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Abstract: In this paper a controlled system with impulsive controls in the neighborhood 
of an abnormal point is investigated. The set of pairs (u, μ) is considered as a class of 
admissible controls, where u is a measurable essentially bounded function and μ is a 
finite-dimensional Borel measure, such that for any Borel set B, μ(B) is a subset of the 
given convex closed pointed cone. 

In this article the concepts of 2-regularity and 2-normality for the abstract mapping Φ, 
operating from the given Banach space into a finite-dimensional space, are introduced. 
The concepts of 2-regularity and 2-normality play a great role in the course of derivation 
of the first and the second order necessary conditions for the optimal control problem, 
consisting of the minimization of a certain functional on the set of the admissible 
processes. These concepts are also important for obtaining the sufficient conditions for 
the local controllability of the nonlinear systems. 

The convenient criterion for 2-regularity along the prescribed direction and necessary 
conditions for 2-normality of systems, linear in control, are introduced in this article as 
well. 
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1. PROBLEM DEFINITION 

Consider a controllable dynamic system 

1 2( ) ( ( ), ( ), ) ( ) ( ), [ , ],dx t f x t u t t dt G t d t t t tμ= + ∈  (1) 

1 1 2 2( ) , ( ) ,x t x x t x= =  (2) 

1 2( , ) 0, .W x x μ= ∈K� (3) 

Here 1 2[ , ]t t t∈  is time, 1 2t t<  are given, x  is a phase variable, which accepts 

value in the n -dimensional arithmetical space nR , 1 2( , ,..., ) m
mu u u u= ∈R is a control, 

,f ,G W  are respectively n-dimensional, n k× -dimensional, and w-dimensional vector-
functions (n, m, w are natural numbers). The function W is assumed to be twice 
continuously differentiable. The function f is assumed to be piece-wise continuously 
differentiable, that is, the interval 1 2[ , ]t t  is presentable in terms of a finite number of 

intervals 1[ , ]i iτ τ +  so, that the restriction of f at 1[ , ]n m
i iτ τ +× ×R R  is infinitely 

differentiable. 
The set K  is defined by 

* 0
1 2 1 2([ , ]; ) :  continuous : ( ) , ( ) 0 Borel [ , ] ,k

B

C t t t K t t d B t tμ ϕ ϕ ϕ μ
⎧ ⎫⎪ ⎪= ∈ ∀ ∈ ∀ ≥ ∀ ⊂⎨ ⎬
⎪ ⎪⎩ ⎭

∫K R  

where kK ⊆ R  is a given convex closed pointed cone, and 0K  is its dual. In other 
words, μ  is a k-dimensional Borel measure such that ( )B Kμ ⊂  for all Borel subsets B. 

An admissible control is any pair 1 2( , ) : , [ , ]mu u L t tμ μ ∞∈ ∈K . 
The triple 1 2( ( ), ( ), ( )) [ , ],x t u t t t t tμ ∈  is called an admissible process, if 

( ( ), ( ))u μ⋅ ⋅  is an admissible control, and ( )x ⋅  is a corresponding solution of equation (1), 
satisfying the endpoint constraints 

1 1

1 1 2
[ , ]

( ) ( ) ( ( ), ( ), ) ( ) ( ) [ , ]
t

t t t

x t x t f x u d G t tτ τ τ τ τ μ τ τ= + + ∀ ∈∫ ∫ . 

For deriving the sufficient conditions for local controllability of the system (1)-
(3), and also in the course of derivation of the first and the second order necessary 
conditions for the optimal control problem, consisting in the minimization of a certain 
functional on the set of admissible processes (1)-(3) concepts of regularity, 2-regularity 
and 2-normality in considered point 1̂ ˆ ˆ( , ( ), ( ))x u μ⋅ ⋅  play a great role. 

Before giving strict definitions of these concepts for the system (1)-(3), we shall 
explain the essence of these definitions for the abstract mapping Φ, operating from the 
given Banach space Z to kR . 

Let ẑ  be a given point from Z, and let the mapping Φ be twice continuously 
differentiable in a neighborhood of ẑ . 
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Definition 1. Mapping Φ is called regular (normal) at the point ẑ , if 

ˆim '( ) kzΦ = R  (4) 

where im is the image of the linear operator 'Φ . 
It is known, that if the mapping Φ is regular at the point ẑ , then the implicit 

function theorem holds. Besides, for the minimization problem:  

( ) min, ( ) 0z zϕ → Φ = , (5) 

where ϕ  is a given smooth function, the Lagrange principle is valid (for 0 1λ = ) well as 
the as necessary conditions of the second order. If the point ẑ  is abnormal, that is 

ˆim '( ) kzΦ ≠ R , then the statement of the classical theorem of implicit function, does not 
hold. Similarly, for the minimization problem (5) the Lagrange principle is not 
informative ( 0 0λ = ), and the classical second-order necessary conditions can be false. 

Thus there is a problem of finding conditions more delicate than the condition 
(4), which would guarantee local resolvability of the equation ( )z yΦ =  for any z  close 
to the point ˆ ˆ( )y z= Φ , and also imply substantial necessary conditions of the first and the 
second order for the problem (5). Conditions of that type are 2-regularity (obtained in 
[1]) and 2-normality [2]. Let us define these conditions. 

