
Yugoslav Journal of Operations Research
17 (2007), Number 1, 9-29
DOI: 10.2298/YUJOR0701009M

HEURISTIC APPROACH TO TRAIN RESCHEDULING

Snežana MLADENOVIĆ
Faculty of Transport and Traffic Engineering, University of Belgrade, Serbia

snezanam@sf.bg.ac.yu

Mirjana ČANGALOVIĆ
Faculty of Organizational Science, University of Belgrade, Serbia

canga@fon.bg.ac.yu

Received: December 2005 / Accepted: February 2007

Abstract: Starting from the defined network topology and the timetable assigned
beforehand, the paper considers a train rescheduling in respond to disturbances that have
occurred. Assuming that the train trips are jobs, which require the elements of
infrastructure – resources, it was done by the mapping of the initial problem into a special
case of job shop scheduling problem. In order to solve the given problem, a constraint
programming approach has been used. A support to fast finding “enough good”
schedules is offered by original separation, bound and search heuristic algorithms. In
addition, to improve the time performance, instead of the actual objective function with a
large domain, a surrogate objective function is used with a smaller domain, if there is
such.

Keywords: Train rescheduling, job shop scheduling, constraint programming, heuristics.

1. INTRODUCTION

The train scheduling problem belongs to a category of NP-hard problems of
combinatorial optimization [1, 2], and hence is complex for both modeling and solving.
The train scheduling problem considered for a larger fragment of railway network, a
longer planning period, and hence the higher number of trains is a part of designing the
timetable carried out at the level of tactical planning. The assignment of train
rescheduling is that on a smaller fragment of railway network, over a shorter planning
period an operational reconstruction of timetable is made, in respond to disturbances that
have arisen. The rescheduling may be considered to be a more difficult problem than an

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 10

initial scheduling because additional requirements are imposed to it [4]: to find a solution
in a given real time; to have a recovered schedule which will deviate from the initial one
as little as possible; the solution if not optimal, to be at least “enough good” with respect
to the assigned objective function, but also to other performances, etc.

However, only a few published papers deal with train rescheduling in real time.
In fact, the current rescheduling systems test mostly if the solution proposed by the user
is a feasible one, and not doing full schedule regeneration [3]. It can also be noted that
authors simplify the scheduling problem in two ways: by simplification of the network
structure and omitting and/or approximating constraints that govern the train movement
[7, 10]. The basic aim of the research is to formulate the most realistic model and develop
original heuristic algorithms, which in conjunction with constraint programming
mechanisms in a suitable way are able to find an “good enough” solution of the train
rescheduling problem within the limited time.

The rest of the paper is arranged as follows: Section 2 defines in a concise and
exact way the railway network topology. As a case study because of its complexity, a
single-track line scheduling problem was chosen. Namely, the train scheduling on a
double-track line can be assumed as a relaxed problem of scheduling on a single-track
line, there being no train crossing. In section 3, the problem of train scheduling on a
single-track network is modeled as a job shop scheduling problem. Assuming that the
train trips are jobs, which require the elements of infrastructure – resources, it was done
by the mapping of the initial problem into a special case of job shop scheduling problem.
The fourth, key section, deals with solving the problem by constraint programming
approach. After the train scheduling problem defined as a constraint satisfaction
optimization problem, a set of constraints, the corresponding optimization criteria,
heuristics for accelerating reaching good solutions and concept of the surrogate objective
function are discussed. For the purpose of an experimental test of the described heuristic
methods, the first prototype of software system for train rescheduling has been
constructed. In the fifth section, using the train rescheduling software, the proposed
method is evaluated on the selected real examples. The final considerations and possible
directions of further research are presented in the last, sixth section.

2. RAILWAY NETWORK TOPOLOGY

The railway network elements are integral parts of lines and stations – facilities,
resources; we shall denote them as set R . According to the properties concerning the
possible numbers of simultaneously present trains on a facility (i.e. its capacity), numbers
of entry and exit points of the facility and possibility of connection, we can distinguish
three disjunctive subsets: block sections – set P (Type(r)=bs, Capacity () 1=r , if

∈r P), entry-exit facilities – set U (Type(r)=ee, Capacity () 1=r , if ∈r U), and
station tracks – set S (Type(r)=st, Capacity () 1>r , if ∈r S). Such a classification is
close to the real one, and it is suitable for an exact formulation of constraints concerning
the occupying and making available each of the resource classes.

On railway lines with two-way traffic the train movement directions are
traditionally designated as odd and even. In further presentation, we shall assume that the
train moves in odd direction if it runs from the entry to the exit points of the facility, or in

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 11

even direction from the exit to the entry point of the facility. The railway network is built
by connecting the exit points of one facility to entry points of other facility. Facilities
from the set P have exactly one entry and exit point; facilities from the set S have
mutually equaled, and still higher than one, numbers of entry and exit points. The entry
and exit points of the facility are provided with signals controlling its occupation. Let
function I add to each facility the number of its entry points, and function O add to each
facility the number of its exit points.

Let { , , }=L bs st ee be the set of possible facility types. The ternary relation μ
is defined on set L such that (, ,) μ∈x y z means that the facility of type y may be
connected through one its entry point with the facility of type x and through one its exit
point with facility of type z . The relation μ shall be represented by the set of triples:

μ={(bs,bs,bs),(bs,bs,ee),(ee,bs,bs),(bs,ee,bs),(bs,ee,st),(st,ee,bs),
(bs,ee,ee),(ee,ee,bs),(st,ee,ee),(ee,ee,st),(ee,ee,ee),(ee,bs,ee),(ee,st,ee)}.
The railway network N can be defined as a directed acyclic graph (,)=N R A ,

where nodes are resources from R, and arc (,)p qr r ∈ A between resources pr and qr
means that the exit point of the pr facility is connected to the entry point of the qr
facility. The network is properly built if for each triple of connected facilities pr , qr , kr
where (,)p qr r ∈ A and (,)q kr r ∈ A , goes that (Type(pr),Type(qr),Type(kr)) μ∈ and if
in each node qr at most I(qr) arcs flow in, and at most O(qr) arcs flow out.

