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Abstract: Discrete optimal control problems with varying endpoints are considered. First
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1. INTRODUCTION

Consider discrete optimal control problem with varying endpoints.

N-1
minimize ) f,(X,4); (1)
i=1
X =@ (6,4), i=0,N-1, ()
K%, %) =0, A3)

where f (xU):R"XR" — R is twice continuously differentiable function, ¢ (x,u):
R'XR = R" and K(X,,%,):R"XR"— R are twice continuously differentiable

mappings. Here X € R" is state variable, U € R is a control parameter, N is given
number of steps. Vector € =(X,,X,...,%,) is called a trajectory, @=(U,,U,...,Uy_;) 1s

called a control, X, is a starting point and X is an end point of corresponding trajectory.
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Let x, be a starting point and let be a control. Then the pair (X,,®) defines the
corresponding directory & =(X,,X,,...,X,). If the condition (3) is satisfied then we say
that the pair (X,,®) is feasible.

The discrete optimization problem is to minimize the function

304 @) = f,(x,U)
i=0

on the set of feasible pairs.
The aim of this paper is to obtain first and second order necessary optimality
conditions for the problem (1)-(3) without normality assumptions.

2. FIRST ORDER NECESSARY OPTIMALITY CONDITIONS

Let (X,,®)be a feasible pair and let €=(X,,X,...,Xy)be a corresponding
trajectory. Suppose that the pair (X,,®) is optimal.

Put

%o _o d0_p
oX Jou

and

82¢k :C2 azq)k :D2 82¢k :MZ .
o’ K oxou
Let (h,v), h=(h,h,...h,)e R"™" v=(v,,V,..,vy_ )€ R", be the vector for

which there exists a vector (N',v)e R"™ ™ x R™ such the following conditions are

satisfied:

k-1 k-2 -
h.=T[Ch+>. [] C.D,v, +D_ Vi, kK=LN, @)
=0 10 j<s<k-1
oK o«
—( > X )( 7h ):Oa (5)
a(x(),XN) XO N hO N
-Ci[h - D¢[v I —-2M([h.v ]=h_, -Ch —Dy,, k=0,.,N-1I. (6)

Here [-,-] stands for the arguments of a bilinear form (or, more generally,
bilinear mapping).

Denote by K set of all vectors (h,v) for which the preceding conditions are
satisfied.

Define the functions

| 99 99
HL (XU, P. G Ay, h V) = (P, (% U)) +<q,a—‘i<x,u)h+a—ﬁ(x, uN) —

—A fi(x,u), i=0,N-1,
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Iﬁ%mmkjwmmm=uwm&ﬁ0ﬂ¢@5éé7;m&mmmmx

where
loe R, ﬂ'l’ﬂ’ze Rka psqe Rn'
Theorem 1: Let (X,,®) be the optimal solution for the problem (1)-(3). Then there exists

Lagrange multiplier 4, =(4.4,4,p,0), 4€R 4.4 eR" pe R"™" ge R™,
Ay +|(q,ﬂ,z)| # 0 such that for every (h,v)e K the following conditions are satisfied:

(1)
= Sy Ry A e ™
pO_aXO XO’ N> 4> s SN >
oH), . . :
p|: aXA()ﬁﬂuiﬂp|+1:qi+19)‘09hfvi)7 IZO:N_ls (8)
A, . .
pN :_a_(XOJXN’/,L[’/,lzahoahN)a (9)
XN
oHY . . :
auA()gﬂuiap|+19qi+1’/107hvvi)a I=0,N-1I. (10)

(ii) There exists vector (h’,v')e R"™™ xR™ such that

P = h: _Ck—lh:—l _Dk—lvll<—l’ k=LN, (11)
oKy o o s
= > ) 12
4 o, (%> % )by (12)
(1i1)
* aK A A *
_C0q1+£(x05XN) /,12 :0’ (13)
q.-Cq,,; =0, k=1,..N-1, (14)
oK . .
On _M(Xoaxr\l) 4, =0, (15)
-D, ,q.=0, k=1,..,N. (16)

Proof: We shall formulate the problem (1)-(3) as a mathematical programming problem,
and we shall apply results from [2].
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Define the functions

f(e,0): R""" xRN 5 R F(e,0): R""x RN R, i=1,N,

and
F(e,w): R xRN - R™,
by

fem=Y f(x.u),

i=0
Fi+1(£sw)= )§+l _wi()g$ui)» i =03N_1»
F(e,w)=(F (e, m),...Fy (€, ).