Let 

ˆ ˆ ˆ ˆ( ) { : ( ) 0, ( )[ , ] im '( )},T z h Z z h z h h z′ ′′= ∈ Φ = Φ ∈ Φ  

and let ˆ( )h T z∈ . Define a linear operator ˆ ˆ( , ) : Ker ( ) kG z h Z z′× Φ → R  according to: 

1 2 1 2ˆ ˆ ˆ( , )[ , ] ( ) ( )[ , ].G z h z z hξ ξ ξ ξ′ ′′= Φ +Φ  

Definition 2. The mapping Φ  is called 2-regular at the point ẑ  in the direction h , if 

ˆim ( , ) .kG z h = R  (6) 

As it is known [1], the existence of vector ˆ( )h T z∈ , along which the mapping 
Φ  is 2-regular at the point ẑ , guarantees resolvability of the equation ( )z yΦ =  for any 
y  close enough to ˆ ˆ( )y z= Φ . Besides that, in the problem (5) for any such h  some 

necessary conditions of the first and the second order are valid also in an abnormal case 
(that is when ˆim '( ) kzΦ ≠ R ). 

Let 2 ˆ( )zF  be a cone, consisting of , 0,kλ λ∈ ≠R  such that ˆ'( )* 0z λΦ =  and 
there exists a subspace ( )λΠ = Π  inside of Z : 

[ ]
2

2

ˆKer ( ), codim ;

ˆ, ( ) 0 .,

z k

z zz z
z

λ

′Π ⊆ Φ Π ≤

∂ Φ ≥ ∀ ∈Π
∂

 



N. Pavlova / 2-Regularity and 2-Normality Conditions 152

We should note that the cone 2 ˆ( )zF  can be empty. For example it is obviously 
empty if the mapping Φ  is normal at the point ẑ , since from (4) it follows that 

ˆ'( )* 0 0z λ λΦ ≠ ∀ ≠ . Besides that, after joining zero to 2 ˆ( )zF  it becomes closed, but 
not necessarily convex. 

 

Definition 3. The mapping Φ  is called 2-normal at the point ẑ , if the cone 2 ˆconv ( )zF  
is pointed, i.e. does not contain nonzero subspaces (the case 2 ˆ( )z ≠ ∅F  is not excluded, 
since an empty cone is pointed by the definition). 

 

The goal of the present paper consists in deriving the conditions of 2-regularity 
and 2-normality for the considered dynamic system (1)-(3). To this end we shall present 
the system (1)-(3) in an abstract form. 

Let us fix a point 1 1 2ˆ ˆ ˆ( , ( ), ( )) [ , ]n mx u L t tμ ∞⋅ ⋅ ∈ × ×R K , so that, ˆ ˆ ˆ( , , )x u μ  is an 
admissible process, and 1 1ˆ ˆ( )x t x= . 

For any 1 1 2( , ( ), ( )) [ , ]n mx u L t tμ ∞⋅ ⋅ ∈ × ×R K , close enough to 1̂ ˆ ˆ( , ( ), ( )),x u μ⋅ ⋅  by 
virtue of the theorems of existence and continuous dependence of the solution of the 
Cauchy problem on initial conditions and right part there is a unique decision ( )x ⋅  of the 
Cauchy problem. 

1 1 1 2( ) ( ( ), ( ), ) ( ) ( ), ( ) , [ , ].dx t f x t u t t dt G t d t x t x t t tμ= + = ∈  (7) 

For the specified 1( , ( ), ( )),x u μ⋅ ⋅  let us define the mapping *
1 2: [ , ]n mL t t C∞Φ × ×R  

w→ R  according to the formula 

1 1 2 1( , ( ), ( )) ( , ( ; , ( ), ( ))).x u W x x t x uμ μΦ ⋅ ⋅ = ⋅ ⋅  

Here 1 1 2( ; , ( ), ( )), [ , ]x t x u t t tμ⋅ ⋅ ∈  is a solution of the Cauchy problem (7). 
To interpret the concepts of 2-regularity and 2-normality for the system (1)-(3), 

it is necessary to derive formulas for calculation of derivatives of the mapping Φ  with 
respect to ( ( ), ( )).u μ⋅ ⋅  

For the given 1 2( ) [ , ],mL t t vξ ∞⋅ ∈ ∈K  let us denote by 1 ( )vxξδ ⋅  the solution of the 
system 

1 1ˆ ˆ ˆ ˆ( )( ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ) ( ) ( )v v
f fd x t x t u t t x t dt x t u t t t dt G t dv t
x uξ ξδ δ ξ∂ ∂= + +
∂ ∂

 (8) 

with the initial condition 

1 1( ) 0.vx tξδ =  (9) 

Lemma 1. The derivative operator *
1 1 2( , )

ˆ ˆ ˆ( , ( ), ( )) : [ , ]m w

u
x u L t t C

μ
μ ∞

∂Φ
∂

⋅ ⋅ × →R  satisfies the 

formula 

1 1 2 1 2
2

ˆ ˆ ˆ ˆ ˆ( , ( ), ( ))( , ) ( , ) ( ),
( , ) v

Wx u v x x x t
u x ξμ ξ δ
μ

∂Φ ∂⋅ ⋅ =
∂ ∂

 

where 1 ( )vxξδ ⋅  is the solution of(8)-(9), 1 2( ) [ , ], .mL t t vξ ∞⋅ ∈ ∈K  
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Proof: Using the theorem of continuous dependence of the solution on parameters in the 
space *

1 2[ , ]n mR L t t C∞× × , in certain neighborhood 1̂ ˆ ˆ( ) ( ) ( )U x V u O μ× ×  of the point 

1̂ ˆ ˆ( , , )x u μ  is an operator  

1 1 2ˆ ˆ ˆ: ( , , ) ( ) ( ) ( ) ( ) ,nF x u U x V u O x tμ μ∈ × × ∈R  

which is defined associates with the triple 1( , , )x u μ  the value of the corresponding 
solution ( )x t  of the equation (1) at point 2 2( ( ))t x t , and this operator is continuous at 
the point 1̂ ˆ ˆ( , , )x u μ  (this also implies, that it will be continuous at all points of the given 
neighborhood). 