The stations are modeled as resources of type st, which are, in accordance with
relation μ , in connection with the resources of type ee through entry and exit points.
Open-line sections between stations consist of one or more block sections (resources of
type bs) between which bifurcation points may be found (resources of type ee). This
makes possible for a number of trains moving in the same direction may be present
simultaneously on the open-line section between stations, where the distance between
them is real, spatial. The increase of the number of facilities certainly makes the train
scheduling problem more complex.

The example of a railway network built according to the described rules is
presented in Figure 1.

Beograd
Dunav

Pancevacki most

Krnjaca Ovca

11 4

2

1

5610

14

13
9 7 3

8

1 2

15

16

12

34

Figure 1: Real example of a railway network

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 12

3. SINGLE-TRACK TRAIN SCHEDULING AS A JOB SHOP
SCHEDULING PROBLEM

The timetable is an entry into the operational railway control. The timetable
specifies starting and final points of journey as well as the scheduled arrival and
departure times for each intermediate station on route. The timetable is said to schedule
trains on a given railway infrastructure.

A real route is a series of all stations through which a train must pass from the
origin to destination. This paper interprets the term route in somewhat modified way. The
route is a sequence of facilities the train must cross on its journey from the origin to
destination. A valid route in the network N is any path with nodes

1
,lr

2l
r , ...,

el
r so that

Type(
1l

r)=Type(
el

r)=st, (for trains moving in odd direction), i.e. its inversion (for trains
moving on even direction).

Instead of the arrival and departure times for each train and each facility on its
route, we shall assume that we know the ideal duration of occupation of each facility by
train on its route. This occupation includes both the movement and any planned stopping
of the train. Since we know the planned train arrival time to the first facility on the route
– planned train generation, based on an ideal duration of occupation, we can assume
that the ideal train timetable is known.

The train movement is a series of particular trips, operations of facilities
occupation en route. Hence, each train is accompanied by a trip in a unique way. The
trains can also be considered as jobs to be scheduled to the infrastructure elements –
resources. Thus, established correspondence entitles us not to make a strict distinction
among “train”, “trip” and “job” in this paper.

The conflicts among trains arise when a number of requests for resources exceed
their capacities, or when some of the imposed constraints have been disturbed regarding
the train movement control. In a general case, solving of conflicts requires an
introduction of delay into at least one of the conflict trips.

The scheduling model of interest in this paper is a dynamic job shop model [6,
11]. The model is a complex processing system with several resources and several
operations, where each job has its inherent sequence of operations (activities) and
inherent generation time.

The mapping of the train scheduling problem into a special case of the job shop
scheduling problem has been made as follows:

Let 1 2{ , , ..., }= ∪ ∪ = mR P U S r r r be a set of railway infrastructure facilities
available, 1{ , ..., }= nJ J J set of train trips considered as jobs and N is the railway
network. Each train trip ∈iJ J is a series of ik operations (activities) 1(, ...,)=

ii i ikJ o o .

To each train trip iJ the “1-1” mapping :{1, 2, ..., }φ →i ik R is corresponded. φi
allocates to each operation ijo of this trip a facility ()φi j from R on which this operation
is planned to be processed. Sequence (1), (2), ..., ()φ φ φi i i ik must represent one path
on network N (when a direction(iJ) is odd) or its inversion, (direction(iJ) is even). Each
operation ijo has a fixed processing time ijp corresponding to the time of facility
occupation of ()φi j by the job iJ . Each train is joined its category icat , for which we

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 13

shall assume to specify all fixed train attributes (type – passenger or freight, length,
weight, speed, time for stopping, time for starting, etc.). The function w joins to each job

iJ its priority iw . Job priority depends on train category, the scheduling period, external
events, etc.

The planned start time ijd for each operation ijo is equal to the earliest possible
time, i.e. the earliest completion time of the preceding operation: (1) (1)− −= +ij i j i jd d p ,
2 ≤ ≤ ij k and 1 =i id d , where id is the planned job generation time of iJ . If ic denotes
the planned, and iC the actual job completion time of iJ , then the tardiness iT of job iJ
is defined as max(, 0)= −i i iT C c . We shall assume that the planned job completion time

is the earliest possible, i.e.
1=

= +∑
ik

i i ij
j

c d p .

The problem of determining the timetable, i.e. train scheduling over time,
consist of finding the actual start time ijd , ≥ij ijd d , for each operation ijo of each of the
jobs iJ avoiding conflicts, meeting additional constraints and optimizing the selected

objective function. If the ideal timetable is a feasible one, then =ij ijd d for all operations
of each job.

Train diagram

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 50 100 150 200 250 300 350 400 450

time t[s]

re
so

ur
ce

s

train#1, cat: 1 train#2, cat: 1 train#3, cat: 1 train#4, cat: 1

Beograd
Dunav

Pancevacki
most

Krnjaca

Ovca

Figure 2: An infeasible ideal timetable with conflicts on open-line between stations
Krnjaca – Ovca and Pancevacki most – Krnjaca

If trains in Figure 1 started the movement simultaneously and moved at the
same speeds, the trains 1 and 2 would have a conflict on an open-line between stations
Krnjaca – Ovca, and trains 3 and 4 on an open-line between stations Pancevacki most –

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 14

Krnjaca. Hence, the ideal timetable is not feasible in this particular case. The
visualization of this conflict is given in Figure 2 in the form that is known in railway
traffic as the train diagram. Actually, it represents the modified Gantt's diagram, where
the modification consists of touching resources on y-axis, and bars are replaced by their
diagonals, which symbolizes the train movement on the resource.

4. SOLVING TRAIN SCHEDULING PROBLEM BY CONSTRAINT
PROGRAMMING APPROACH

4.1. Definition of the Train Scheduling Problem as CSO Problem

Constraint programming (CP) is a more recent approach in the field of
programming languages, which attempts to reduce the gap between the problem
description at a high level and algorithms implemented for its solving. One of possible
CP definitions is: CP proposes the software architectures for simplifying the
implementation of combinatory optimization algorithms. CP attracts the experts' attention
in various fields, finding out that many problems in real world can be represented by
constraints, where the satisfaction of these constraints gives a solution for the problem in
question (CSP).

