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1. INTRODUCTION 

Consider discrete optimal control problem with varying endpoints. 

minimize
1

1
( , )

N

i i i
i

f x u
−

=
∑ ; (1) 

1 ( , )i i i ix x uϕ+ = , 0, 1i N= − , (2) 

0( , ) 0NK x x = , (3) 

where ( , ) : n r
if x u R R R× →  is twice continuously differentiable function, ( , ) :i x uϕ  

n r nR R R× →  and 0( , ) : n n k
NK x x R R R× →  are twice continuously differentiable 

mappings. Here n
ix R∈  is state variable, r

iu R∈  is a control parameter, N is given 
number of steps. Vector 0 1( , ,..., )nx x xε =  is called a trajectory, 0 1 1( , ,..., )Nu u uω −=  is 
called a control, 0x is a starting point and Nx  is an end point of corresponding trajectory. 
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Let 0x  be a starting point and let  be a control. Then the pair 0( , )x ω defines the 
corresponding directory 0 1( , ,..., )nx x xε = . If the condition (3) is satisfied then we say 
that the pair 0( , )x ω  is feasible. 

The discrete optimization problem is to minimize the function  
1

0
0

( , ) ( , )
N

i i i
i

J x f x uω
−

=
= ∑  

on the set of feasible pairs. 
The aim of this paper is to obtain first and second order necessary optimality 

conditions for the problem (1)-(3) without normality assumptions. 

2. FIRST ORDER NECESSARY OPTIMALITY CONDITIONS 

Let 0 ˆˆ( , )x ω be a feasible pair and let 0 1ˆ ( , ,..., )Nx x xε = be a corresponding 
trajectory. Suppose that the pair 0 ˆˆ( , )x ω  is optimal. 

Put  

,k kC D
x u
ϕ ϕ∂ ∂= =

∂ ∂
 

and 
2 2 2

2 2 2
2 2, ,
k k k

k k kC D M
x ux u

ϕ ϕ ϕ∂ ∂ ∂= = =
∂ ∂∂ ∂

 . 

Let ( 1)
0 1 0 1 1( , ), ( , ,..., ) , ( , ,..., )n N rN

N Nh v h h h h R v v v v R+
−= ∈ = ∈ , be the vector for 

which there exists a vector rNNn RRvh ×∈ + )1('' ),(  such the following conditions are 
satisfied: 

1 2

0 1 1
00 1

, 1,
k k

k s s j j k k
js j s k

h C h C D v D v k N
− −

− −
== < ≤ −

= + + =∑∏ ∏ , (4) 

0 0
0

ˆ ˆ( , )( , ) 0
( , ) N N

N

K x x h h
x x
∂ =

∂
, (5) 

2 2 2 2 2 ' ' '
1[ ] [ ] 2 [ , ] , 0,..., 1.k k k k k k k k k k k kC h D v M h v h C h D v k N+− − − = − − = −       (6) 

Here [-,-] stands for the arguments of a bilinear form (or, more generally, 
bilinear mapping). 

Denote by K set of all vectors (h,v) for which the preceding conditions are 
satisfied. 

Define the functions  

0( , , , , , , ) , ( , ) , ( , ) ( , )i i i
A iH x u p q h v p x u q x u h x u v

x u
ϕ ϕλ ϕ ∂ ∂

= 〈 〉 + 〈 + 〉 −
∂ ∂

 

0 ( , ), 0, 1if x u i Nλ− = − , 
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0 1 2 0 1 0 2 0 0
0

ˆ ˆ ˆ ˆ( , , , , , ) , ( , ) , ( , )( , )
( , )A N N N N N

N

Kl x x h h K x x x x h h
x x

λ λ λ λ ∂= 〈 〉 + 〈 〉
∂

, 

where 

0 1 2, , , ,k nR R p q Rλ λ λ∈ ∈ ∈ . 