Consider the following mathematical programming problem:

Minimize f(&,); (17)
F(e,w)=0, (18)
K (%, Xy)=0. (19)

The point (£€,W) is the local minimum for preceding problem.
Consider the operator

F(e,w): R xRN — R™ xR
given by

F(e,w)=(F(&,m), K(X,,%Xy)) -
Define the Lagrange — Avakov function

Ly(g,0,4,,h,v): R x RN x Rk RN  xK — R
by
_oF

La(g,0, 45,0 V) = 4 T (6,0) +( P, F (e, a)))+<q, o)

(&, w)(h,V)> ;

where 1, = (4,,p.6), 4, € R, p,Ge R™™ and K is the set of all (h,v)e R"™*)xR™
such that the following conditions are satisfied:

1)
oF . B
3. o) (€, @)(h,v)=0,
2)
*F . . oF _ .
W(s,a))[(h,v),(h,v)]e mw(e,a)).

Note that the vector (h,v) is the parameter in the Lagrange — Avakov function.
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Put A=

oF (¢,0).
(g, w)
From [2], theorem 10.1, we have that HZA, Ay 20, 2.0+|C]|¢0 such that for every
(hv)e K,

(éd)ﬂA,hv) 0, peimA Ge (imA)*". (20)
8(5 )

From the fact that

La(€,0,4,1,V) =ﬂo2 fi(&,ui)+2(p.+p>ﬁ+l =04, U))+ {4, K(%, %))+

N-1

+ <Qi+1’h+1 -Ch - Divi>+</12’

i=0

oK
—(X a~N 9hN 5
a(XO,XN)(XO %My )>

where p=(p,,..., Ppy-4) and §=(q,....0y,4,), we have

o, A, HO
s s h - A s MY sha =09 21
% axo( s A Ay, by, hy) ( 2Uy, p,9, 4, h,v) 21)
oL oH p .
8_): p - ox U, |+19qi+17/107hﬂvi):0 i=LN-1, (22)
oL, o,y o
- = = 5 s M5 9h =09 23
. pN+aXN(><0 %o A5 A5y, hy) (23)
oL, oH!
8_U,-A A()ﬂ$ |’ |+l’q|+1$ﬂ() h V) 0 I_O N-1. (24)
Put

OHY

Py == (%, 0 PG A, V) (25)

From (25) and (21) we have

o, . .
Po :i(xoaxwﬂvﬂwmahN)'

Obviously that from (22), (23) and (24) we obtain that (8), (9) and (10) hold.
Put p=(py, Pseres Py)s A=(Gs0hs-n Gy ) and A, = (4, 4,4, p,q) . We proved
that for considered A, hold (7), (8), (9) and (10).
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From the fact that PeimA we have that there exists vector
(h",v)ye R x R™ such that (11) and (12) hold.

Since Ge (imA)" we have that A"-G=0or, in other words, we obtain that
(13)-(16) hold.
From A(h,v) =0 we obtain the system of the equations

h-Cih =DV =0, k=1L N (26)

with the boundary conditions

9K
,%,)(h,,hy) =0.
300X )(Xo )y, hy) =

Solving the equations (26) we obtain that

h‘ HChO—i_Z H CDiVj+Dk71ka1n k=1,N,

j=0 j<s<k-1

holds. It’s easy to see that from

o°F
ey —— (& w)[(h,v),(h,v)]e ImA

we obtain the equation (6). We conclude that K = K.