The CP paradigm focuses on manipulation with variable domains and relations
between corresponding variables expressed through different type of constraints. These
variables are actually the decision variables, but they will be referred to hereinafter as
variables, in short.

Formally, CSP is defined as a triple (, ,)V D C [8], where: 1{ , ..., }= nV v v is a
finite set of variables presenting the problem, D is a function that joins to each variable
in V its domain, i.e. () =i iD v D and C is a finite set of constrains. Constraint ∈c C
between the variables

1j
v ,

2j
v , ..., ∈

kj
v V , ≤k n is a subset of Descartes' product of

their variable domains, i.e.
1 2 1 2

(, , ...,) ...⊆ ×
k kj j j j j jc v v v D D D . The CSP solution is such

an assignment of values from domains iD to variables iv , 1, ...,=i n which satisfies all
constraints from C. Let S be the set of all CSP solutions.

In real applications, there is an interest of determining the quality of the solution
found. It is also sometimes an aim to find the best, optimal solution. The CS problem is
therefore expanded by an objective function f that joins to each solution from S a
numerical measure of its efficiency. Function f is defined as an arithmetical expression
over variables in V. Formally, constraint satisfaction optimization problem (CSOP) is
defined as a quadruple: (V, D, C, f).

If any upper limit 0U of function ()f S is known (in the case its minimization),
then the constraint 0() <f S U may be added to the set of constraints of CSP problem, i.e.
the problem { }0(, , () ,)∪ <V D C f S U f is under consideration. A solution of this
problem gives a new limit 1U , (1 < oU U for the minimization problem), and now the
problem { }1(, , () ,)∪ <V D C f S U f may be solved. Hence, CSOP can be solved
incrementally until an optimal solution is reached.

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 15

If we consider the actual start times of activities ijd as decision variables, to
which the finite domains are associated, and the conjunctive, disjunctive and special
constraints as a set of constraints, it is clear that the job shop scheduling problem is one
CS problem. Supplemented by an objective function, it grows into a CSO problem.
Hence, our initial train scheduling problem may be formulated as a CS problem, i.e. CSO
problem.

A support in finding the solution in CP paradigm is offered by consistency
methods and search strategies. The consistency methods make the constraint propagation
through variable domains. In this way, the variable domains are bounded and the search
space reduced. The complete search is applied if the aim is to find an optimal solution; if
the aim is a solution “good enough” in the limited time, a local search is combined with
constraint propagation.

The CP approach has become an appealing technology for planning and
scheduling problems only after the appearance of commercial CP tools. Within the
available CP tools, the consistency methods and search strategies have been implemented
as their inference mechanisms.

The motivation for choosing the CP approach in solving our problem is as
follows:

 declarative nature of constraints in CP approach offers a comfort in formulating
the numerous and complex constraints occurring in real train scheduling
problem on a single-track railway network;

 the presence of commercial CP tools may significantly shorten the development
time and length of the programming code of scheduling applications;

 separation of the constraint component from the search component offers a
possibility to keep the constraints once formulated (these actually being
regulations for train movements on the railway line which are relatively seldom
changed), and to build the search component by considering the concrete
objective function;

 possibility of dynamic modification of constraint set by adding new constraints
in order to satisfy the current requirements;

 researchers’ challenge to test a new approach to solving the train rescheduling
problem! Namely, the train rescheduling on a single-track network has been a
subject of research for the first author of this paper for a number of years. Thus,
in [5, 9] the weighted priority dispatching rules and heuristic scheduling rules
have been used, aiming at minimizing the weighted number of late trains. As
opposed to dispatching rules permitting quick decision-making, but not taking
into account the global information, the CP approach carries out a systematic
search and as such, it is time-consuming, but also capable of finding better
solutions, according to the assigned objective function. Before carrying out the
research, it was not clear if time-consuming CP method may satisfy the time-
limited train rescheduling.

4.2. Constraint Component

In order to solve the train rescheduling problem by CP approach, it is necessary
to define the constraint component. The constraint component in our research consists of
four classes of constraints.

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 16

1. As the train scheduling problem is formulated as job shop scheduling problem, it is
clear that the fixed route corresponds to conjunctive constraints, and the constraints
related to job processing on the same resource, taking into consideration its capacity, are
normal disjunctive constraints.

2. The following set of constraints is related to preventing trains collisions and it exists in
each railway system. In the carried out research a minimum set of eight safety
constraints has been defined, covering all known regulations applicable in real train
movement on a single-track line on the Serbia and Montenegro railway network. These
constraints are designated as: Rule on speeds, Rule on stopping, Rule on occupying and
making available unary resources, Rule of occupying and making available station tracks,
Rule of sequencing, Crossing Rule, Rule of stop-over in a station and Rule of non-
simultaneous arrivals to station.

These constraints are the same both for initial scheduling and for rescheduling.
All constraints are formulated in meta-notation using previously introduced notation and
making possible a simple mapping into an optimization programming language in the
implementation phase. For example, we shall consider here in more detail:

Crossing rule
The rule is related to pJ , qJ ∈ J so that () ().≠p qdirection J direction J The safety
regulations specify that at least ct time units must elapse since the moment of making the
line available until the moment of exit of the train in opposite direction on the same line.
Let () ()φ φ= =p p q q lj j r , (1) (1)φ φ+ = − =p p q q vj j r for {2,..., 1},∈ −p pj k {2,..., 1}∈ −q qj k
and Type(lr)=st. From network relation μ it is clear that Type(vr)=ee. Hence,

(1) (1) (1)() ()+ − +≤ ∨ + ≤p q q pp j q j qj p jcd d d t d .

3. The third group of rules is rescheduling model constraints. These constraints
differentiate the rescheduling problem from the initial scheduling problem. Our model
formulates one of such constraints:

The rule of no-waiting entering the system
The modeling assumption that each job iJ must be taken for processing at the moment

of generation, can be simply expressed by: 1 =i id d .