Theorem 1: Let 0 ˆˆ( , )x ω be the optimal solution for the problem (1)-(3). Then there exists 

Lagrange multiplier ( 1)
0 1 2 0 1 2( , , , , ), , , , , ,k n N nN

A p q R R p R q Rλ λ λ λ λ λ λ += ∈ ∈ ∈ ∈  

0 2( , ) 0qλ λ+ ≠   such that for every ( , )h v K∈ the following conditions are satisfied: 
(i) 

0 0 1 2 0
0

ˆ ˆ( , , , , , )A
N N

l
p x x h h

x
λ λ∂

=
∂

, (7) 

1 1 0ˆ ˆ( , , , , , , ), 0, 1
i
A

i i i i i i i
Hp x u p q h v i N
x

λ+ +
∂

= = −
∂

, (8) 

0 1 2 0ˆ ˆ( , , , , , ),A
N N N

N

l
p x x h h

x
λ λ∂

= −
∂

 (9) 

1 1 0ˆ ˆ( , , , , , , ), 0, 1
i
A

i i i i i i
H

x u p q h v i N
u

λ+ +
∂

= −
∂

. (10) 

 (ii) There exists vector ( 1)( , ) n N rNh v R R+′ ′ ∈ ×  such that  

1 1 1 1, 1,k k k k k kp h C h D v k N− − − −′ ′ ′= − − = , (11) 

0
1 0 0

0

ˆ ˆ( , )N
K

x x h
x

λ ∂ ′=
∂

, (12) 

(iii) 

* *
0 1 0 2

0

ˆ ˆ( , ) 0N
KC q x x
x

λ∂− + =
∂

, (13) 

*
1 0, 1,... 1k k kq C q k N+− = = − , (14) 

*
0 2ˆ ˆ( , ) 0N N

N

Kq x x
x

λ∂− =
∂

, (15) 

*
1 0, 1,...,k kD q k N−− = = . (16) 

 
Proof: We shall formulate the problem (1)-(3) as a mathematical programming problem, 
and we shall apply results from [2].  
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Define the functions 
( 1) ( 1)( , ) : , ( , ) :n N rN n N

if R R R F Rε ω ε ω+ +× → × , 1,rN nR R i N→ = , 

and  
( 1)( , ) : ,n N rN nNF R R Rε ω + × →  

by  
1

0
( , ) ( , )

N

i i i
i

f f x uε ω
−

=
= ∑ , 

1 1( , ) ( , ), 0, 1i i i i iF x x u i Nε ω ϕ+ += − = − , 

1( , ) ( ( , ),..., ( , ))NF F Fε ω ε ω ε ω= . 

Consider the following mathematical programming problem: 

Minimize ( , )f ε ω ; (17) 

( , ) 0F ε ω = , (18) 

0( , ) 0NK x x = . (19) 

The point ˆ ˆ( , )wε  is the local minimum for preceding problem. 
Consider the operator  

( 1)( , ) : n N rN nN kF R R R Rε ω + × → ×  

given by 

0( , ) ( ( , ), ( , ))NF F K x xε ω ε ω= . 

Define the Lagrange – Avakov function  
( 1)( , , , , ) : n N rN nN k

A AL h v R R R R Rε ω λ + +× × × × Κ →  
by 

0( , , , , ) ( , ) , ( , ) , ( , )( , )
( , )A A

FL h v f p F q h vε ω λ λ ε ω ε ω ε ω
ε ω
∂= + +

∂
, 

where 0 0( , , ), , , nN k
A p q R p q Rλ λ λ += ∈ ∈  and K  is the set of all ( 1)( , ) n N rNh v R R+∈ ×  

such that the following conditions are satisfied: 
1)  

ˆ( , )( , ) 0
( , )

F h vε ω
ε ω
∂ =

∂
, 

2) 

 
2

2
ˆ ˆ( , )[( , ), ( , )] ( , )

( , )( , )
F Fh v h v imε ω ε ω

ε ωε ω
∂ ∂∈

∂∂
. 

Note that the vector (h,v) is the parameter in the Lagrange – Avakov function. 
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Put ( , )
( , )

FA ε ω
ε ω
∂=

∂
. 