Let ˆ ˆ( ), ( ),u V u Oμ μ∈ ∈  and let x  be a solution of the equation (1). Let 
ˆ ˆ ˆ, , ,u u v x x xξ μ μ= − = − = −  so that ˆ ˆ ˆ, , .u u v x x xξ μ μ= + = + = +  Then we have 

1 1

1 1

1
[ , ]

1
[ , ]

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ) ( ), ( ) ( ), ) ( ) ( )( ),

ˆ ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ) ( ) ( ).

t

t t t

t

t t t

x t x t x f x x u d G d v

x t x f x u d G d

τ τ τ ξ τ τ τ τ μ τ

τ τ τ τ τ μ τ

+ = + + + + +

= + +

∫ ∫

∫ ∫
 

Subtracting the second equation from the first one and factorizing f  up to linear terms, 
we get 

1

1[ , ]

ˆ ˆ ˆ ˆ( ) ( ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ) ( , ( ), ( )))

( ) ( ),

t

x u
t

t t

x t f x u x f x u x d

G dv

τ τ τ τ τ τ τ ξ τ χ τ τ ξ τ τ

τ τ

= + + +

+

∫

∫
 (10) 

where || || (|| || || || )C C Lo xχ ξ
∞

= +  when || || 0, || || 0.C Lx ξ
∞

→ →  

Let us consider the function 1 ( )vx tξδ , which is the solution of (8)-(9), that is  

1

1

1 1

[ , ]

ˆ ˆ ˆ ˆ( ) ( ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ))

( ) ( ).

t

v x v u
t

t t

x t f x u x f x u d

G dv

ξ ξδ τ τ τ δ τ τ τ τ ξ τ τ

τ τ

= + +

+

∫

∫
 (11) 

Let us estimate the difference 1( ) ( ) ( ).vr t x t x tξδ= −  From (10)-(11) we get 

1

ˆ ˆ( ) ( ( ( ), ( ), ) ( )) ( , ( ), ( )) .
t

x
t

r t f x u r x dτ τ τ τ χ τ τ ξ τ τ= +∫  

From Gronwall's inequality [4] it follows, that then 

1
|| || || ( , , ) || ,C Lr const t xχ ξ≤  
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and so 
|| || (|| || || || ).C C Lr o x ξ

∞
≤ +  

On the other hand 1 ,vx r xξδ= +  so that 1|| || (|| || ) (|| || || || ).C C v C Lr o r o xξδ ξ
∞

≤ + +  From 
(8)-(9) and again from Gronwall's inequality it follows, that 

2
1 11|| || (|| || [ ]),t

v C L tx const V vξδ ξ≤ +  so that || || (1 (1))Cr o− ≤  2
1

(|| || [ ]),t
L to V vξ
∞
+  and 

hence 2
1

|| || (|| || [ ]),t
C L tr o V vξ

∞
≤ +  which means, that 1 ( )vx tξδ  is the main linear part of 

quantity ( )x t  (that is increment of a phase variable x), generated by increment 

ˆ ˆXu u vξ μ μ= − = − . Thus 1̂ ˆ ˆ( , ( ), ( ))( , )
( , )

F x u v
u

μ ξ
μ

∂ ⋅ ⋅ =
∂

 1 2( ).vx tξδ=  This implies the 

statement of the lemma. 
For the given 1 2( ), ( ) [ , ], ,mL t t vξ η θ∞⋅ ⋅ ∈ ∈K  let us denote by 2 ( )vxξη θδ ⋅  the 

solution of the system of the equations in variations 

2

2

2 1 12

2 2

1 1

2

2

( )( )

ˆ ˆ ˆ ˆ( ( ), ( ), ) ( ) ( ( ), ( ), )[ ( ), ( )]

ˆ ˆ ˆ ˆ( ( ), ( ), )[ ( ), ( )] ( ( ), ( ), )[ ( ), ( )]

ˆ ˆ( ( ), ( ), )[ ( ), ( )]

v

v v

v

d x t

f fx t u t t x t dt x t u t t x t x t
x x

f fx t u t t x t t x t u t t x t t
x u x u

f x t u t t t t
u

ξη θ

ξη θ ξ ηθ

ξ ηθ

δ

δ δ δ

δ η δ ξ

ξ η

∂ ∂= +
∂ ∂
∂ ∂+ +
∂ ∂ ∂ ∂
∂+
∂

 (12) 

with the initial condition 

2 1( ) 0vx tξη θδ = . (13) 

Lemma 2. The operator 
2

2
* *

1 1 2 1 2( , )
ˆ ˆ ˆ( , ( ), ( )) : [ , ] [ , ]m m w

u
x u L t t C L t t C

μ
μ ∞ ∞

∂ Φ
∂

⋅ ⋅ × × × → R  

satisfies the formula 
2

12

2

1 2 1 2 1 2 1 2 2 22
22

ˆ ˆ( , ( ), ( ))[( , ), ( , )]
( , )

ˆ ˆ ˆ ˆ( , )[ ( ), ( )] ( , ) ( ),v v

x u v
u
W Wx x x t x t x x x t

xx ηθ ξ ξη θ

μ ξ η θ
μ

δ δ δ

∂ Φ ⋅ ⋅ =
∂
∂ ∂+

∂∂

 

where 2 ( )vxξη θδ ⋅  is the solution of (12)-(13), 1 2( ), ( ) [ , ], , .mL t t vξ η θ∞⋅ ⋅ ∈ ∈K  
 

Proof: Similarly as in the proof of Lemma 1, we shall consider the function 2 ( )vvx tξξδ , 
which is the solution of (12)-(13) at , .vη ξ θ= =  Then, factorizing ˆ ˆ( ( ) , ( ) , )f x t x u t tξ+ +  

ˆ ˆ( ( ), ( ), )f x t u t t−  up to the terms of the second order, we get 
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1