This actually means that the jobs cannot be “piled up” before entering the system. This
assumption is extremely reasonable for the case of rescheduling, where the railway
network under consideration is only a small fragment of real railway network, where
originating and destination stations in the model are in most cases only the intermediate
stations in the real system.

4. Finally, a number of special constraints have been considered which can be of a
practical importance in operational control and which can be included selectively in the
constraint component, depending on requirements put to the rescheduling system. These
constraints offer a possibility to have very specific traffic situations planned. The

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 17

possibilities of defining such constraints are inexhaustible, and our model deals with:
Rule of simultaneous stop-over in the station, Rule of time distance between the
completion of one and generation of another job, Rule of unavailability of resources,
Rule of special separation. For example, we shall consider here in detail:

Rule of simultaneous stop-over in the station

The requests for every two trains to meet in the previously planned station is
unsustainable under conditions of the timetable disturbances, and therefore in
rescheduling overtaking and crossing stations are determined dynamically. However,
sometimes there is an interest for two trains to “meet” necessarily in one of the stations of
the system. The rule of a simultaneous stop-over in the station should provide for trains

pJ , qJ ∈ J to stop simultaneously in a station at least for mt time units (e.g. due to the
planned overtaking, crossing or changing trains by passengers). The station is specified
by the resource Type(lr)=st, () ()φ φ= =p p q q lj j r , for

{1,2,..., 1},∈ −p pj k {1,2,..., 1}∈ −q qj k . Let ()stop it cat be additional time for stopping
train iJ . Then,

(1) (1)min(,) max((()), (()))+ + − + + + + ≥p q p qp q
p j q j pj qjpj stop p qj stop q md d d p t cat d p t cat t .

4.3. Optimization Criteria

The makespan, maximum complete time of all jobs, is the most frequent
criterion with the job shop scheduling problems. However, in the train scheduling, the
criteria taking into consideration the delays and different priorities and various train
categories are of interest. Therefore the following seven relevant optimization criteria,
i.e. objective functions have been selected, for which optimization models have been
developed:
 minimization of the maximum tardiness max 1 2max{ , , ..., }= nT T T T . Although the

criterion minimizes the maximum delay, many trips may suffer disturbances. The
criterion is acceptable in situations when passenger trains prevail for scheduling;

 minimization of the maximum weighted tardiness max 1 1 2 2max{ , , ..., }= n nWT w T w T w T
may be an interesting criterion under the mixed traffic conditions. The weights iw
are usually the same for all trains of the same category within given scheduling
period;

 minimization of the total tardiness
1=

=∑
n

i
i

D T ;

 minimization of the total weighted tardiness
1=

=∑
n

i i
i

WD w T ;

 minimization of the maximum slack of trains in stations, i.e. the minimization of the
function max (1)max{ () 1 , 1+= − + ≤ ≤ ≤ ≤i j ij ij iS d d p i n j k , Type (()) }φ =i j st .
Considering that the absolute compliance with the original timetable corresponds to

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 18

the situation that max 0=S , this criterion offers a support to the idea that rescheduled
timetable should be as close as possible to the original one;

 minimization of makespan max 1max{ , ..., }= nC C C expresses our wish for the trains
to leave as soon as possible the fragment of railway network under consideration. In
the case of rescheduling, this objective function gives support to the localization of
disturbances;

 minimization of the number of late jobs | |LJ , where { | 0}= ∈ − >i i iLJ J J C c .

4.4. The choice of strategy, policy and method of rescheduling

Following the ideas presented in [12], the essential steps in implementation of
rescheduling are the choice of factors, strategy, policy and method of rescheduling.

The rescheduling is activated after recognition of the rescheduling factor. Here
the rescheduling factor is a disturbance, i.e. an unplanned forwarding of train to the
station that is equipped with the rescheduling system.

The strategy is necessarily predictive-reactive since there is an original
timetable.

The choice of policy depends on the assessment of the minimum time spacing
between the consecutive rescheduling factors and the expected run time for the
rescheduling procedure. In a general case, the policy may be periodic, event-driven and
hybrid. This paper presents a hybrid policy: the rescheduling procedure starts at the end
of the defined period if within it some disturbances have arisen.

So far as the choice of method is concerned, it is clear that due to time limit for
rescheduling implementation, one should focus on partial rescheduling methods.

The global rescheduling procedure is represented by pseudo code as follows. In
effect, an infinite loop is in question: A disturbance is identified in the first part of the
loop body, and its processing is made in the second part.

procedure Reschedule (DB, MB)
inputs DB, database
 MB, base of scheduling models
forever
 disturbance← false
 repeat
 Trigger (DB, disturbance, Active Jobs, J , gt)
 until disturbance ∧ =t k .period, ∈k Z
 Select Model (Active Jobs, MB, DB, Model, Max B)
 Select Preparation Model (MB, Model, Preparation Model)
 Prepare(J , PreparationModel, Delays)
 Separate And Schedule Related Jobs (J , Active Jobs, Model, Delays,
 Schedule)
 Save Schedule (DB, Schedule)
 Present Schedule (Schedule)
end forever
end procedure

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 19

All symbols in this one, but also in the following algorithms are of a mnemonic
character, and therefore the comment is missing in a number of places.

The assumption is that the database DB comprises the initial schedule and
network topology, as well as the updated dynamic data concerning the schedule
implementation. The occurrence of an unexpected dynamic data in database DB triggers a
rescheduling procedure. The optimization models available are incorporated in the model
base MB. This concept offers a support to the idea, based on the user’s wish, the period of
the day when the rescheduling is made, statistical analysis of the system history, etc., to
choose a model that optimizes one or the other optimization function. The procedure
Select Model, in accordance with a certain criterion, selects a scheduling Model from
the model base MB. MaxB is initial upper bound of objective function. It is the property of
a chosen model and expresses the user’s wish to reach minimal schedule efficiency. The
procedure Select Preparation Model selects a preparation model corresponding to the
chosen scheduling model.

