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Abstract: This paper discusses a paradox in fixed charge capacitated transportation
problem where the objective function is the sum of two linear fractional functions
consisting of variables costs and fixed charges respectively. A paradox arises when the
transportation problem admits of an objective function value which is lower than the
optimal objective function value, by transporting larger quantities of goods over the same
route. A sufficient condition for the existence of a paradox is established. Paradoxical
range of flow is obtained for any given flow in which the corresponding objective
function value is less than the optimum value of the given transportation problem.
Numerical illustration isincluded in support of theory.
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1. INTRODUCTION

The fixed charge transportation problem is an extension of the classical
transportation problem in which a fixed cost is incurred for every origin. The fixed
charge transportation problem (FCTP) was originally formulated by Hirsch and Dantzig
[6]. Sandrock [9] gave a simplex algorithm for solving a FCTP. Basu et.al.[3] gave an
algorithm for finding optimal solution of solid-fixed charge transportation problem.
Fixed charge transportation problems have been studied by Arora et.al.[2], Thirwani [12]
and many others. Many distribution problems in practice can only be modelled as FCTPs.
For example, rails, roads and trucks have invariably used freight rates which consists of a
fixed cost and a variable cost. The fixed cost may represent the cost of renting a vehicle,
landing fees at an airport, set up costs for machines in manufacturing environment etc.
Another class of transportation problems, where the objective function to be optimized is
aratio of two linear functions, optimization of a ratio of criteria gives more insight into
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the situation than the optimization of each criterion. Dinkelbach [5] solved linear
fractional programming problem by converting it into a parametric programming
problem. Swarup [10] also gave a method to solve a linear fractional transportation
problem.

Another important class of transportation problems consists of capacitated
transportation problems. Many researchers like Bit et.al.[4], Kssay [7] and Zhang
et.al.[14] have contributed in thisfield.

A paradox arises when a transportation problem admits of a total objective
function value which is lower than the optimum and is attainable by shipping larger
quantities of the goods over the same routes that were previously designated as optimal .
This unusual phenomenon was noted by Szwarc [11]. Later on, Verma et.al. [13] have
studied the paradoxical situation in a linear fractiona transportation problem and
obtained paradoxical range of flow. In 2000, Arora et.al. [1] have studied the paradoxical
situation in fixed charge transportation problem which is of the form

(P) min {ZZC.J- % +Zfi}

jedicl il
subject to

dx <a;Viel

jed

dx =b;Vijel

iel

XijZO,VieI,jeJ,

where

I ={1,2,...,m} istheindex set of warehouses,

J={1,2,...,n} istheindex set of destinations,

x; = the amount transported from the i"" warehouseto the j* destination,

G; = the variable cost per unit amount transported from the i"™ warehouse to
j™ destination,

f. = thefixed charge associated with i"™ warehouse and is defined as

fi:iﬁi, fi; 1=1,2,...,m 1)

1=1

where

1 if Y% >Asiell=12..,p
j=1

0, otherwise.
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Here 0=A;<A,<--<A,. A,A, A, (el) ae constants and f
(1=1,2,...,p;iel) are fixed charges. Some practical situations may give rise to
different type of fixed charges e.g. f,, of the form as defined in above problem, can be
the rent at the i"™ warehouse and let g be the space available for storage at i
warehouse. Then > ug = g (say g =ug) denotes the total space cost of all

the warehouses where u is the per unit space cost. Then one is interested in paying

minimum possible rent for the space of maximum value. In most practical situations there
are bounds on the flow of the amount on each route. This gives rise to the problem of the
following form

226%  Xf

(P) min iel jed + iel
1 ;jzjd”)qj ;gi
subject to

dx <a;Viel 2
jed

> =b;Vijeld 3)
iel

Iy <% <u; Vi, j)e I xd (4)

where
G; = per unit pilferage cost when shipment is sent from i"™ warehouseto ™ destination,

d; = the variable profit per unit amount transported from the i warehouse to j"
destination,
f. = thefixed rent associated with i"" warehouse,

g, = thefixed space cost associated with i warehouse, and
1,3, % V(i,j)eIxJ, f,g Vie | aredefined asin problem (P).