1[ , ]

ˆ ˆ ˆ ˆ( ) ( ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( )

1 ˆ ˆ ˆ ˆ( ( ), ( ), )[ ( ), ( )] ( ( ), ( ), )[ ( ), ( )]
2
1 ˆ ˆ( ( ), ( ), )[ ( ), ( )] ( , ( ), ( )))
2

( ) ( ),

t

x u
t

xx xu

uu

t t

x t f x u x f x u

f x u x x f x u x

f x u x d

G dv

τ τ τ τ τ τ τ ξ τ

τ τ τ τ τ τ τ τ τ ξ τ

τ τ τ ξ τ ξ τ ς τ τ ξ τ τ

τ τ

= + +

+ + +

+ + +

+

∫

∫

 (14) 

2|| || ((|| || || || ) )C C Lo xς ξ
∞

= +  when || || 0, || || 0.C Lx ξ
∞

→ →  

Let us estimate the difference 1
1 22( ) ( ) ( ) ( ),v vvR t x t x t x tξ ξξδ δ= − −  where 

2 ( )vvx tξξδ  is the solution of (12)-(13) under , ,vη ξ θ= =  that is 

1

2 2 1 1

1

ˆ ˆ ˆ ˆ( ) ( ( ( ), ( ), ) ( ) ( ( ), ( ), )[ ( ), ( )]

ˆ ˆ ˆ ˆ2 ( ( ), ( ), )[ ( ), ( )] ( ( ), ( ), )[ ( ), ( )] .

t

vv x vv xx v v
t

xu v uu

x t f x u x f x u x x

f x u x f x u d

ξξ ξξ ξ ξ

ξ

δ τ τ τ δ τ τ τ τ δ τ δ τ

τ τ τ δ τ ξ τ τ τ τ ξ τ ξ τ τ

= + +

+ +

∫ (15) 

From (11), (14) and (15) we have 

1

1 1

1

1ˆ ˆ ˆ ˆ( ) ( ( ( ), ( ), ) ( ) ( ( ), ( ), )[ ( ), ( )]
2

1 ˆ ˆ( ( ), ( ), )[ ( ), ( )]
2

ˆ ˆ( ( ), ( ), )[ ( ) ( ), ( )]

( , ( ), ( ))) .

t

x xx
t

xx v v

xu v

R t f x u R f x u x x

f x u x x

f x u x x

x d

ξ ξ

ξ

τ τ τ τ τ τ τ τ τ

τ τ τ δ τ δ τ

τ τ τ τ δ τ ξ τ
ς τ τ ξ τ τ

= + −

− +

+ − +

+

∫

 

From Gronwall's inequality it follows that then 

1

2
1 2 1 3 1|| || || ( , , ) || || || || || || || ,C L v C v C LR C t x C x x C x xξ ξς ξ δ δ ξ

∞
≤ + − + −  

where 1 2 3, ,C C C  are some constants. 

Using the inequality derived in the proof of Lemma 1 1|| || Cx xξδ− ≤  
2

1
(|| || [ ]),t

L to V vξ
∞

≤ +  we get 2
1

2 2|| || ((|| || || || ) ) ((|| || [ ]) ).t
C C L L tR o x o V vξ ξ

∞ ∞
≤ + + +  

But 1
1 22 ,v vvx R x xξ ξξδ δ= + +  so 

2
1

2
1 2|| || ((|| || || || || || || || [ ]) ).t

C C v C vv C L tR o R x x V vξ ξξδ δ ξ
∞

≤ + + + +  

From (11), (15) and from Gronwall's inequality it follows that 
2 2

2 4 1 5 1 6|| || || || || || || || || || ,vv C v C v C L Lx C x C x Cξξ ξ ξδ δ δ ξ ξ
∞ ∞

≤ + +  
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2
11 7|| || (|| || [ ]),t

v C L tx C V vξδ ξ
∞

≤ +  

where 4 5 6 7, , ,C C C C  are some constants. Then 

( )( )2 2
1 1

22|| || .|| || (|| || [ ]) || || [ ]t t
C C L Lt tR o R V v V vξ ξ

∞ ∞
≤ + + + +  

Hence 

( )2 2
1 1

2|| || (1 (| || ) (|| || [ ]) (|| || [ ]),t t
C C L Lt tR o R o V v o V vξ ξ

∞ ∞
− ≤ + + + +  

and it follows 

( )2
1

2|| || (|| || [ ]) .t
C L tR o V vξ

∞
≤ +  

Thus  
2

2 1 2 2( , )
ˆ ˆ ˆ( , ( ), ( ))[( , ), ( , )] ( ),v

F
u

x u v x tξη θμ
μ ξ η θ δ∂

∂
⋅ ⋅ =  where 2 ( )vxξη θδ ⋅  is a solution 

of the system of the equations in variations (12) with the initial condition (13). The 
statement of the lemma follows from here. 

2. 2-REGULARITY CONDITION 

Definition 4. Let 1 2[ , ], .mh L t t g∞∈ ∈K  For the problem (1)-(3) at the point 1̂ ˆ ˆ( , ( ), ( ))x u μ⋅ ⋅  
the 2-regularity condition in the direction ( , )h g  is satisfied if 

1 1 2 2 2 2

2 2

1 2 1 2 1 2
2

1 2 1 2 1 2 1 2 1 2 1 2 2 22
2 22

1 2 1 2
2

, [ , ], , :

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , )[ ( ), ( )] ( , ) ( ) ,

ˆ ˆ( , ) ( ) 0.

m

v hg v h gv

v

y L t t v v

W W Wx x x t x x x t x t x x x t y
x xx
W x x x t
x

ξ ξ ξ

ξ

ξ ξ

δ δ δ δ

δ

∞∀ ∈ ∃ ∈ ∈

∂ ∂ ∂+ + =
∂ ∂∂
∂ =
∂

R K

 

From Lemmas 1 and 2 it obviously follows that 2-regularity in terms of 
definition 4 means 2-regularity of the introduced mapping Φ  at point 1ˆ ˆ ˆ ˆ( , ( ), ( ))w x u μ= ⋅ ⋅  

in the direction ( , )h h g= . The following lemma gives the criterion for 2-regularity of 
the system (1)-(3). 