Procedure Trigger verifies the contents of database DB, waiting for information
about disturbances. If there is in time moment t a piece of information on unplanned
dispatching of one or more trains, the procedure returns a set ActiveJobs of all jobs
the processing of which is underway at moment t , as well as the set of all jobs J ,
including the jobs from ActiveJobs, but also all not commenced jobs the generation
of which is planned up to the given time moment gt . It is clear that the planning period
[t , gt] should sufficiently exceed the maximum flow time of jobs. Let

∈iJ ActiveJobs be job dispatched to the station represented by resource lr ,
Type(lr)=st and let j-th operation of iJ be performed on that resource, i.e. ()φ =i lj r .
The rescheduling of the remaining part of the job iJ will be carried out starting from

operation ijo , and hence we can assume that the position ipos from which the job iJ

scheduling starts within [t , gt] is =ipos j . The expected train arrival to that station is a

moment of actual generation id of the rest of job iJ . For jobs ∈iJ J \ActiveJobs

1=ipos , and id is the planned job generation subject to the initial schedule.
The procedure Prepare will be described in the part of the paper related to

bound heuristics, and procedure Separate And Schedule Related Jobs in the part
describing separation heuristics.

The procedure Save Schedule accommodates the recovered schedule in
database, while the procedure Present Schedule visualizes the schedule in an adequate
way.

4.5. Heuristics

Manufacturers of commercial CP tools claim that it is precise enough to
formulate what the problem is (the constraint component and objective function), and CP
tools are capable to find an optimal solution or a series of feasible solutions thanks to
inference incorporated algorithms. Experiments made with ILOG Solver CP tool and its
extension for scheduling purposes ILOG Scheduler, prove unreliability of exclusive

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 20

reliance on CP tools and their search algorithms! The process of arriving even up to the
first solution is sometimes very time-consuming and as such cannot meet the
rescheduling requirements. Wishing to take advantage of good properties of CP
approach, which have already been discussed, an idea naturally arose to “support” the CP
tools by heuristics based on knowledge of the real problem. For this purposes three
classes of heuristics have been formulated: bound heuristics, separation heuristics and
search heuristics.

Bound heuristics

The aim of the bound heuristics is to limit the domains of decision variables and
objective function in order to increase the search efficiency. Three types of bounds are
proposed:

1. Initial bound – all variables take value from interval [origin, horizon], where
the origin and horizon are assessed based on the knowledge of the real problem:

horizon = origin (() ())
∈ ∈

+ + +∑ ∑
i ij i

ij stop i start i
J J o J

p t cat t cat =

 origin (() () ())
∈

+ − + +∑
i

i i stop i start i
J J

c d t cat t cat ,

where origin min{ }= ∈i id J J .

horizon is determined by sum of duration of all operations, increased by additional
times for stopping ()stop it cat and starting ()start it cat for each train trip ∈iJ J .

2. Lower bound of objective function - is estimated by a special procedure. The
estimation is based on solving the preparation model that solves the conflict between two
jobs in isolation, disregarding the consequences it might have on other jobs. The aim of
procedure Prepare is to find the minimum delay to incorporate in a pair of jobs, if such
pair of jobs is observed in isolation. The element Delays[i,k] of matrix Delays is
an optimal value of the objective function in solving the conflict between jobs iJ and

kJ , using a preparation scheduling model. Algorithm of procedure Prepare has the
following form:

procedure Prepare (J , PreparationModel, Delays)
inputs J , set of all jobs, includes jobs the processing of which is
 underway at moment t and non-commenced jobs up
 to upper bound of planning period gt
 PreparationModel, scheduling model
returns Delay, matrix containing minimum delay if a conflict between two
 jobs is solved in isolation
forall ∈iJ J
 forall (∈kJ J : i<k)
 if not (()<i kc d ()∨ <k ic d) then

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 21

 origin← min(,)i kd d
 horizon← origin+(−i ic d)+ () ()+stop i start it cat t cat +
 (−k kc d)+ () ()+stop k start kt cat t cat
 Jobs { , }← i kJ J
 LowerBound 0←
 // setting initial upper bound of objective function
 UpperBound← MaxB
 // running of the model solving the conflict between two jobs
 Solve Model (Model, Jobs, origin, horizon, LoverBound,
 UpperBound, Schedule, ObjectiveFunction, Makespan)
 // optimal value of objective function is stored in Delays matrix
 Delays[i,k]← ObjectiveFunction
 end if
 end forall
end forall
end procedure

A set of inter-related jobs will be referred to as RelatedJobs. Procedure
Estimate, called on every time before solving the scheduling model over the set
RelatedJobs, based on Delays matrix sets a lower bound for the objective function
(see next procedure named Separate and Schedule Related Jobs). For objective
functions that are not of a sum type, except for the number of late trains, and lower bound
has the form:

LowerBound=

, Re
max {

∈i jJ J latedJobs
Delays[i,j] >j i },

while for sum type objective functions it is of the form :
LowerBound =

, Re
{

∈i jJ J latedJobs
sum Delays[i,j] >j i }.

The lower bound of the number of late trains is a number of non-zero rows in Delays
matrix.

Since the PreparationModel solves the conflict between a pair of jobs in
isolation, disregarding the consequences this might have on other jobs, it is very probable
that such solution of a conflict situation include a conflict between jobs that have not had
it initially. It is also less probable that the solution of one conflict will necessarily resolve
some other initial conflicts. Therefore, such heuristic for estimation of a lower bound of
the objective function in most cases will help in avoiding the unfruitful ways of search,
and only in a negligibly small number of cases, we will give up very good solutions.

3. Upper bound of objective function – is dynamically bound during the search. For
example, if the objective is to minimize total tardiness, then, after finding a feasible
solution with total delay D , we add to the model a constraint: ()

∈
+ − ≤∑ i i

i

ik ik i
J J

d p c D .

Initial upper bound of objective function is constant MaxB.

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 22

The propagation of this constraint reduces the domains of decision variables. In
other words, the propagation discards the branches on the search tree that would not lead
to better solutions than those already found.

Separation heuristics

The aim is to separate and schedule at the same time only those activities that
can influence one another, in order that the system may respond faster to the recognized
rescheduling factor.