From [2], theorem 10.1, we have that 0 0, 0, 0A qλ λ λ∃ ≥ + ≠  such that for every 

( , )h v K∈ ,   

( , , , , ) 0, , ( )
( , )

A
A

L
h v p im A q im Aε ω λ

ε ω
⊥∂

= ∈ ∈
∂

. (20) 

From the fact that  
1 1

0 1 1 1 0
0 0

( , , , , ) ( , ) , ( , ) , ( , )
N N

A A i i i i i i i N
i i

L h v f x u p x x u K x xε ω λ λ ϕ λ
− −

+ +
= =

= + − + +∑ ∑  

1

1 1 2 0 0
0 0

, , ( , )( , )
( , )

N

i i i i i i N N
i N

Kq h C h D v x x h h
x x

λ
−

+ +
=

∂+ − − +
∂∑ , 

where 1 1( ,..., , )Np p p λ= and 1 2( ,..., , )Nq q q λ= , we have  

0

0 1 2 0 0 0 0
0 0

( , , , , , ) ( , , , , , , ) 0A A A
N N

L l H
x x h h x u p q h v

x x x
λ λ λ∂ ∂ ∂

= − =
∂ ∂ ∂

, (21) 

1 1 0( , , , , , , ) 0 1, 1
i

A A
i i i i i i i

i

L H
p x u p q h v i N

x x
λ+ +

∂ ∂
= − = = −

∂ ∂
, (22) 

0 1 2 0( , , , , , ) 0A A
N N N

N N

L l
p x x h h

x x
λ λ∂ ∂

= + =
∂ ∂

, (23) 

1 1 0

ˆ
ˆ ˆ( , , , , , , ) 0 0, 1

i
A A

i i i i i i
i

L H
x u p q h v i N

u u
λ+ +

∂ ∂
= = = −

∂ ∂
. (24) 

Put 
0

0 0 0 0ˆ ˆ( , , , , , , )AH
p x u p q h v

x
λ∂

=
∂

. (25) 

From (25) and (21) we have  
 

 0 0 1 2 0
0

ˆ ˆ( , , , , , )A
N N

l
p x x h h

x
λ λ∂

=
∂

. 

Obviously that from (22), (23) and (24) we obtain that (8), (9) and (10) hold. 
Put 0 1 1 2( , ,..., ), ( , ,..., )N Np p p p q q q q= = and 0 1 2( , , , , )A p qλ λ λ λ= . We proved 

that for considered  Aλ  hold (7), (8), (9) and (10). 
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From the fact that p im A∈  we have that there exists vector 
( 1)( , ) n N rNh v R R+′ ′ ∈ ×  such that (11) and (12)  hold. 

Since ( )q im A ⊥∈  we have that 0A q∗ ⋅ = or, in other words, we obtain that 
(13)-(16) hold. 

From ( , ) 0A h v = we obtain the system of the equations 

1 1 1 1 0, 1,k k k k kh C h D v k N− − − −− − = =  (26) 

with the boundary conditions   

0 0
0

ˆ ˆ( , )( , ) 0
( , ) N N

N

K x x h h
x x
∂ =

∂
. 

Solving the equations (26) we obtain that 
1 2

0 1 1
00 1

, 1,
k k

k s s j j k k
js j s k

h C h C D v D v k N
= −

− −
== < ≤ −

= + + =∑∏ ∏ , 

holds. It’s easy to see that from  
2

2
ˆ ˆ( , )[( , ), ( , )]

( , )
F h v h v im Aε ω

ε ω
∂ ∈

∂
 

we obtain the equation (6). We conclude that K K= . 
 
 

3. SECOND ORDER NECESSARY OPTIMALITY CONDITIONS  

Suppose that the function ( , )if x u and mappings ( , )x uϕ and 0( , )NK x x are the 
three times continuously differentiable. 

Put  
2 2 2 2

12
0 1 0 1 02 2 2 2

0 0

ˆ ˆ
ˆ ˆ ˆ ˆ( , , , , , ), ( , , , , , , )

3 3

i i
iA A A A

N N i i i i i
ql l H H

x x h h x u p h v
x x x x

λλ λ+
+

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
. 