It is assumed that ziélzjdd”xj >0 for every feasible solution X satisfying
(2, (3), (4) and all upper bounds uy, (i, j)e I xJ arefinite. I; and u; are the minimum

and maximum quantities of the goods that can be transported along (i, j)" route and the
problem (B) hasaunique solution.

A sufficient condition for the existence of paradox in the above problem has
been developed. The condition so obtained indicates which supply point should be given
an increment so that the increment is beneficia in the sense that the same optimal basis
starts yielding better results. A paradoxical range of flow is obtained such that on
increasing the flow within this range the value of the objective function decreases
steadily and rises, if flow isincreased beyond this range.
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It can be easily seen that the problem (B) is equivalent to following balanced

problem (I%)
m n+l m
| Z2ex 2
(R) min| 3
szij)ﬁj zgi
i=1j=1 i=1
subject to
n+l
Z)gj =a;Vi=12..m

Z)ﬁi =b;Vj=12..,nn+l
i=1

l; <% <u;;0<x ,, Vi=L2,..,m j=1,2,..,nn+1l

c%,m—l = di,n+1

=0;Vi=12,...,mand b, Zq Zb.
i=1

f,g;, for ie | aredefinedasin (RB).

This paper is organized as follows. In section 2, optimality criterion for problem
(R) is developed. In section 3, condition for existence of paradox is developed and

methods to determine the best paradoxical pair and to get a paradoxical solution for a
specified flow have been developed. In section 4, numerical illustration isincluded.

2. PRELIMINARY RESULTS

Various agorithms have been devel oped for solving fixed charge transportation
problems when the variables are non negative. These algorithms can be easily extended
to capacitated fixed charge transportation problems by using the results developed for
capacitated transportation problems by Murty [8]. We have the following optimality

criterion for the fixed charge transportation problem (Isl) ,
Result 1. A feasible solution X°={x},,; of (B) with objective function value

= N°/D°+ F°/G° will be alocal optimal basic feasible solution iff
5o 6;,[N°(Z; -d;) - DO(Zi}—qj)] G’ AF; —F° AG,

) L20V (i, j)e N,
J D [DO_ ij (Zijz_dij)] GO(GO+AGU)

Qij[NO(Zijz_dij)_Do(Zi}_Cu' )] GO AF F AG”
s > +— 20V (i, j)e N,,
D [D +9ij(zij _dij)] G (G +AGiJ)

5=
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and if X° is an optimal solution of (B) then & =20V (,j)eN, and &7=0
V(i j)eN,, where N° =Zielzjeﬁj>ﬁ?v D° =zielzjeadij>ﬁ?’ FO=2 .0
G° :Zielgi, B denotes the set of cells (i, j) which are basic and N,, N, denote the
set of non-basic cells (i,j) which are at their lower bounds and upper bounds

respectively. uf,u?,vi,v? (ie |, je J) aresuch that
u+vi =¢;V(,j)eB and u+v:=d;V(,j)eB,
Zi=u+viv(i,j)eN, and ZZ=u?+VZV (i, j)e N,

AF;, AG; are the corresponding changes in Zielfi and Zielgi when some non-basic
variable x; undergoes change by an amount of 6, .

Proof: Let X°={x},, be a basic feasible solution of problem (R) with equality
constraints. Let Z° be the corresponding value of objective function. Then

qui)ﬂ? Zfi NO FO

ZO :%+L:_+_ (Say)
-Z‘Z;‘d” X Zgi D° G°
iel je ie
HICRIEOREIN ATROEED
- iel je iel je + iel
ZI]Z;,(du —U?-V)x; +Z|:Z;(”i2 +V7)%; _Z,gi
iel je iel je ie
Z(, ;N (G _uil_v:jl)lij +Z(. ;N (G _uil_v:jl)uij +Z|:]Z;(ui1+v})xi? Zfi
- I,])e 1 1,))e 2 le € + |E|
Z , Z (d; _ui2 _ij)lij +Z . Z (d; _ui2 _ij)uij +ZZ(Ui2 +Vj2))¢j) Zgi
(i.))eN (i,))eN I jed |
I,])e 1 I,])e 2 le € le
. ;@'Uil + JEZJb]V:]L _Z(i %Nl(zi} _Qj )Iij _Z(i ;Nz(zi} _Qj )uij Zfi
7z = - : ’ ' 44
AW IbV -3 > (ZF-dl -2 X (Zi-dy X
iel jed (i,j)eNl (i,j)eN2 iel

Let some non-basic variable x e N, undergoes change by an amount 6, where 6, is
given by

min{urs—lrs;x?—lij,forall basic cells (i, j) witha —@ entryinthe 6—loop;
U; —>g‘j’, for al basic cells (i, j) witha+8 entryinthe&d—Iloop} .
Let AR, and AG,, bethe corresponding changesin » . f, andin >’ g;.