The set of jobs that must be scheduled jointly is already denoted as
RelatedJobs. The procedure Separate And Schedule Related Jobs initially allocates
to the set of related jobs a set ActiveJobs (the jobs the processing of which is
underway at the moment of disturbance). The procedure Solve Model solves the
scheduling model. The set AdditionalRelatedJobs includes the jobs that due to
cascade effects among operations must be added to the set RelatedJobs. The
procedure Exclude Activities has an assignment to recognize in the set RelatedJobs
those jobs, i.e. their activities that may be considered definitely scheduled and exclude
them from further scheduling. The algorithm stops when the set RelatedJobs remains
empty. This happens in two situations: when all jobs up to the upper bound of the
planning period are scheduled, or if a significant time division between jobs that suffer
disturbances and the remaining jobs occurred.

procedure Separate And Schedule Related Jobs (J , ActiveJobs, Model, Delays,
Schedule)
inputs J , set of all jobs includes jobs the processing of which is underway at
 the moment of respond to disturbance t and expected non-
 commenced jobs up to the planning period upper bound gt
ActiveJobs, the jobs the processing of which is underway at the moment of
 respond to disturbance
 Model, selected scheduling model
 Delays, matrix of minimum delays for solving the conflicts
returns Schedule, the schedule of all activities directly or indirectly affected by
 activities of jobs from the set ActiveJobs
RelatedJobs← ActiveJobs
repeat
 origin min{← ∈i id J RelatedJobs }

 horizon← origin+
Re

(()
∈

− +∑
i

i i
J latedJobs

c d () ()+stop i start it cat t cat)

 Estimate (Delays, Model, LowerBound)
 UpperBound=MaxB
 // solving the model
 Solve Model (Model, RelatedJobs, origin, horizon, LowerBound,
 UpperBound, Schedule, ObjectiveFunction, Makespan)
 MinGen← gt

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 23

 // identification of additional jobs to be generated before maximum complete time of
 // all related jobs and determine minimum moment of such jobs generation
 AdditionalRelatedJobs {}←

 forall (∈iJ J : ∉iJ RelatedJobs)
 if <id Makespan then
 AdditionalRelatedJobs { }← ∪iJ AdditionalRelatedJobs
 if <id MinGen then
 MinGen← id
 end if
 end if
 end forall
 // identification of the last station which the train entered not later than the minimum
 // of moments generation of additional jobs MinGen
 forall (∈iJ J : ∈iJ RelatedJobs)
 // the moment of train entering the last station MinGen
 // is a candidate for new generation time of the rest of the iJ ...

 n
id ← max{ ijj

d Type (())φ = ∧ ≤i ijj kol d MinGen}

 //... the number of operation performed in the last station before MinGen
 // is a candidate for a new position of job generation iJ

 ←n
ipoz max{ j Type (())φ = ∧ ≤i ijj kol d MinGen}

 end forall
 // some activities of jobs from the RelatedJobs are definitely
 // scheduled, since they cannot be affected by AdditionalRelatedJobs
 Store Partial Schedule (Schedule, RelatedJobs)
 Exclude Activities (RelatedJobs, AdditionalRelatedJobs, MinGen)
 RelatedJobs ← RelatedJobs ∪ AdditionalRelatedJobs
// the algorithm stops when the set RelatedJobs becomes empty
until RelatedJobs ={}
end procedure

Search heuristics

The aim is to allocate start times to activities as early as possible so that all
imposed constraints are satisfied, i.e. find a feasible solution.

The procedure Set Start Times Of Activities finds start times of activities such
that they define a feasible solution. The order of variables is in accordance with
increasing lower bound of their domains, as well as the order of values within a domain.
As soon as a start time is assigned to an activity, the domains (intervals) are updated
corresponding to start times of unscheduled activities. At the moment one of the domains
remains empty, by backtracking the algorithm tries to find a node in search where a
wrong decision has been taken. The algorithm stops when all activities have obtained the

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 24

start times (i.e. a feasible solution has been found), or if there is no alternative after an
error (no solution).

procedure Set Start Times Of Activities (Jobs)
inputs Jobs, set of jobs to be scheduled starting from their actual positions ipos

returns { ∈ij id J Jobs, ≤ ≤i ipos j k },
 set of start times for all activities of jobs starting from
 their actual position ipos
begin
 Activities← { ∈ij io J Jobs, ≤ ≤i ipos j k }
 PostponedActivities ← {}
 ScheduledActivities ← {}
 0d min{← ∈ij ijd o Activities }
 repeat
 SimultaneousActivities ← { ∈ij ijo o Activities 0∧ =ijd d }
 k← Cardinality (SimultaneousActivities)
 // creating array of all subsets of SimultaneousActivities without empty
 // set, arranged by non-decreasing cardinality
 Create Array Of Subsets (SimultaneousActivities, ArrayOfSubsets)
 n← 2 1−k
 ok← false
 repeat
 PostponedActivities ← {}
 // test if the set of operations incorporated in ArrayOfSubsets[n] can
 // start at moment 0d
 if Can Start (ArrayOfSubsets[n], 0d) then
 PostponedActivities ← SimultaneousActivities \
 ArrayOfSubsets[n]
 Update Start Times (PostponedActivities)
 // a new minimum start time for remaining activities
 ad min{← ∈ij ijd o Activities\SimultaneousActivities}

 pd max{← ∈ij ijd o PostponedActivities }
 if not (<p ad d) then
 ScheduledActivities ← ScheduledActivities∪
 ArrayOfSubsets[n]
 ok← true
 else
 n← n-1
 // backtracking to select another set of activities to start at moment 0d
 Backtrack
 end if

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 25

 end if
 until ok
 0 ← ad d
 until ScheduledActivities = Activities
end procedure

The procedure Solve Model calls procedure Set Start Times Of Activities, and

thereafter, based on a found feasible solution a new upper bound for the objective
function is set, and propagation of the corresponding additional constraint reduces the
domains of other decision variables. The procedure Solve Model stops further search if
the upper bound of the objective function matches up with the lower bound or if
rescheduling of start times of activities does not lead to a better value of the objective
function.