 
Lemma 3. For the problem (1)-(3) at the point 1̂ ˆ ˆ( , ( ), ( ))x u μ⋅ ⋅  2-regularity condition in 

the direction ( , )h g  holds true if and only if, there is no ,wr∈R  0, ,wr q≠ ∈R  such 
that for functions 1 2, ,ψ ψ  which are solutions of the Cauchy problem 

*

1 1ˆ ˆ( ( ), ( ), ) ,f x t u t t
x

ψ ψ∂= −
∂

 (16) 
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*
*

2 2 1 1ˆ ˆ( ( ), ( ), ) ( ) ,f x t u t t E t
x

ψ ψ ψ∂= − −
∂

 (17) 

*

1 2 1 2
2

ˆ ˆ( ) ( , ) ,Wt x x r
x

ψ ∂= −
∂

 (18) 

2 * *
*

2 1 2 1 2 1 22
22

ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ,hg
W Wx t x x r x x q

xx
ψ δ ∂ ∂= − −

∂∂
 (19) 

the following take a place: 
*

1ˆ ˆ( ( ), ( ), ) ( ) 0f x t u t t t
u

ψ∂ =
∂

  Lebesque-a.e., (20) 

*
*

2 2 1ˆ ˆ( ( ), ( ), ) ( ) ( ) ( ) 0f x t u t t t E t t
u

ψ ψ∂ + =
∂

  Lebesque-a.e., (21) 

1 1 2( ), ( ) 0 , [ , ],t G t K t t tψ υ υ≤ ∀ ∈ ∀ ∈  (22) 

2 1 2( ), ( ) 0 , [ , ],t G t K t t tψ υ υ≤ ∀ ∈ ∀ ∈  (23) 

1 ˆ ˆ( ), ( ) ( ) 0t G t tψ υ μ= – a.e. (24) 

2 ˆ ˆ( ), ( ) ( ) 0t G t tψ υ μ= – a.e. (25) 

where ˆ
ˆ| |

ˆ( ) ( )d
dt tμ
μυ =  is the Radon Nicodym derivative. 

Here 
2 2

1 12

2 2

2 1 2

ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ),

ˆ ˆ ˆ ˆ( ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ).

hg

hg

f fE t x t u t t x t x t u t t h t
x ux

f fE t x t u t t x t x t u t t h t
x u u

δ

δ

∂ ∂= +
∂ ∂∂

∂ ∂= +
∂ ∂ ∂

 

Proof: By virtue of the theorem of separability for convex sets, the 2-regularuty 
condition is violated if and only if 

1 1

2 2 2 2

2 2

1 2 1 2
2

2

1 2 1 2 1 2 1 2 2 22
22

1 1 2 1 2 1 2 2 1 2 1 2
2

ˆ ˆ, 0 : ( , ) ( )

ˆ ˆ ˆ ˆ( , )[ ( ), ( )] ( , ) ( ), 0

ˆ ˆ[ , ], , ; [ , ], : ( , ) ( ) 0.

w
v

hg v h gv

m m
v

Wr r x x x t
x

W Wx x x t x t x x x t r
xx

WL t t v L t t v x x x t
x

ξ

ξ ξ

ξ

δ

δ δ δ

ξ ξ δ∞ ∞

∂∃ ∈ ≠ +
∂

∂ ∂+ + =
∂∂

∂∀ ∈ ∈ ∀ ∈ ∀ ∈ =
∂

R

K K�

(26) 

Let us interpret condition (26). For this purpose we shall consider the linear 
optimal control problem 
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1 1 2 2

2 2

2

1 2 1 2 1 2 1 2 1 22
2 2

1 2 2 2
2

ˆ ˆ ˆ ˆ( , ) ( ) ( , )[ ( ), ( )]

ˆ ˆ( , ) ( ), min,

v hg v

h gv

W Wx x x t x x x t x t
x x

W x x x t r
x

ξ ξ

ξ

δ δ δ

δ

∂ ∂+ +
∂ ∂

∂+ →
∂

 (27) 

1 1 1 11 1 1 1
ˆ ˆ ˆ ˆ( )( ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ) ( ) ( ),v v

f f
d x t x t u t t x t dt x t u t t t dt G t dv t

x uξ ξδ δ ξ
∂ ∂

= + +
∂ ∂

 (28) 

2 2 2 21 1 2 2
ˆ ˆ ˆ ˆ( )( ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ) ( ) ( ),v v

f f

x u
d x t x t u t t x t dt x t u t t t dt G t dv tξ ξδ δ ξ

∂ ∂

∂ ∂
= + +  (29) 

2 2 2 2 2 22 2 1 1 2 2
ˆ ˆ( )( ) ( ( ), ( ), ) ( ) ( ) ( ) ( ) ( ),h gv h gv v

f
d x t x t u t t x t dt E t x t dt E t t

xξ ξ ξδ δ δ ξ
∂

= + +
∂

 (30) 

1 11 1( ) 0,vx tξδ =  (31) 

2 21 1( ) 0,vx tξδ =  (32) 

2 21 2 1 2
2

ˆ ˆ( , ) ( ) 0,v
W x x x t
x ξδ∂ =
∂

 (33) 

2 22 1( ) 0.h gvx tξδ =  (34) 

In this problem control variables are 1 1 2 2( ( ), ( ), ( ), ( ))v vξ ξ⋅ ⋅ ⋅ ⋅ , while phase variables - are 