For a given Lagrange multiplier 0 1 2( , , , , )A p qλ λ λ λ= define the bilinear form  

2 2 2

0 0 0 02 2
00

ˆ ˆ ˆ
[( , ), ( , )] [ , ] [ , ] 2 [ , ]A A A

N N
NN

l l l
h v h v h h h h h h

x xx x
∂ ∂ ∂

Ω = + + −
∂ ∂∂ ∂

 

2 2 21 1 1

2 2
0 0 0

ˆ ˆ ˆ
[ , ] [ , ] 2 [ , ]

i i iN N N
A A A

i i i i i i
i i i

H H H
h h v v h v

x ux u

− − −

= = =

∂ ∂ ∂
− − −

∂ ∂∂ ∂∑ ∑ ∑ , 

Where 
2 2 2 2

2 2
0

ˆ ˆ ˆ ˆ
, ,

i i i i
A A A A

NN

H H H H
and

x x x ux u
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂
are introduced analogously as above. 
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Theorem 2. Let 0 ˆˆ( , )x ω be the optimal solution for the problem (1)-(3). Then there exists 
Lagrange multiplier 0 1 2( , , , , )A p qλ λ λ λ= such that the assertions of the theorem 1 hold, 
and for every ( , )h v K∈ holds: 

[( , ), ( , )] 0h v h vλΩ ≥ . (27) 

Proof: Analogously as in the proof of theorem 1 we consider the mathematical 
programming problem (17)-(19). It’s easy to see that for Lagrange – Avakov function 
hold: 

2 2

0, ( , ) : , ( , ) (0, ); 0,A A
i

i j i j

L Li j i j i j N j
x x x u
∂ ∂

≡ ∀ ≠ ≠ ≡ ∀ ≠
∂ ∂ ∂ ∂

 

From [2], theorem 10.2, and from preceding facts we obtain that the assertion of theorem 
2 hold. 

 
4. CONCLUDING REMARKS 

First we shall compare the number of variables and number of equations from 
theorem 1. 

We have that the number of variables ˆ ˆ, , ( , ) Ah v andε ω λ′ ′  from the theorem 1 is 
equal to: 

2( ( 1) ) 1 2( )n N rN nN k+ + + + + . 

From (2), (3), and (8)-(17) we obtain: 

( 1) ( 1)nN k n N rN nN k n N rN+ + + + + + + + +  

equations. 
Since 0Aλ ≠ then, without loss of generality, we may take that 1Aλ = . It 

follows that the number of variables is equal to the number of the equations and we have 
complete system of the equations associated with ˆ ˆ, , ( , ) Ah v andε ω λ′ ′ . 

The pair 0 0ˆˆ( , )x ω is said to be extreme for the problem (1)-(3) if feasible and if 
we have satisfied conditions from theorem 1.as in [3] we shall define the normal extreme 
for problem (1)-(3). 

 
Definition 1: The extremal is to be normal if  

nN kim A R +=  

and abnormal otherwise. Note that ˆ ˆ( , )
( , )

FA ε ω
ε ω
∂=

∂
. 

First we suppose that the extreme 0 0ˆˆ( , )x ω is normal. Then we have that 

2( , ) 0q λ =  and we obtain classical first order optimality conditions which are known for 
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a long time (see [4, 7, 8]). Also theorem 2 becomes a known second order optimality 
conditions (see [9]).  

Suppose that the extreme 0 0ˆˆ( , )x ω is abnormal. We shall define two regular 
constraint mapping for the problem (1)-(3). 

Denote by ( , )h vK  the set  

2

2( , )
ˆ ˆ( , ) : ( , ) 0, ( , )[( , ), ( , )]

( , )h v

FK h v A h v h v h v im Aε ω
ε ω

⎧ ⎫∂= = ∈⎨ ⎬∂⎩ ⎭
. 

Definition 2: The constraint mapping ( , )F ε ω  is sad to be 2- regular at the point 
ˆ ˆ( , )ε ω with respect to a direction ( , )h v K∈ if 

( , )dim h vco K nN k= + . 

Suppose the extreme 0 0ˆˆ( , )x ω is abnormal and that for every ( , )h v K∈ the 
mapping ( , )F ε ω is not 2-regular at the point ˆˆ( , )x ω with respect to a direction ( , )h v . 
Then we have that assertions of the theorem 1 and theorem 2 are satisfied for every 
minimizing function f . It follows that in that case we have trivial theorem.  

The most interesting case is when the mapping ( , )F ε ω  is 2-regular at the point 
ˆ ˆ( , )ε ω with respect to a direction ( , )h v K∈ . Then we obtain nontrivial first and second 

order optimality conditions for abnormal extremes. 
For details of the preceding facts we refer to [2]. 
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