Then new value of the objective function Z will be given by
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N° _ers(zrls _Crs) + F° +AF

7=
DO - Hrs(zrzs - drs) GO + AGrs

and

N>

50 - N°-6(Z—cs) N° N F'+AF, F°
D°-6.(Z%-d,) D°| |G°+AG, G°
— grs[NO(Zrzs _drs) — Do (Zrls _Crs)] + GO AFrs — Fo AGrs _ ol

=9, (Say).
o074,z 0] GG a6

Similarly, when some non-basic variable x,,, € N, undergoes change by an amount &, ,
then
0 2 0 1 0 0
0, [N"(Z;,—d,)-D°(Z,,—¢c,)] G AF, -F AG

Z2-72°=- + H=52 (Say).
D°[D®+6,,(Z5, —d,)] G’(G° +AG,,) ra (S)

Hence X° will belocal optimal solution iff

8, =0V (i,j)e N, and 67 =0V (i, j)e N,.

If X° isglobal optimal solution of (é) , then it is locally optimal and hence the result
follows.

3. THEORETICAL DEVELOPMENT

Let an optimal basic feasible solution of (P) yields value Z° of the objective
function and H°=% & =3 b be the corresponding flow where g <a, iel,
b} =b;,je J. A paradox exists if more that H? isflown at an objective function value
lessthat Z°. It may be observed that flow can be increased by an increase of acertain a
and b} . This givesrise to the following problem (FR,)

226%  2f,

(Pz) min iel jed +ie|

224 28

iel jed iel

subject to

dx za;Viel (5)

jed

D% 2b;Vijeld (6)

iel
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L <% <SuV (G, j)e I xd ()
where f; and g, aredefined asin problem (R) .

Definitions.
(a) Paradoxical Pair: An objective function -flow pair (Z,H) of problem (R,) iscalled

aparadoxical pair if Z<z° and H > H°.

(b) Best Paradoxical Pair: The paradoxical pair (Z',H") iscalled the best paradoxical
pair if forall paradoxical pairs (Z,H), either Z'<Z and H"'>H or Z'=Z and
H >H.

(c) Paradoxical Range of Flow: If on increasing the flow fromvalue H° to H", value
of objective function decreases steadily from Z° to Z", where Z" corresponds to flow
H" and further on increasing the flow beyond H" , objective function value starts rising,
then interval [H®,H"] is called ‘ Paradoxical Range of flow’. All objective function-flow
pairsinthisrange are paradoxical pairs.

3.1. Sufficient condition for the existence of a paradoxical solution

Let X° ={x;} be abasic feasible solution of (R) with respect to the variable
cost only. Let B denotes the set of cells (i, j) which arebasicand N,, N, denote the set
of non-basic cell (i, j) which are at their lower bounds and upper bounds respectively.

Let u',vi,u?,v(iel,je J) besuchthat

u+vi=¢;V( jeB

and u>+Vv: =d;;V(i,j)e B.

Let this X° also be the optimal solution of (P) . Let Z° be the corresponding
value of the objective function and H° =" a = Zje b, be the corresponding flow

where g <a, iel; b =b; jeJ.ThenasinResult 1,

2au+bvi=> > (Zj-c)l =2 > (Zj-q)y >f

iel jed (i, 1) Ny (i,)eN, icl

Zo = ; - +
Zai u?+ ijvjz _Z Z (Zij2 —d;)l; _Z Z (Zij2 —d;)y; Zgi
iel jed (i,1)eNy (i,1)eNy iel
NO FO

= FJFE(Say)

where Zi —¢, =u' +Vj —¢;

2 2,2
ij Zij _dij =U _dij'
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Now suppose that a, is replaced by a,+4 and b, by b,+1 where 1>0 is

such that same basis B remains optimal after replacement. Then the new value Z' of the
objective function is given by

