Yugoslav Journal of Operations Research 16 (2006), Number 2, 147-152

EXISTENCE OF A SOLUTION OF THE QUASI-VARIATIONAL INEQUALITY WITH SEMICONTINUOUS OPERATOR

Djurica S. JOVANOV

Faculty of Organizational Sciences University of Belgrade, Serbia

Received: April 2004 / Accepted: June 2006

Abstract. The paper considers quasi-variational inequalities with point to set operator. The existence of a solution, in the case when the operator of the quasi-variational inequality is semi-continuous and the feasible set is convex and compact, is proved.

Keywords: Quasi-variational inequality, existence of a solution, semi continuous operator.

1. INTRODUCTION

Let *X* be a real Hilbert space, $U \subset X$ convex closed subset of the space $X, Q: U \mapsto 2^U$ point to set mapping from *U* to its subsets.

The quasi-variational inequality $OVI(F, U, O)$ is the problem:

Find $u \in U$ such that there exists $y \in F(u)$ satisfying

 $u \in O(u)$ and $(\forall v \in O(u)) < v$, $v - u >\geq 0$.

There are many problems which can be formulated as quasi-variational inequalities, for example: equilibrium problems in economics, impulse control problems, etc.

Existence of a solution of the quasi-variational inequality is considered in [1], [3]. In this paper we prove existence of a solution of the quasi-variational inequality $QVI(F, U, Q)$ with semi-continuous operator *F* and continuous mapping *Q*.

If $Q(u) = U$ the quasi-variational inequality is variational inequality $VI(F, U)$. In Section 2 some properties of the point to set mapping are considered. In Section 3 some existence theorems are proved.

148 Dj. Jovanov / Existence of a Solution of the Quasi-Variational Inequality

2. DEFINITIONS, NOTATIONS, PRELIMINARIES

Let *X* be a real Hilbert space, $U \subset X$ convex, closed subset of the space $X, Q: U \rightarrow 2^U$ point to set mapping.

Definition 2.1. We say that $F: U \to 2^U$ is upper semi continuous at u_0 if for any open *set N such that* $F(u_0) \in N$ *there exists a neighborhood M of* u_0 *such that* $F(M) \subset N$.

Definition 2.2. We say that $F: U \to 2^U$ is lower semi continuous at $u_0 \in U$ if for any y_0 ∈ $F(u_0)$ and any neighborhood $N(y_0)$, there exists a neighborhood $M(u_0)$ of u_0 such *that*

 $(\forall u \in M(u_0)) F(u) \cap N(y_0) \neq \emptyset$.

Definition 2.3. A set valued map $F: X \to X$ is said to be continuous at u_0 if it is both *upper semi continuous and lower semi continuous. It is said to be continuous at X if it is continuous at every point x*∈ *X .*

Definition 2.4. *For mapping q:U* \rightarrow *U we say that it is a selection of mapping Q iff*

 $(\forall u \in U) q(u) \in Q(u)$.

If *q* is continuous then we say that *q* is a continuous selection of the mapping *Q*. The minimal selection of the mapping *Q* is defined by

 $m(Q(u)) = P_{O(u)}O$,

where P_O is a metric projector, and O is the origin.

It is known that the following lemma holds.

Lemma 2.1. (Theorem 1.7.1. [2]) *If* $Q: U \rightarrow 2^U$ *is continuous then the minimal selection* $q: U \rightarrow U$ *is a continuous selection.*

From Lemma 2.1 it follows

Lemma 2.2. *Let* $w \in X$, *and let* $Q: U \to 2^U$ *be a point to set mapping which is continuous, with closed convex images. Then the mapping* $p: U \rightarrow U$ *defined by*

 $q(u, w) = P_{O(u)}w$

is continuous.

Proof: Let $u, u_n \in U$ and let $u_n \to u$ $(n \to \infty)$, $w_n, w \in X$ and $w_n \to w$ $(n \to \infty)$. Then

$$
|| q(u_n, w_n) - q(u, v) || = || P_{Q(u_n)} w_n - P_{Q(u)} w ||
$$

= $|| P_{Q(u_n)} w_n - P_{Q(u_n)} w + P_{Q(u_n)} - P_{Q(u)} w || \le || w_n - w || + || p(u_n) - p(u) ||$

Since $w_n \to w$ ($n \to \infty$) and $p(u_n) \to p(u)$ ($n \to \infty$) it follows that

 $\lim_{n \to \infty} q(u_n, w_n) = q(u, w)$,

and hence $q(u, w)$ is continuous.