Such iterative process forms an optimal partial schedule, and if described
heuristics were successful, such partial schedules form an “enough good” schedule within
the limited time.

4.6. Surrogate objective function

Based on the nature of CP approach it is clear that the optimization of a small
domain function is faster than the optimization of a larger domain function, except if in
the latter case there is a very powerful heuristic. It is a reasonable idea, therefore, to use,
instead of the real objective function with a large domain a surrogate objective function
with a smaller domain, if there is such. We can minimize a surrogate objective function,
but with an additional dynamic constraint, such that minimization may go only through
those feasible solutions that do not enhance the actual objective function. For example,
let makespan is the actual objective function and LJ is its surrogate objective function.

The values in domain of LJ should be in the descending order; it is reasonable, because
we expect “good” makespan if several trains suffer small disturbances. After every
assigning the value to LJ , the constraint max()

∈
+ ≤

i i
i

ik ikJ J
d p makespan will be activated.

Hence, if the estimated number of conflicts exceeds a threshold, procedure Select Model
should select a model with the surrogate objective function, if there is such, from the
modelbase MB.

5. METHOD EVALUATION

Validation of heuristic algorithms is in a general case very complicated. One of
the ways is their experimental verification. For this purpose, the first prototype of
software system for train rescheduling has been designed and implemented.

CP tool ILOG Solver and its upgrade for scheduling purpose ILOG Scheduler,
manufactured by French company ILOG (http://www.ilog.com), have been used in
implementation. ILOG Scheduler permits to create models in the terms of resources,
activities and time constraints. The optimization models in our case are formed in OPL
modeling language, while the combination and control with optimization models has

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 26

been achieved by using a procedural language OPL Script. The integrated development
environment OPL Studio enabled us to create and modify the models using OPL, to
combine and manage the models using the language OPL Script, and to run the models
by ILOG Solver and ILOG Scheduler. The trial version of OPL Studio is available on
Internet (http://www.ilog.com/download/opl) and this has been actually used for
implementation of the first prototype of train scheduling system.

Figure 3 presents a realized window of user interface of this system – a graph
presentation of the recovered train schedule for infeasible schedule shown in Figure 2.

Train diagram

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 200 400 600 800 1000 1200

time t[s]

re
so

ur
ce

s

train#1, cat: 1 train#2, cat: 1 train#3, cat: 1 train#4, cat: 1

Beograd
Dunav

Pancevacki
most

Krnjaca

Ovca

Figure 3: Recovered timetable for infeasible timetable in Figure 2 if the objective is the

minimization of total tardiness D

Experiments have been carried out on a fragment of real railway network (a part
of Belgrade Railway Junction), with actual train categories operating there, but with
traffic frequency immensely exceeding the real one. The jobs (trains) are “piled up” on
purpose to test the endurance of the method. The train categories were joined by
priorities assessed by expertise. All seven relevant objective functions, discussed in 4.3,
participated in the experiments. Table 1 in Appendix A presents a yield of heuristic
algorithms on selected examples that differ with respect to numbers of jobs for
rescheduling and initial numbers of conflicts. Each set of jobs suffering disturbances
includes trains of different categories and different movement directions. All experiments
have been implemented on personal computer Intel (R) Pentium(R) 4 CPU, 2GHz. From
the analysis of experiment results the following conclusions may be drawn:

 CPU time of schedule recovery depends on the number of activities and number
of conflicts;

 solving initial conflicts may bring up additional conflicts;
 in most cases the time performance and solution quality is satisfactory;

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 27

 a heuristic nature of the approach has been demonstrated (in an insignificant
number of cases the best known solution for the given objective function has not
been found);

 the approach of “formal” minimization of the function, and dynamic limiting of
the value of the other function in 90% of tested cases proved to be extremely
efficient: an arrangement with the same value of the actual objective function is
found, the run time of the model is reduced by around three times! If actual
objective function is makespan and surrogate objective function is LJ , run
time is 21.59 instead of 58.88 for the sixth example form Table 1.

6. CONCLUSION

The paper presents a very realistic railway transport model. Namely, actual line-
side signals that limit resources have been taken into account. These signals are used for
control if a train may proceed its trip on a particular resource. In the available literature
[7] the authors manipulate with approximate time spacing and not with real spatial
spacing of trains, which may be notably different if there is a significant difference in
length of resources and in movement speeds of trains. Also, as opposed to [10] the traffic
mixture has been taken into account, so that different priorities have been allocated to
different train categories.

The train rescheduling problem has been formulated and solved as constraint
satisfaction optimization problem. Corresponding optimization criteria take into
consideration delays and established priorities between different train categories (e.g. the
maximum tardiness, total tardiness, maximum weighted tardiness, etc.). In order to
improve the time performance of available constraint programming tool ILOG Solver
and to meet the rescheduling requirements, three classes of heuristics working together
on seeking the solution have been proposed. They are referred to as separation heuristic,
bound heuristic and search heuristic. In special cases, instead of the actual objective
function with a large domain, a surrogate objective function has been used with a smaller
domain.

For the purpose of an experimental verification of proposed heuristic
algorithms, the first prototype of software tool for train rescheduling has been designed
and implemented. The experiments carried out on a fragment of real railway network (a
part of the Belgrade Railway Junction), with real train categories in operation in that
junction and with real possible disturbances, have proven a validity of the described
approach, both in time performance and in solution quality.

Although the main objective of the research is an operational reconstruction of
the timetable under the conditions of disturbances, the described approach has a high
degree of universality within the given problem category. By a relaxation of strict time
limits and an increased size of the problem, the method is capable to solve the problems
of initial train scheduling on a real network up to optimization within reasonable time.

Also, by solving a difficult problem of train rescheduling, we have paved the
way for solving a whole series of problems, the core of which is the train scheduling, e.g.
timetable preparation, determining of economically acceptable capacity utilization
interval, the estimation of train stopping and waiting for traffic reasons, anticipation of

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 28

the results of investment activities, identification of bottlenecks in infrastructure, choice
of possible solutions of conflict points, research on allocation of block sections and line-
side signals etc.