. NO+A(uy +v;)  FO+AF,
0 2 2 0
D +A(u; +vy) G +AG,,

where AF, , AG,, are the changes in the fixed rent F° and the fixed space cost G°
respectively.
770 - AD%(uy +v;) - N°(uZ +Vv2)] G AR, —F°AG,,
D°[D° + A(uZ +V2)] G°[G’+AG,]
{{A[DO(U; +V5) = N (U2 +V2)}G[G + AG ] 1
_ (G°AF,, — F°AG, ){ D°[D° + A(uZ +V)]}
D°[D® + A(uZ +V2)IG[G’ +AG ]
Now Z < Z° if

[{ﬂ[DO(u;+v;)—NO(u§+v§)]}G°[G°+Aqu]] < ©

+(G°AF,, — F°AG, ){D°[D® + A(u2 +V2)]}
Thus if there exists a cell (p,q) which satisfies condition (8), then the new

value Z of the objective function islessthan Z°. Hence the flow isincreased by A4 but
objective function value is reduced that is a paradox exists. Thisresult can be stated as:

Theorem 1. Let X° be an optimal basic feasible solution of problem (P,) with objective
value Z°=N°D°+F°/G°. If there exists a cell (p,q) such that on changing a, by
a,+4 and b, by b, +4,for 4 >0 and basis remaining the same, the condition

{A[D°(uy +v;) — N° (U2 +V)}G°[G® + AG ] +
<0
(G°AF,, — F°AG,, ){ D°[D° + A(uj +V2)I}
is satisfied, then there exists a paradox.

Remark 1. As 1>0,D° D°+A(u}+V;),G°,G°+AG,, are positive, condition (8)
implies that to obtain paradoxical solution we consider only those cells (p,q) for which
either [D°(uj +v;) — N°(U3 +V7)] <0 or (G°AF,,—F°AG,,) <0 or both.
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3.2. Algorithm to find a ‘ paradoxical solution’

Step 1. Find abasic feasible solution of (B) with respect to variable cost only.
Step 2. Find the corresponding fixed cost. Let it be denoted by F (current)/ G (current),
where
F(current) = >"f,, G(current) = > g,.
iel iel

Also find,

V(i j)e B,
Y (i,j)e B,

A =6,(Z; —c;),whereZ; —¢; =ul +Vj —¢;,

A =6,(Z7 -d,), whereZ? —d, =u?+Vv’ —d,,
B being the current basis, A} is the change in numerator variable cost that occurs when
anon-basic cell (i, j) undergoes a change equal to 6, . Similarly, AJ.Z is the change in
denominator variable cost when a non-basic variable undergoes change.

Step 3. (&) Find AF; = F;(NB)—F (current), where F, (NB) is the total fixed cost
obtained when some non-basic cell (i,j) undergoes change. Also find
AG; =G;(NB) -G (current).

(b) Find A; = N°(Z7 -d;)-D°(Z; —c;) foral (i,j)e B.If

1j j

+
DO(DO _‘9ij (Zij2 _dij ) G° (GO +AGij)

1
ij =

6. A G° AF, —F° AG, o
! L1>0,V(i,j)e N, 9)

6, G’ AR, —F° AG;

ij =ij

5i1'2: TR0/ N0 2 + 0/~0
D(D"+6,(Z;j-d;)) G (G +AG)

JZO,V(i,j)e N, (10)

then current solution is the optimal solution to (B) . To test for the existence of paradox
go to step 4. Otherwise, some (i, j) e N, which does not satisfy (9) or some (i, j)e N,
which does not satisfy (10) undergoes change. Go to step 2.

Step4.Let H°=3 & =) b betheoptima flow where a <a,icl;b =b;, jeJ.
Choose a cell (p,q) for which at least one of the quantity D°(ug +Vv;)— N°(u? +V7),
G’ AF,, —F°AG,, is negative, so that on increasing the flow along this route by
A,A4 >0 condition (8) is satisfied with same optimal basis, then corresponding to this

basic feasible solution the value of the objective function reduces and the flow increases
i.e. aparadox exists.