Lemma 2.3. Let $Q: U \to 2^U$ satisfy conditions of Lemma 2.2., and let $f: U \to U$ be *continuous. Then the mapping* $g: U \rightarrow 2^U$ *defined by*

 $g(u) = P_{O(u)} f(u)$,

is also continuous.

Proof: Since $g(u) = q(u, f(u))$, where q is the mapping defined in Lemma 2.2, from continuity of f and q it follows that g is continuous.

Lemma 2.4. *Let* $G: X \rightarrow 2^X$ *be upper semi-continuous with closed images and let* $(u_n), (v_n), (\varepsilon_n)$ *be sequences such that*

$$
u_n\!\in\mathbb{X}, \varepsilon_n\!\in\mathbb{R}, \varepsilon_n\!>\!0, v_n\!\in\mathbb{X}, v_n\!\in G(u_n)\!+\!\varepsilon_n, \varepsilon_n\!\rightarrow\!0\,(n\!\rightarrow\!\infty)\;.
$$

Then from

$$
\lim_{n\to\infty}u_n=u\in Dom(F)
$$

and

$$
\lim_{n \to \infty} v_n = v
$$

it follows that $v \in G(u)$.

Proof: Let $\varepsilon > 0$. Since *G* is upper semi continuous and

 $\lim_{n\to\infty} v_n = v$

it follows that there exists $n_0, n_1, n_2 \in \mathbb{N}$ such that

$$
(\forall n > n_0) \parallel v_n - v \parallel < \frac{\varepsilon}{3}
$$
 (1)

$$
(\forall n > n_1) G(u_n) \subset G(u) + \frac{\varepsilon}{3} B \tag{2}
$$

$$
(\forall n > n_2) \|\varepsilon\| < \frac{\varepsilon}{3} \,. \tag{3}
$$

From (1) , (2) , (3) it follows

$$
v_n\in G(u_n)+\frac{\varepsilon}{3}B\subset G(u)+\frac{\varepsilon}{3}B+\frac{\varepsilon}{3}B=G(u)+\frac{2}{3}\varepsilon B\;.
$$

From the last relation and (1), (3) it follows that $v \in G(u) + \varepsilon B$. Since ε is any real number greater then 0, it follows that

$$
v\in \bigcap_{\varepsilon>0}G(u)+\varepsilon B=G(u)\ .
$$

The best known continuous selection theorem is the following result by Michael [2].

150 Dj. Jovanov / Existence of a Solution of the Quasi-Variational Inequality

Theorem 2.1. *Let X be a metric space, Y a Banach space. Let the mapping F from X into the closed convex subsets of Y be lower semi continuous. Then there exists* $f: X \rightarrow Y$, *a* continuous selection of *F*.

Theorem 2.2. *(The Approximate Selection Theorem) Let M be a metric space, Y a Banach space, F a mapping from M into the convex subsets of Y which is upper semi continuous. Then for every* ^ε > 0 *there exists a locally Lipschitzean map f*ε *from M to Y such that its range is contained in the convex hull of the range of F and*

 $Graph(f_{\varepsilon}) \subset Graph(F) + \varepsilon B$.

3. EXISTENCE OF A SOLUTION

In Lemma 3.1 we will prove sufficient and necessary conditions for the existence of a solution of $QVI(F, U, Q)$.

Lemma 3.1. $u \in U$ is a solution of the quasi-variational inequality $OVI(F, U, O)$ if and *only if*

 $u \in P_{O(u)}(u - \alpha F(u))$ for any $\alpha > 0$

Proof: $u \in P_{O(u)}(u - \alpha F(u))$, for any $\alpha > 0$ if and only if it holds

 $(\exists \varepsilon \in F(u))u = P_{O(u)}(u - \alpha y)$ for any $\alpha > 0$.

The last statement is equivalent with

 $(\exists v \in F(u))(\forall v \in O(u)) \le u, v-u \ge u - \alpha v, v-u >$

i.e.

 $(\exists y \in F(u))(\forall v \in Q(u)) \quad \alpha < y, v-u \geq 0,$

This proves that *u* is a solution of $QVI(F, U, Q)$.