The research presented in this paper should not be considered as a closed
system. It might be of interest to further upgrade the network model, a constraint
component and special constraints, in particular, as well as the described heuristic
algorithms. Also, another research could be made about criteria for choosing a surrogate
objective function for the given actual one.

REFERENCES

[1] Bater, W.M., “Computer aided railway engineering”, in: Mellit, B., Hill R.J., Allan J., Sciutto,
G., Brebbia, C.A. (Eds.), Computers in Railways VI, WIT press - Computational Mechanics
Publications, Comreco Rail Ltd York, England, 1998, 199-211.

[2] Cai, X., and Goh, C.J., “A fast heuristic for the train scheduling problem“, Computers and
Operations Research, 21(5) (1994) 499-510.

[3] Chiu, C.K., Chou, C.M., Lee, J.H.M., Leung, H.F., and Leung, Y.W., “A constraint-based
interactive train rescheduling tool”, Proceedings of Second International Conference on
Principles and Practice of Constraint Programming, 1996, 104-118.

[4] Cowling, P., Johansson, M., “Using real time information for effective dynamic scheduling”,
European Journal of Operational Research, 139(2) (2002) 230-244.

[5] Čicak, M., Vesković, S., and Mladenović, S., Models for Establishing the Railway Capacity,
Faculty of Transport and Traffic Engineering and Želnid, Belgrade, 2002. (in Serbian)

[6] Jones, A., and Rabelo, L.C., “Survey of job shop scheduling techniques”, Technical Paper,
NISTIR, National Institute of Standards and Technology, Gaithersburg, MD, 1998.
(Downloadable from website http://www.mel.nist.gov/msidlibrary/doc/luis.pdf)

[7] Kreuger, P., Carlsson, M., Olsson, J., Sjoland, T., and Astrom, E., “Trip scheduling on single
track networks – the TUFF train scheduler”, Workshop on Industrial Constraint Directed
Scheduling, 1997, 1-12. (Downloadable from website http://citeseer.ist.psu.edu/cache/
papers/cs/2088/http:zSzzSzwww.sics.sezSz~alfzSzcp_97_ws.pdf/kreuger97trip.pdf)

[8] Marriott, K., and Stuckey, P.J., Programming with Constraints: An Introduction, The
Massachusetts Institute of technology Press, Cambridge, 1998.

[9] Mladenović, S., Vesković, S., and Čicak, M., “SIZES – software for establishing the capacity
of the single track”, Proceedings of XLV ETRAN Conference, Bukovička Banja, Volume III,
2001, 63-66. (in Serbian)

[10] Oliveira, E., and Smith, B.M., “A hybrid constraint-based method for single-track railway
scheduling problem”, Report 2001.04, School of Computing, University of Leeds, 2001.
(Downloadable from http://www.comp.leeds.ac.uk/research/pubs/reports/2001/2001_04.pdf).

[11] Pinedo, M., Scheduling: Theory, Algorithms and Systems, Prentice Hall, 1995.
[12] Vieira, E.G, Herrmann, J.W., and Lin, E., “Rescheduling manufacturing systems: a framework

of strategies, policies and methods”, Journal of Scheduling, 6 (2003) 39-62.

 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 29

APENDIX A

Table 1: A yield of heuristic algorithms in the schedule recovery - selected real examples
SCHEDULE PERFORMANCES No. of

example
Initial no.
of conflicts

No. of jobs
involved in
the distur-

bance

No. of
conflicts
solved

CPU
time maxT maxWT D WD

maxS make-
span

LJ

1 3.84 250 500 370 980 250 2634 2
1 3.38 250 500 370 980 250 2634 2
1 4.09 250 500 370 980 250 2634 2
1 4.24 250 500 370 980 250 2634 2
1 20.44 250 500 370 980 223 2634 2
1 3.72 250 500 370 980 250 2634 2

1. 1 2

1 3.30 440 1760 440 1760 320 2766 1
2 9.54 450 900 809 1858 450 6681 3
2 9.15 450 900 809 1858 450 6681 3
2 9.84 576 2304 884 2920 456 6499 3
2 9.32 484 968 913 2066 309 6751 3
2 8.97 484 968 913 2066 309 6751 3
2 9.17 576 2304 884 2920 456 6499 3

2. 2 3

2 7.59 992 1984 1112 2464 992 7156 2
3 10.74 641 2564 1064 3015 521 2067 3
3 10.18 794 1632 1230 2482 428 2193 3
3 9.69 641 2564 1064 3015 521 2067 3
3 10.26 794 1632 1230 2482 428 2193 3
3 10.90 794 1632 1230 2482 428 2193 3
3 9.88 641 2564 1064 3015 521 2067 3

3. 3 3

5 8.62 641 2564 1064 3015 521 2067 3
3 12.59 532 1064 1237 2296 532 7330 5
3 13.29 532 1064 1237 2296 532 7330 5
3 16.83 532 1064 1237 2296 532 7330 5
3 17.83 532 1064 1237 2296 532 7330 5
3 28.64 532 1064 1478 2537 363 7330 5
3 14.67 854 1708 1331 2484 854 7102 4

4. 3 5

5 21.59 1904 3808 3556 7112 1652 7816 2
6 25.77 918 3672 2463 7578 392 2854 4
6 23.48 920 3024 2580 7536 578 2878 4
6 27.78 918 3672 2457 6990 392 2754 4
6 28.24 918 3672 2457 6990 392 2754 4
6 24.33 918 3672 2463 7578 392 2854 4
6 30.73 918 3672 2457 6990 392 2754 4

5. 5 5

6 24.12 918 3672 2463 7578 392 2854 4
8 24.54 622 1244 2727 5351 619 6867 7
8 18.82 622 1244 2727 5351 619 6867 7
8 32.36 673 1346 2484 4677 673 7055 6
8 32.13 673 1346 2484 4677 673 7055 6
8 53.99 622 1244 2727 5351 619 6867 7
8 58.88 622 1244 2727 5351 619 6867 7

6. 6 7

8 46.55 673 1346 2484 4677 673 7055 6