Remark 2. The approach to solve the problem (B) and (P,) may result in a local

minimum instead of a global minimum. One is still happy because in real world one
seeks satisfying solutions that are close to optimum and that are realistic.
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Best Paradoxical Pair

If aparadox exists, one would obviously be interested in the “Best Paradoxical Pair'. Let
H°=% a=> jejb} be the flow corresponding to the optimal basic feasible solution
X° of (R) where g <a;iel,b, =b;je J.Also, let H" be the flow corresponding

to the optimal basic feasible solution X* of (R,). Then [H® H’] is the "Paradoxical
Range of Flow'. Theorem 2 below proves that the optimal basic feasible solution of

problem (P,) yieldsthe best paradoxical pair.
Theorem 2. Optimal basic feasible solution of (P,) yields the best paradoxical pair.
Proof: Let X” ={x} be an optima feasible solution of problem (P,). Let

corresponding to this solution, we have

Z)gf‘:q”‘zq:iel

jed
DX =b=bjed
iel

Let Z and H* be the optimal value of the objective function and the corresponding
optimal flow respectively.
Consider the following problem (R,)

226%  Xf

(R) min|—=t&d il
’ 220% g
iel jed iel
subject to

dYx =a’+p=a;Viel
jed
D% =bf+q,2b;Vjed
iel

Iy <% <up; V(0 j)e I xd

ij — ij?
Where Ziel p' =0= Zjejqj '

Let X* ={x"} be the optimal solution of problem (R) . Then X will bea
feasible solution of (P,) . But X“ isthe optimal solution of (P,) . Therefore, 7% >27°

where Z% isthe value of the objective function of problem (B,) at the feasible solution
X . Thisimplies that no optimal solution of (P,) can yield the objective function value
lessthan Z”. Thus there does not exist any solution of problem (B;) which gives value
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lessthan Z“ and flow greater than H*. Hence, optimal solution of (P,) yields the best
paradoxical pair.

To solve (R,), we construct and solve the related fixed charge transportation
problem (B,) with an additional supply point and an additional destination.

PHITED I NI

(FL) min jediel jed iel : +ig|' :
szijuij + szijvvij Zgi
jed iel jed iel iel
subject to
Sw =Asiel (11)
jeJ'
w, =B;jeJ (12)
icl’
0wy <u; =5 (1, ) e I X I, Wy W, 20 ViDL je I, Wy 000 20, (13)

where
) p . P , .
fi = Zé‘ll fi; 9= Zé‘n 91 fra=9na=0
i=1 i=1

iy w <P u—ALiell=1,2,...,p.
j=1

= = (14)
0 otherwise

I'={1,2,....mm+1},J ={1,2,...,n,n+1}

A'=zuu—6¥',i€|i A'ml:zzuij_zb;

, jed ' ' jediel jeJ' (15)

B =2u-b,jed B.=3>u->a
iel jediel iel

o =dil,n+1=0,ie I}J:e J::C.} =-¢;,d; =—d;,iel, jeJ; (16)

Cniaj =d ,,=0iel,jel.

can be easily proved that problem (P,) and (P,) areequivalent.

Lemma 1. There is a one-to-one correspondence between the feasible solutions of
problem (B,) and (F,) .

Proof: Let {X},,, be afeasble solution of problem (P,). Therefore, X;,iel,je J
satisfy relations (5) to (7). Define w;,ie I, je J° by thefollowing transformation

=y, —x,iel,jed a7
n+1 :Z)gj _aiv’i el (18)

jed

Wi
W,
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Wm+1,j = le _b] ' J eJ (19)
iel
Wi = zzuij _Zz)ﬂj (20)
jeldiel jediel
Relations(7) and (17) implythat O<w; <u, —I;jie |, je Jandrelations o1
(18) to (20) and (5), (6) imply that W ., W3 ;s Wp,yng 20ii€ ], jE J. @D
Also, for ie |
Z\Nij = VVij +\Ni,n+1
jEJ' jed
=2 =)+ (% -a) (22)
jed jed
= zuij -a = A
jed
Also, for i =m+1,
ZWIWLJ = Wm+1,j +Wm+1,n+1
jeJ' jed
=3 - [ T30 X3 @
jedLiel jediel jediel
SDWIVEDY N
jediel jed
Similarly, it can be shown that
zWiJ :B'j,jeJ' (24)
iell
Relations (21) to (24) show that {Wij}l.XJ. , as defined above is a feasible solution of
problem (R,) .
Conversely, let {Wii}|'><J' be a feasible solution to (P,) . Define x;,iel,je J
by the following transformation,
% =W —wW;Viel,je J. (25)
(13) and (25) imply that
l; <% <u;Viel,jed. (26)

Now, for ie | , the source constraintsin (P,) give

Z\Nij = A = Zuij _aiv

jed jed
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Therefore szJWij <2 —a, because w ., > 0. Hence using relation (25)
dx 2a,Viel. 27)
jed
Similarly, for je J
> % =b,Vjeld. (28)
iel
Relation (26) and (28) show that {X;},,, defined as above is a feasible solution of
problem (B,) .