Theorem 3.1. *Let X be a real Hilbert space,* $\emptyset \neq U \subset X$ *a convex closed subset of the space* $X, F: U \rightarrow 2^X \setminus \emptyset$ *a point to set mapping with convex and compact images which is upper semi continuous,* $Q: U \rightarrow 2^U \setminus \emptyset$ *is a continuous point to set mapping with convex and compact Q(u), and* $Dom(F) \supset U$ *, Dom(Q) = U.*

Then the quasi-variational inequality $QVI(F, U, Q)$ has a solution.

Proof: Let $G: U \to 2^X$ be defined by

 $G(u) = u - F(u)$.

From Lemma 2.1 [4] and properties of *F* it follows that *G* is upper semi continuous and $G(u)$ is convex and compact. From Theorem 2.2 it follows that for every $\varepsilon > 0$ there exists a locally Lipschitien mapping $g_{\varepsilon}: U \to X$ such that

 $Graph(g_{\varepsilon}) \subset Graph(G) + \varepsilon B$.

Let (ε_n) satisfies $\varepsilon_n > 0$, $\lim_{n \to \infty} \varepsilon_n = 0$ and let

$$
f_{\varepsilon_n}(u) = P_{Q(u)} g_{\varepsilon_n}(u) .
$$

Since g_{ε_n} is continuous, from Lemma 2.2 it follows that f_{ε_n} is continuous too. Since *U* is convex and compact, from Schauder's theorem it follows that there exists $u_n \in U$ such that

$$
u_n=f_{\mathcal{E}_n}(u_n)=P_{Q(u_n)}g_{\mathcal{E}_n}(u_n)\in P_{Q(u_n)}(G(u_n)+\varepsilon_n B)\subset P_{Q(u_n)}G(u_n)+\varepsilon_n B\ .
$$

Since *U* is compact there exist $u \in U$ such that $\lim_{n \to \infty} u_n = u$. From Lemma 2.4 it follows

$$
u \in H(u) = P_{Q(u)}G(u) = P_{Q(u)}(u - F(u)).
$$

From Lemma 3.1 it follows that u is a solution of $QVI(F, U, Q)$.

Theorem 3.2. *Let X be a real Hilbert space,* $\emptyset \neq U \subset X$ *a convex and compact subset of the space* $X, F: U \to 2^X \setminus \emptyset$ *a point to set mapping which is lower semi continuous with convex and compact images* $F(u)$, $Q: U \to 2^U$ *a continuous point to set mapping with convex and compact* $Q(u)$ *,* $Dom(Q) = U$ *. Then the quasi-variational inequality* $QVI(F, U, Q)$ has a solution.

Proof: Let $G: U \to 2^X$ be defined by

 $G(U) = u - F(u)$.

From Lemma 2.3 ([4]) it follows that *G* is lower semi-continuous. From Theorem 2.1 it follows that *G* has a continuous selection, i.e. that there exists continuous $g: U \to X$ such that

 $(\forall u \in U) g(u) \in G(u)$.

Let

$$
f(u) = P_{Q(u)}g(u) .
$$

From Lemma 2.3 it follows that *f* is continuous. Since *U* is convex and compact, from Schauder's theorem it follows that there exists $u \in U$ such that

 $u = P_{O(u)}g(u) \in P_{O(u)}(u - F(u))$.

From Lemma 3.1 it follows that u is a solution of $QVI(F, U, Q)$.

4. CONCLUSIONS

In this paper we have proved the existence of a solution of the quasy-variational inequality with point to set operator which is semi-continuous. If $Q(u) = U$ for all $u \in U$ the quasy-variational inequality reduces to the variational inequality and Theorems 3.1 and 3.2 reduce to the theorem on existence of a solution of the variational inequality.

REFERENCES

- [1] Aubin, J.P., *L analyse non lineare et ses Motivations*, Masson, Paris New York Barcelone Milan Mexico Sao Paulo, 1984.
- [2] Aubin, J.P., and Cellina, A., *Differential Inclusions, Set-Valued Maps and Viability Theory*, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.
- [3] Bensoussan, A., and Lions, J.L., *Controle impulsionel et ineqations quasivariationneles*, Bordas, Paris, 1982.
- [4] Jovanov, Dj., "The existence of solutions of variational inequality with set valued mappings", *Proceedings of XVII Yugoslav Simposium on Operations Reserch, SYM-OP-IS'90*, Kupari, 1990, 321-324.