapted 
from the example of Bhunia and Maiti [2]. For this model, let 200a =  units/month, 

0.3b = , 0.3c = , $100sC =  for each new cycle, $1iC = /unit/month, 100α =  units, 
20β = , and 0.2r = . The optimum values of 1t  and T , along with minimum total 

average cost per month K  and optimum values of mI , are calculated for the model. 
Next, the values are compared with different situations, as shown in Table 1. For our 
model, the optimal production scheduling period 1 1.3589t =  months, the maximum 
inventory level 133.75mI =  units and the total average cost $99.20K =  can be used to 
assist project managers in marking production scheduling period decisions. 
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Table 1: Results of the numerical example 
Cases 1t  T  mI  K  
The proposed model 1.3589 2.3355 133.75 99.20 
Su and Lin’s [16] increasing demand pattern 0.9734 1.7862 103.71 110.32 
Bhunia and Maiti’s [2] first model 1.3589 2.0694 95.41 100.45 
Bhunia and Maiti’s [2] second model 0.8535 1.6969 105.86 112.87 

  
With the above numerical example, the optimal values of 1t , T , mI , and the 

total average inventory cost K  for the fixed set φ { , , , , }ib c r Cβ=  of parametric values 

are denoted by 0
1t , 0T , 0

mI  and 0K , respectively. Therefore, 0
1t =1.3589, 0T =2.3355, 

0
mI =133.75, and 0K =99.20. Now, when only one of the parameters in the set of 

parametric values changes by a fixed proportion and all other parameters remain 
unchanged, let *

1t , *T , *
mI  and *K  denote the corresponding optimal values, 

respectively. Then we calculate the following sensitivity measures for 30% changes in 
the parameters either side. 
S.P.P. = Sensitivity of the optimum production scheduling period 

=
*
1
0
1

1 100
t
t

⎛ ⎞
− ×⎜ ⎟

⎝ ⎠
; 

S.P.T. = Sensitivity of the optimum production cycle time 

=
*

0 1 100
T
T
⎛ ⎞

− ×⎜ ⎟
⎝ ⎠

; 

S.M.I. = Sensitivity of the maximum inventory level 

=
*

0 1 100m

m

I
I

⎛ ⎞
− ×⎜ ⎟

⎝ ⎠
; and 

S.T.C. = Sensitivity of the optimum total average cost 

=
*

0 1 100K
K

⎛ ⎞
− ×⎜ ⎟

⎝ ⎠
. 

Table 2 summarizes these results. The increase in the parameter is indicated by the “+” 
sign and the decrease by the “-” sign attached to it. Based on the sensitivity analysis, we 
can infer as following: 

 
1. The optimal production scheduling period 1t  is insensitive to changes in the parameter 
β , slightly sensitive to changes in b  and c  and quite sensitive to changes in r  and iC ; 

2. The optimal production cycle time T  is insensitive to changes in the parameter β , 
moderately sensitive to changes in b  and c  and highly sensitive to changes in r  and iC ; 
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3. The maximum inventory level mI  is insensitive to changes in the parameters b , c  and 
β , quite sensitive to changes in r  and iC ; 

4. The optimal total average cost K  is slightly sensitive to changes in the parameters β , 
b  and c , quite sensitive to changes in iC ; and 

5. The results indicate that the performance of the proposed model is significantly 
affected by the discount rate r  and the inventory holding cost iC . The larger the 
discount rate (or the smaller the inventory holding cost), the greater the production-
scheduling period and the smaller the optimum total average cost. 
 
Table 2: Sensitivity analysis 
Parameters *

1t  *T  *
mI  *K  S.P.P. 

% 
S.P.T. 

% 
S.M.I. 

% 
S.T.C. 

% 
β +:26 
β -:14 

1.4367 
1.3059 

2.3443 
2.3648 

135.38 
133.10 

100.23 
97.82 

5.73 
-3.90 

0.38 
1.25 

1.22 
-0.49 

1.04 
-1.39 

b +:0.39 
b -:0.21 

1.2113 
1.5910 

2.2043 
2.5520 

133.21 
135.92 

101.84 
96.07 

-10.86 
17.08 

-5.62 
9.27 

-0.40 
1.62 

2.67 
-3.16 

c+:0.39 
c-:0.21 

1.5428 
1.2421 

2.5168 
2.2239 

136.94 
132.21 

97.72 
100.46 

13.53 
-8.60 

7.76 
-4.78 

2.38 
-1.15 

-1.49 
1.27 

r +:0.26 
r -:0.14 

1.8259 
1.1878 

2.9315 
2.0992 

163.16 
121.10 

94.82 
102.88 

34.37 
-12.59 

25.52 
-10.12 

21.99 
-9.46 

-4.42 
3.71 

iC +:1.3 

iC -:0.7 
1.0686 
2.4348 

1.9277 
3.6276 

111.65 
191.60 

114.82 
80.01 

-21.36 
79.17 

-17.46 
55.33 

-16.53 
43.25 

15.74 
-19.34 

 
 

6. CONCLUSIONS 

This paper studies the effect of an extended production inventory system under a 
discounted cash flow, and the production rate at any instant depends on the demand and 
the inventory level. The demand rate is a linear function of time for the scheduling 
period. The total average cost for such a system is derived, which is a modification of the 
standard EMQ formula. Such a production cost is found to be smaller than that of Su and 
Lin’s [22] increasing demand pattern and Bhunia and Maiti’s [2]. Using Intermediate 
Value Theorem method can easily solve the developed model. The sensitivity of the 
solution to change the values of different parameters has been discussed. According to 
those results, the proposed model is quite sensitive with respect to the discount rate 
parameter r  and the inventory holding cost iC , slightly sensitive to the parameters b  
and c , and insensitive to the parameter β .  

Inventory and DCF of the production system are inherent characteristics in all 
manufacturing industries. An understanding of the relationship among production, 
demand, inventory and DCF for such systems will help managers to maintain efficient 
and economic control of operations. A future study should incorporate more realistic 
assumptions into the proposed model, such as relaxing a terminal condition of zero 
inventories at the end of the production cycle. 
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APPENDIX 

From equations (9), we derive  
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Take the second derivative of K  with respect to 1t , we obtain 
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