Lemma 2. The value of the objective function of (P,) at a feasible solution is equal to
the objective function of (P,) at its corresponding feasible solution and conversely.
Proof: The value of the objective function of (P,) at the feasible solution {Wij}l.XJ. is

PIEDIPIAY Zfi'

- jed'iel’ jed'iel’ e
szij u; + szijvvij Zgi
jediel jediel iel
PSRN GRS DI
== N +iL— [using (14), (15) and (16)]
szij U +ZZ(_dij)(uij %) Zgi
jeldiel jediel iel
Z;Z:C'J X >f
- JeJle + iel
Z;Zl:dij % legi
jelie ie
= The value of the objective function of (F,) at the corresponding feasible solution
{Xj}lx‘]

The converse can be proved similarly.

Lemma 3. There is a one-to-one correspondence between the optimal solution to (F,)
and optimal solutionto (R,) .

Proof: let {x},,, be an optimal solution to (P,) yielding value Z° and {V\II?}I.XJ. be
the corresponding feasible solution to (P,) . The value yielded by {\N,?}I.XJ. is Z° (refer
to Lemma 2). If possible, let {vvi?}l.XJ, be not an optimal feasible solution to (R,).
Therefore, there exists afeasible solution {wi'j}l.XJ. , sy, to (P,) withthevaue Z' < Z°.

Let {)g'j}IXJ be the corresponding feasible solution to (R,) . Then, by Lemma 2,
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22G%

jeJiel 4 icl —
Z;ledij % Zgi
jedie ie

which is a contradiction to the assumption that Z° is the optimal solution of (P,) as
Z < Z°. Similarly, an optimal solution of (P,) will give an optimal solutionto (P,) .
Theorem 3. Optimizing (B,) is equivalent to optimizing (PF,) , provided both problems

have feasible solution.
Proof: As (R,) has a feasible solution, by lemma 1, there exists a feasible solution to

(R,) . Hence by Lemma 2 and Lemma 3, and optimal solution to (P,) can be obtained.
We now discuss how to find a paradoxical solution for a specified flow in a
given paradoxical range of flows.

Paradoxical solution for a specified flow in [H®, H"]

Quite often, finding the best objective function value for a given flow in
[H°,H'] is of great importance to the decision maker. Let the specified flow be

He[H® H"]. The “Paradoxical solution' for H is given by the optimal solution of
problem (R)

228% O

(R) min|<=ted il
iel je ie

subject to

dx za;Viel

jed

> % 2b;Vjed

iel

S5 =H (M- 3d =30

jediel iel jed

Iy <% <up; V(i j)e I xd

U 17

Note that due to flow constraint problem (R.) is different from (B,) . To solve
(R,) we consider the following related problem (F,) with an additional supply point and
an additional destination.

STau+ITaw X
. iel jed iel jed icl
AR D2 XRTIES ) AT Y7

iel jed iel jed iel
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subject to
dwo=Asiel (29)
jed
Sw, =B;jed (30)
iel
Oswy <uy—ly,iel, je I, Wy (W, W iy 2 0.
IS WIVESY (31)
icl jed icl jed
A= j;uij -a,Viel A, =H —;b'j
B, = ;uij -b,,Vje J,B,, = H —;ag' %2
Cfn+l,j =d, 1 = Crans = Oipann =0ii€ 1, je 3,6 =g ie J,je J,

Cm+1vi =di',n+1 =O,ie |,je \],d” =—d

=M,d

ij,iel,jeJ, (33)

C =0, where M isalarge positive number.

m+1,n+1 m+1,n+1

P P
fi' = zé‘” fi| ygiI = zé‘ll gi| ’ for I € |
1=1 =1

n

1if dw <du —A;Viel

5” = =1 jed (34)
0 otherwise
fn'1+l = g;ml = O

Definition. A feasible solution {w;},ie I',je J to (R) is called a corner feasible
solution (cfs) if w,,, .., =0.