3. SECOND ORDER NECESSARY OPTIMALITY CONDITIONS

Suppose that the function f,(X,u) and mappings @(x,u)and K(x,, X, ) are the
three times continuously differentiable.

Put
Oy _ 9% g ¢ aZH' E)ZH' . N
SO (R % 2 o), DA G0, p L 4.
X 0% 3 3
For a given Lagrange multiplier A, = (4,,4,,4,, p,q) define the bilinear form
) 2
Q[(h,v),(h hy,hy1+2———2—[h.h]-
[(h,v),(h,v)] = [ o My 1+ ax,0%, [hy.hy]
N— laZHl N— N—
ox 2 [h h Z Vi, | Z ’ |
i=0 i=0

=0

2 |:| i 2 |:| i 2 |:| i 2 |:| i .
OH, IH, IH, d oH, are introduced analogously as above.

Where = =, an
Xy  du”  9X,0Xy dxdu
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Theorem 2. Let (X,,®) be the optimal solution for the problem (1)-(3). Then there exists
Lagrange multiplier A, =(4,,4,,4,, p,q) such that the assertions of the theorem 1 hold,
and for every (h,v)e K holds:

Q,[(h,v),(h,v)]=0. 27

Proof: Analogously as in the proof of theorem 1 we consider the mathematical
programming problem (17)-(19). It’s easy to see that for Lagrange — Avakov function
hold:

d°L,
0% 0X

d°L,
ox.du

=0,V(,j):i# j,(,])#(0,N);

=0,V # |
i i

From [2], theorem 10.2, and from preceding facts we obtain that the assertion of theorem
2 hold.

4. CONCLUDING REMARKS

First we shall compare the number of variables and number of equations from
theorem 1.
We have that the number of variables &, @, (h’,V') andA, from the theorem 1 is

equal to:
2(N(N+1)+rN)+1+2(nN +K) .
From (2), (3), and (8)-(17) we obtain:
N, +Kk+n(N+1)+rN+nN+k+n(N+1)+rN

equations.
Since |ﬂA| # 0then, without loss of generality, we may take that |ﬂA| =1. It

follows that the number of variables is equal to the number of the equations and we have
complete system of the equations associated with €, @, (h’,V') andA,.

The pair (X,,@,) is said to be extreme for the problem (1)-(3) if feasible and if

we have satisfied conditions from theorem 1.as in [3] we shall define the normal extreme
for problem (1)-(3).

Definition 1: The extremal isto be normal if
imA: RnN+k

oF
(¢, w)

and abnormal otherwise. Note that A=

(€, 0).

First we suppose that the extreme(X,,&,)is normal. Then we have that

(g,4,) =0 and we obtain classical first order optimality conditions which are known for
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a long time (see [4, 7, 8]). Also theorem 2 becomes a known second order optimality
conditions (see [9]).
Suppose that the extreme (X;,d,)is abnormal. We shall define two regular

constraint mapping for the problem (1)-(3).
Denote by KW the set

2

) B °F . .. —— .
KW _{(h,v) :A(h,v) = O,—a(&w)2 (&, ®)[(h,v),(h,v)]e |mA}.

Definition 2: The constraint mapping F(g,w) is sad to be 2- regular at the point
(€, ) with respect to a direction (h,v)e K if
codim KW =nN+Kk.

Suppose the extreme (X,,d,)is abnormal and that for every (h,v)e K the
mapping F(&,w)is not 2-regular at the point (X,®) with respect to a direction (h,v).
Then we have that assertions of the theorem 1 and theorem 2 are satisfied for every

minimizing function f. It follows that in that case we have trivial theorem.
The most interesting case is when the mapping F(&,®) is 2-regular at the point

(€, ) with respect to a direction (h,v)e K . Then we obtain nontrivial first and second

order optimality conditions for abnormal extremes.
For details of the preceding facts we refer to [2].
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