1 1 2 2 2 21 1 2( ( ), ( ), ( )).v v h gvx x xξ ξ ξδ δ δ⋅ ⋅ ⋅  

Pontryagin's function (Hamiltonian) H  and the minor Lagrangian l  of the 
problem (27)-(34) are given by 

1 1

2 2

2 2 2 2

1 2 1 2 1 2 3

1 1 1 1

1 2 2

2 1 1 2 2 3

( , , , , , , , , )

ˆ ˆ ˆ ˆ( , , ) ( , , ) ,

ˆ ˆ ˆ ˆ( , , ) ( , , ) ,

ˆ ˆ( , , ) ( ) ( ) , ,

v

v

h gv v

H x v v t
f fx u t x x u t
x u
f fx u t x x u t
x u
f x u t x E t x E t
x

ξ

ξ

ξ ξ

ξ ξ ψ ψ ψ

δ ψ ξ ψ

δ ξ ψ

δ δ ξ ψ

=
∂ ∂= + +
∂ ∂
∂ ∂+ + +
∂ ∂
∂+ + +
∂

 

1 1 2 2 2 2 1 1

2 2 2 2

2 2

1 2 1 2 2 2 1 2 1 2
2

2

1 2 1 2 1 2 1 2 2 22
22

1 2 1 2
2

ˆ ˆ( ( ), ( ), ( ), ) ( , ) ( )

ˆ ˆ ˆ ˆ( , )[ ( ), ( )] ( , ) ( ),

ˆ ˆ( , ) ( ), .

v v h gv v

hg v h gv

v

Wl x t x t x t q x x x t
x

W Wx x x t x t x x x t r
xx

W x x x t q
x

ξ ξ ξ ξ

ξ ξ

ξ

δ δ δ δ

δ δ δ

δ

∂= +
∂

∂ ∂+ + +
∂∂

∂+
∂
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Here ,wq∈R  and 1 2 3, ,ψ ψ ψ  are n-dimensional column vectors. 
According to the Pontryagin's maximum principle there exist a vector q  and 

solutions 1 2 3, ,ψ ψ ψ  of the Cauchy problem 

*

1 1ˆ ˆ( ( ), ( ), ) ,f x t u t t
x

ψ ψ∂= −
∂

 

*
*

2 2 1 1ˆ ˆ( ( ), ( ), ) ( ) ,f x t u t t E t
x

ψ ψ ψ∂= − −
∂

 

*

3 3ˆ ˆ( ( ), ( ), ) ,f x t u t t
x

ψ ψ∂= −
∂

 

*

1 2 2
2

ˆ ˆ( ) ( , ) ,Wt x r
x

ψ σ∂= −
∂

 

2 * *
*

2 1 2 2 22
22

ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ,hg
W Wx t x r x q

xx
ψ δ σ σ∂ ∂= − −

∂∂
 

*

3 2 2
2

ˆ ˆ( ) ( , ) ,Wt x r
x

ψ σ∂= −
∂

 

Such that 
*

1ˆ ˆ( ( ), ( ), ) ( ) 0f x t u t t t
u

ψ∂ =
∂

  Lebesque-a.e., 

*
*

2 2 3ˆ ˆ( ( ), ( ), ) ( ) ( ) ( ) 0f x t u t t t E t t
u

ψ ψ∂ + =
∂

  Lebesque-a.e., 

1 1 2( ), ( ) 0 , [ , ],t G t K t t tψ υ υ≤ ∀ ∈ ∀ ∈  

2 1 2( ), ( ) 0 , [ , ],t G t K t t tψ υ υ≤ ∀ ∈ ∀ ∈  

1 ˆ ˆ( ), ( ) ( ) 0t G t tψ υ μ= – a.e. 

2 ˆ ˆ( ), ( ) ( ) 0t G t tψ υ μ= – a.e. 

where ˆ
ˆ| |

ˆ( ) ( )d
dt tμ
μυ =  is the Radon Nicodym derivative. 

The lemma's statement immediately follows from the last relations. 
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3. 2-NORMALITY CONDITION 

Let us define on sets n m l n× × ×R R R R  and 2n k×R R  the Hamiltonian function 
H  and the Lagrangian l  by: 

1 2 1 2

( , , , ) , ( , , ) ,

( , , ) , ( , ) .

H x u t f x u t

l x x W x x

ψ ψ
λ λ

=

=
 

Here ,wλ ∈R  and ψ  is the n-dimenzional vector-column. Let ˆ ˆ ˆ( , , )x u μ  be the given 
admissible process. 

 

Definition 5. The process ˆ ˆ ˆ( , , )x u μ  satisfies Eiler-Lagrange equation, if the vector 0λ ≠  
exists such that for a vector-function ,ψ  which is the solution of the Cauchy problem 

1 1 2ˆ ˆ ˆ ˆ( ( ), ( ), , ( )) / , ( ) ( , , ) / ,H x t u t t t x t l x xψ ψ ψ λ σ= −∂ ∂ = ∂ ∂  (35) 

the following holds: 

2 1 2 2ˆ ˆ ˆ ˆ( ) ( , , ) / , ( ( ), ( ), , ( )) / 0t l x x x H x t u t t t uψ λ ψ= −∂ ∂ ∂ ∂ =   Lebesque-a.e., 

1 2( ), ( ) 0 , [ , ],t G t K t t tψ υ υ≤ ∀ ∈ ∀ ∈  

ˆ ˆ( ), ( ) ( ) 0t G t tψ υ μ=  – a.e. 