Theorem 4. A non corner feasible solution to (F,) can not provide a feasible solution to
(R).

Proof: Let {W;} beanon corner feasible solutionto (F,) . Therefore, W,

Thus, Zielv_vi:n*'l =(H _Z:ie|a1")_/1 =H _(Zie|ail +4).

=1(>0).

+1,n+1

Now, forie |,
DWW =A=DU -]
jEJ' jed
Therefore

PIITEDHIVEDS!

jeJ'ieI jediel iel
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Hence

DW= U -da-H+Ya+a=0Q > u-H)+4

jediel jeldiel iel iel jediel
This means that the quantity transported from the sourcesin | to the destinationsin J is
(ZieJ Uy —H)+4 whichis greater than »° u; —H , which shows that {W,}

cannot provide afeasible solutionto (R,) .

jed iel

Remark 3. If (R,) has a corner feasible solution, then, from the definition of ¢, ..,
follows that no non corner feasible solution can be its optimal solution.

Remark 4. It is easy to verify that problems (R) and (P,) are equivalent using the
transformation

it

Wij :uij—)gj;Vie |,j€ J
W i1 :Z)ﬁj _a{;Vie I

jed

Wiy =D % —biVjed

iel

W, =0.

m+1,n+1 —

Concluding Remarks

If the condition that u;'s are finite is relaxed, then algorithm discussed in

Section 3.2 may not be directly applicable and this gives rise to unbalanced capacitated
fixed charge transportation problem with mixed type of bounds.

4. NUMERICAL ILLUSTRATION

Consider the problem (B) for m=2,n=3. Table | gives the values of
G;»d;,(=1,2j=1,23) andthevauesof a (i =1,2) and b;(j =1,2,3)

Tablel: Vauesof ¢;,d;,a,b,
a
G — 2 3 1
40
d_, 3 4 5
1 2 2
30
4 4 6
b, — 20 10 20

0<x, <20,0< X, <10,0< X, < 20,0< X,, <10,0< X,, < 20,0< X,, < 30.
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Thefixed rents f, 'sand spacecosts g, 'sfor al ie | aregiven by
3 3
f; 225” fi;i=1,2and g :Z@lgn;i =12,
1=1 =1

where  f, =20, f, =10, f, =10, g, =20,9,, =15,0,; =15,
f,, =10, f, =5,,=10, g, =150, =10,9,, =5.

3
1, if Y% >0,i=1,2
j=1

o, =
0, otherwise
3
1, if ) x. >20,i=1,2
G, = JZ;J (35
0, otherwise
3
1, if )%, >30,i=1,2
6; = j=1
0, otherwise

As z;q. > Z?:lbj , we add a dummy destination in Table | with ¢, =d,, =0,i =1,2.
A basic feasible solution of the related balanced problem (F}) isgivenin Tablell.

Table!l: Basic feasible solution of (B)

u u? o f gi
2 3 1 0
10 0 20 10 0 0 30 35
3 4 5 0
1 2 2 0
10 10 0 10 0 0 10 15
4 4 6 0
Vi 2 2 1 0
Vi 3 4 5 0

Note: In above table entries in bold face represent allocations in basic cells and entries of
the form a and b represent the allocations in non-basic cells which are at their lower
bounds and upper bounds respectively.

N° =70,D° =210,F° = 40,G° =50 and Z° =1.133333,H° =50.

On applying step 2 and step 3, we get the values of 6, A;, A7, AF,,AG, A, 6,6,
which are displayed in Table 1.
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Tablelll: Vauesof 6, A, A’,AF;,AG, A, 6}, 6]

(i, ) (1.2) (21) (23)
6, 10 10 10
A -10 10 -10
IS 0 -10 -10
AF, 10 10 -5

AG, 15 15 -5
A, 210 -280 140
5 23/1365 - 4/495
5 - 64/2145 -

As &;,67 20V (i, })¢ B, the solution in Table I is an optimal solution of (P)
and hence yields optimal solution of (R) . Here a, = 30,a, = 20.
Suppose, we increase the flow along (1,2) route by 4 where 4 can vary

between 1 and 10. Let 4 =10. Then G°AF,, - F°AG,, =—-150< 0 and

A[D° (U +v;) — N°(uf +V5)IG°[G + AG,, | +
(G°AF,, — F°AG,,)D°[D° + A(U} +V5)]

=-3675000 < 0.

Thus a paradox existsin this case.
Best Paradoxical pair is found by solving the problem (PR,) for m=2,n=3.

Vauesof c. ,d

(]

.a,b; aregivenin TablelV.

Table!V: Vauesof ¢;,d;,a,b;
al
2 3 1
> 30
3 4 5
1 2 2
> 20
4 4 6
b, — > 20 > 10 > 20

0<x, <20,0< X, <10,0< X, < 20,0< X,, <10,0< X,, < 20,0< X, < 30.
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Optimal solution of problem (B,) is obtained by solving the corresponding problem
(F)

ZZC,'J.W” +200 Zfi'

(P,) min|=tie - -
N > > diw, +500 g,
ielvje.]' iel'
dw = Ajiel
jed'
W, =B;jed

iel
0<w, £20,0<w, <10,0<w, <20,0<w, <10,0< w,, < 20,
0< W5 <30,W,, Wy, W5, 20,i€ 1, je J.

Valuesof ¢ ,d;,A,B foriel ={1,2,3},je J ={1,2,3,4} aregivenin TableV,

ij 7 ij

TableV: Vaues of C,'j , di'j , A', B}

Al
G — 2 -3 -1 0
20
d; — 3 4 5 0
1 -2 2 0
40
-4 4 -6 0
0 0 0 0
60
0 0 0 0
B, — 10 20 30 60

Thefixed rents f, 'sand spacecosts g, 'sforall ie | aregiven by
' 3 0 3 ' 0
fi 225” fi;i=L2and g, :Z:5i|gi|;i =12;f;,=0,=0,
1=1 1=1

where
f, =20, f,=10,f;=10, g, =200, =150, =15,

f,, =10, f, =5,,=10, g, =150, =10,0,, =5.
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The optimal solution of problem (PB,)
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O

S

Ji3

01

if iV\ﬁj <50,
j=1

otr:erwise

if 23:%. < 30,
j=1

otr:erwise

if Zs:le <20,
j=1

otherwise

TableVI: Optimal solution of (P,)

<

<
o =

21

22

On

05

3
if >w,, <60,
j=1
otherwise

3
if >'w,, <40,
j=1
otherwise

3
if > w,; <30,
j=1
otherwise

isgivenin Table VI.

-2 -3 -1 0
0 0 0 20
-3 -4 -5 0
-1 -2 -2 0
10 20 0 10
-4 -4 -6 0
0 0 0 0
0 0 30 30
0 0 0 0
1 -2 0 0
-4 -4 0 0

(36)

ui2 fil gi,
0 40 50
0 15 25
0 0 0

On making the transformation, the optimal solution to problem (B,) isgivenin Table VII.
Table VII: Optimal solution of problem (F,)

20

10

20

30

f g

40 50

15 25
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Here the objective function value Z* =1.1280702 and flow H™ =80. Thus the
paradoxical range of flow is [H?,H"] =[50,80] .

Consider the “Paradoxical Solution' for a specified flow H =60. It is obtained
by solving the problem (R). f,giel ae defined as in (1.36). Vaues of
¢;.d;. A, B, aregivenin Table VIlI,

ij 1

TableVIIl: Valuesof ¢;,d;,A,B

Al
G — 2 -3 -1 0
20
d; — 3 4 5 0
1 2 2 0
40
-4 -4 6 0
0 0 0 M
10
0 0 0 0
B, — 10 20 30 10
Optimal solution of problem (F,) isgivenin Table [X.
Table I X: Optimal solution of (F,)
ui1 ui2 f; gil
2 3 1 0
10 10 0 0 1 0 30 35
-3 -4 5 0
1 2 2 0
0 10 20 10 0 0 15 25
-4 -4 6 0
0 0 0 M
0 0 10 0 2 6 0 O
0 0 0 0
vi 1 2 2 0
2
Vi -3 -4 -6 0

On making the transformation, the optimal solution to problem (R,) for
specified flow H =60 isgivenin Table X.
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Table X: Paradoxical solution for flow H =60

fi o
2 3 1
10 0 20 30 35
3 4
1
10 10 10 15 25
4 4

Here Z =1.133333 and H = 60.
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