Here ˆ
ˆ| |

ˆ( ) ( )d
dt tμ
μυ =  is the Radon Nicodym derivative, 1 1 2 2ˆ ˆ ˆ ˆ( ), ( ).x x t x x t= =  

Let us denote by ˆ ˆ ˆ( , , )x u μΛ  the set of vectors λ  which correspond to the given 
extremal ˆ ˆ ˆ( , , )x u μ  by virtue of Eiler-Lagrange equations. 

For the formulation of the second order conditions for the process ˆ ˆ ˆ( , , )x u μ  we 
shall consider the following system of the equations 

ˆ ˆ ˆ ˆ( )( ) ( ( ), ( ), ) ( ) ( ( ), ( ), ) ( ) ( ) ( )( ).f fd x t x t u t t x t dt x t u t t u t dt G t d t
x u

δ δ δ δμ∂ ∂= + +
∂ ∂

 (36) 

Here 1 2 ˆ[ , ], ( ),mu L t tδ δμ μ∞∈ ∈ KT  and the solution of the equation in variations should 
satisfy the conditions: 

1 2 1 1 2 2
1 2

ˆ ˆ ˆ ˆ( , ) ( ) 0, ( , ) ( ) 0.W Wx x x t x x x t
x x

δ δ∂ ∂= =
∂ ∂

 (37) 

Let ˆ ˆ( , ).x uλ ∈Λ  On the space *
1 2[ , ]n mX R L t t C∞= × ×  of points ( , , )uς δ δμ  we 

shall define the quadratic form λΩ  by the formula 

2

1

2

1 2 1 2 1 22
1 2

2

2

ˆ ˆ( , , ) ( , , )[( ( ), ( )), ( ( ), ( ))]
( , )

ˆ ˆ( , , , )[( ( ), ( )), ( ( ), ( ))] .
( , )

t

t

lu x x x t x t x t x t
x x

H x u t x t u t x t u t dt
x u

λ ς δ δμ λ δ δ δ δ

ψ δ δ δ δ

∂Ω = −
∂

∂−
∂∫
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Hereinafter xδ  is the solution of the system of the equations in variations (36) with the 
initial condition 1( )x tδ ς=  corresponding to ( , )uδ δμ . 

Let χ  denote the linear subspace of X , which consists of those ( , , ),uς δ δμ  
such that xς δ= . 

Let r  be a natural number and let ˆ ˆ ˆ( , , )r r x u μΛ = Λ  denote the set of those 
ˆ ˆ ˆ( , , ),x uλ μ∈Λ  for which the index of narrowing the form λΩ  on the subspace χ  does 

not exceed .r  
 

Definition 6. Admissible process ˆ ˆ ˆ( , , )x u μ  is called 2-normal if the cone ˆ ˆ ˆ( , , )kconv x u μΛ  
is pointed. 
 

From Legandre's condition [4] it follows 
 

Lemma 4. For some r let the cone ˆ ˆ ˆ( , , )r x u μΛ  be non empty. Then there exists 
ˆ ˆ ˆ( , , ),r x uλ μ∈Λ  such that 

2

2
ˆ ˆ( ( ), ( ), , ( )) 0H x t u t t t

u
ψ∂ ≤

∂
  Lebesque-a.e. 

Let us apply 2-normality concept to linear controllable systems. 
Assume that 0 1

( , , ) ( , ) ( , ),m
i ii

f x u t a x t u a x t
=

= +∑  where 0 , ia a  are given 
piecewise smooth vector functions. Then 

0
1

( ) ( , ) ( , ) ( ) ( ),
m

i i
i

dx t a x t dt u a x t dt G t d tμ
=

= + +∑  (38) 

1 1 2 2( ) , ( ) ,x t x x t x= =  (39) 

1 2( , ) 0.W x x =  (40) 

0
1

( , , , ) , ( , ) , ( , ) .
m

i i
i

H x u t a x t u a x tψ ψ ψ
=

= +∑  (41) 

Consider the process 1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ( ) , ( ) ).x u x t x x t x= =  Without loss of generality 
we shall assume that ˆ( ) 0.u t ≡  The corresponding system of the equations in variations is 
the following: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ),d x t A t x t dt B t u t dt G t d tδ δ δ δμ= + +  

1 2 1 1 2 2
1 2

ˆ ˆ ˆ ˆ( , ) ( ) 0, ( , ) ( ) 0.W Wx x x t x x x t
x x

δ δ∂ ∂= =
∂ ∂

 (42) 

where 1 2 ˆ[ , ], ( ),mu L t tδ δμ μ∞∈ ∈ KT  A  and B  are defined by formulas: 

10 ˆ( ( ), ) ˆ( ) , ( ) ( ( ),..., ( )), ( ( ), ).m i
i

a x t t
A t B t b t b t b a x t t

x
∂

= = =
∂

 



N. Pavlova / 2-Regularity and 2-Normality Conditions 162

For any ˆ ˆ( , )r x uλ ∈Λ  let 
2

( )
2

2
( )

ˆ ˆ( ( ), ( ), , )
( ) ,

ˆ ˆ( ( ), ( ), , )
( ) .

t

t

H x t u t t
D t

x
H x t u t t

C t
x u

λ
λ

λ
λ

ψ

ψ

∂
= −

∂
∂

= −
∂ ∂

 

Then 

( )
2

1

2

1 2 1 2 1 22
1 2

*

ˆ ˆ( , ) ( , , )( ( ), ( )), ( ( ), ( ))
( , )

, 2 , ,
t

t

lu x x x t x t x t x t
x x

D x x C x u dt

λ

λ λ

ς δ λ δ δ δ δ

δ δ δ δ

∂Ω = +
∂

+ +∫
 

where xδ  is the solution of the system of the equations in variations (42) with the initial 
condition 1( )x tδ ς= . 

Assume that matrixes ( ), ( ), ( ), ( )A t B t C t D t  and all their derivatives can have on 

1 2[ , ]t t  jumps only in finite number p  of points 1,..., .pτ τ  
 

Lemma 5. Suppose that for the some r the cone ˆ ˆ ˆ( , , )r x u μΛ  is not empty. Then 
ˆ ˆ ˆ( , , ),r x uλ μ∈Λ  such exists, that conditions are satisfied 

1) for the solution ψ  of adjoint equation (35), corresponding to the vector λ , the 
following leads 

2

12
ˆ ˆ( ( ), ( ), , ( )) 0 { ,..., },p

H x t u t t t t
u

ψ τ τ∂ = ∀ ∈/
∂

 (43) 

1ˆ ˆ( ( ), ( ), , ( )) 0 { ,..., },p
H x t u t t t t

u t u
ψ τ τ∂ ∂ ∂ = ∀ ∈/

∂ ∂ ∂
 (44) 

2

12
ˆ ˆ( ( ), ( ), , ( )) 0 { ,..., },p

H x t u t t t t
u ut

ψ τ τ∂ ∂ ∂ ≥ ∀ ∈/
∂ ∂∂

 (45) 

2)  
ind ( , , )w u rς δ υ ≤  

3)  
* *

2 2
1

ind ( ) ind ( ) ( ) .
i

q

i
C B C t B t rλ τ λ

=
Δ + ≤∑  (46) 

Here 

( )
2

1

2

1 2 1 2 1 22
1 2

ˆ ˆ( , , ) ( , , )( ( ), ( )), ( ( ), ( ))
( , )

, 2 , , ,
t

t

lw u x x x t x t x t x t
x x

D P Q dtλ

ς δ υ λ δ δ δ δ

ξ ξ ξ υ υ υ

∂= +
∂

+ + +∫
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* * * * * * * *, ( ) (1/ 2) ,P B D C C A Q B D B C AB B AC C B C Bλ λ λ λ λ λ λ λ= − − = − + + −  
( 0) ( 0)M M Mτ τ τΔ = + − −  is the jump of the matrix M  at point τ , and indΨ  denotes 

the index of the quadratic form of certain symmetric matrix Ψ .  Let us note that, as can 
be seen from the proof given below, all matrices in (46) are symmetric. 

 

Proof: Under the hypothesis of the theorem there exists such ˆ ˆ( , ),r x uλ ∈Λ  that 
ind | rλ χΩ ≤ . 

Let us convert the form λΩ  according to Hooch by virtue of system (42). For 
convenience, in the sequel we shall omit the subscript λ  is matrix functions , ,C D  and 

quadratic form Ω . 
Let us introduce new variables 1( ) 0, ., t x Bu υ ξ υυ δ = = −=  Functions andξ υ  

belong to spaces ,1
nW∞  and mW∞  respectively and satisfy correlations 

1 2 1 1 2 2 2 2
1 2

( ) ( ) ,

ˆ ˆ ˆ ˆ( , ) ( ) 0, ( , )( ( ) ( ) ( )) 0.

A t AB B
W Wx x t x x t B t t
x x

ξ ξ υ

ξ ξ υ

= + −
∂ ∂= + =
∂ ∂

 

Here ,1
nW∞  is the space of n-dimensional functions, which have piecewise-Lipschitzian 

first-order derivative, and mW∞  is the space of m-dimensional piecewise- Lipschitzian 
functions. 

Then 
*

1

*
2 2 2 2 2 2 2

1

( , , ) ( , , ) ( , , ) ( ) ( ), ( )

2 ( ), ( ) 2 ( ), ( ) ( ) ( ) ( ) ( ), ( ) .

i

i

q

i i
i

q

i i
i

u u w u C B

C t C t t C t B t t t

τ

τ

ς δ δμ ς δ υ ς δ υ υ τ υ τ

ξ τ υ τ ξ υ υ υ

=

=

Ω = Ω = + Δ +

+ Δ + Δ +

∑

∑
 

Here 

( )
2

1

2

1 2 1 2 1 22
1 2

ˆ ˆ( , , ) ( , , )( ( ), ( )), ( ( ), ( ))
( , )

, 2 , , , ,
t

t

lw u x x x t x t x t x t
x x

D P Q V u dt

ς δ υ λ δ δ δ δ

ξ ξ ξ υ υ υ υ δ

∂= +
∂

+ + + +∫
 (47) 

* * * * *

* * * * *

, ,

( ) (1/ 2) .

P B D C C A V C B B C

Q B DB C AB B AC C B C B

= − − = −

= − + + −
 

Let us note, that Hooch's conversion does not change the index of the quadratic 
form. 

By the virtue of necessary conditions of finiteness of index of the form w on χ   
the following holds 

*( ) 0 ; ( ) ( ) , ( ) 0 .V t t Q t Q t Q t t= ∀ = ≥ ∀  (48) 
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The first of these conditions is called Hooch's condition, and the second one is a 
generalization of Legendre's conditions. 

From conditions (48) follows, that all the matrices entering (46) are symmetric. 
In [3] the following inequality is proved: 

2 2
1

ind ind ( , , ) ind ( * ) ind *( ) ( ).
i

q

i
w u C B C t B tτς δ υ

=
Ω ≥ + Δ +∑  

Since ind ,rΩ ≤  last inequality implies 2 21
ind ( * ) ind *( ) ( )

i

q

i
C B C t B t rτ=

Δ + ≤∑ . 
Direct differentiation of (41) yields the formulas: 

2

2 .

ˆ ˆ( ) ( ( ), ( ), , ( )),

ˆ ˆ( ) ( ( ), ( ), , ( ))

d HV t x t u t t t
u dt u

d HQ t x t u t t t
u udt

ψ

ψ

∂ ∂=
∂ ∂
∂ ∂=
∂ ∂

 

By the virtue of (47), last two relations imply (44)-(45). 
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