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Abstract: Single price discount in unit cost for bulk purchasing is quite common in 
reality as well as in inventory literature. However, in today's high-tech industries such as 
personal computers and mobile industries, continuous decrease in unit cost is a regular 
phenomenon. In the present paper, an attempt has been made to investigate the effects of 
continuous price decrease and time-value of money on optimal decisions for inventoried 
goods having time-dependent demand and production rates. The proposed models are 
developed over a finite time horizon considering both shortages and without shortages in 
inventory. Numerical examples are taken to illustrate the developed models and to 
examine the sensitivity of model parameters. 
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1. INTRODUCTION 

Most of the traditional inventory models in inventory management literature do 
not take into account the factors like time-value of money, continuous price decrease etc. 
In reality, these factors do have significant effects on the EOQ (economic order quantity) 
of any inventory system. Since the resource of an industry is highly correlated to the 
return of investment and it depends very much on the time of use, therefore, taking 
account of the time value of money is very critical in managerial decisions. Buzacott [2] 
was the first who introduced the concept of inflation in inventory modelling. Misra [10] 
considered internal as well as external inflation rates in his model and analyzed the 
influence of interest on replenishment strategies. Chandra and Bahner [3], and Sarker and 
Pan [13] developed infinite/finite replenishment models with shortages, considering 
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inflation and time value of money. Following the approach of Misra [9, 10], Dutta and 
Pal  [4] investigated a finite time horizon inventory model with time-dependent demand 
rate, shortages, inflation and time value of money. Bose et al. [1] developed an economic 
order quantity model for deteriorating items with linear time dependent demand and 
shortages, incorporating the effects of inflation and time value of money.  

A great deal of researches have so far been undertaken to relax some of the 
original assumptions used in the EOQ model of Harris [6]. Among them, one of the key 
assumptions is that all costs in the model do not change during the foreseeable horizon. 
But in the cases where the inflation rate is high or the price increase or decrease is highly 
expected, this assumption does not hold good. For this reason, several extensions have 
already been made in the literature where ordering cost, unit purchase cost, holding cost 
etc. are assumed to be not fixed. In today's high-tech industries, in particular, personel 
computers and mobile industries, we observe that the component cost is decreasing at a 
sustained and significant rate.  

Existing EOQ models that allow price change can be summarized based on two 
criteria: (i) finite horizon vs. infinite horizon and (ii) continuous price change vs. single 
announced price change. Naddor [11] was the first who developed an EOQ model with a 
single price change over an infinite planning horizon. Later, Peterson and Silver [12] 
studied this model by assuming that the price change occurs at the end of an EOQ cycle.  
Later, Taylor and Bradly [14] revised Peterson and Silver's [12] model by considering a 
situation where the price increase does not coincide with the end of EOQ cycle. Although 
many EOQ extensions have been made in the literature by considering price change, only 
a few of them considered the possibility of price decrease and most of them, namely 
Goyal et al. [5], Lev and Weiss [8], were limited to the single price change case. 
Recently, Khouja and Park [7] have made an attempt to study the effect of continuous 
price decrease in the optimal replenishment policy.  

The purpose of this paper is to develop EOQ models for products whose price 
decreases continuously with time, taking into account the time value of money. We focus 
our study on a production inventory system prescribed over a finite planning horizon. 
The paper is organized as follows: The assumptions and notations used throughout this 
paper are given in the next section. The model without shortage is developed in Section 
3. Section 4 treats the proposed model with shortages. In Section 5, the models are 
illustrated with numerical examples. Finally, the paper is concluded in Section 6. 

 

2. ASSUMPTIONS AND NOTATIONS 

2.1. Assumptions 

The following basic assumptions are made for the proposed models: 
1. The production-inventory system consists of only one product and it 

operates for a prescribed planning horizon.  
2. The demand and production rates are deterministic and are known functions 

of time. 
3. The unit price of the product decreases continuously with time. 
4. The discount rate regarding the time value of money is known. 



 S. Mandal, B.C. Giri, K.S. Chaudhuri / Optimal Batch Production Strategies  167 

2.2. Notations 

The following notations are used throughout the paper: 

 D(t) = demand rate  = 0,0, 11
1

1 ≥> bAtbeA   

        P(t) = production rate = 11
2

2 22 ,, bbAAtbeA ≥>  

        )(tjI = inventory level at any time t,  j = 1, 2 
        H = length of a finite time horizon 
       1r = inventory holding cost per unit per unit time 

       sc  = set up cost per set up 

      0c  = price per unit of the product at time t = 0 
        u = percent decrease in unit price per unit time 

                      )(tc = price per unit of the product at time t 
                      δ = discount rate 

        n = number of production-inventory cycles completed during the planning   
horizon H 

 
 

3. THE MODEL WITHOUT SHORTAGE: MODEL 1 

We suppose that n production-inventory cycles are completed during the 
planning horizon H. For modeling simplicity, we divide the planning horizon H into n 
equal parts so that the length of each cycle is H/n. Consider the i-th cycle [Ti-1, Ti], i = 
1,2, ...,n, where Ti = iH/n. The production starts at time Ti-1 and stops at time ti1 (Ti-1 <. ti1 
< Ti). As time passes, the inventory level increases with a rate P(t)-D(t) in the interval  
[Ti-1, ti1] and attains the maximum level at time ti1. During the time period [ti1, Ti], the 
inventory level decreases in order to meet up demand and ultimately reaches to zero level 
at time Ti, i =1,2,...,n. A schematic diagram of the production-inventory process is shown 
in Figure 1. 

 
Figure 1: Schemetic diagram of the model without shortage 
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The instantaneous states of the inventory level at any time t (Ti-1 ≤ t ≤ Ti), i = 1,2, 
...,n can be represented by the following differential equations: 

        
dt

tdI )(1  ),()( tDtP −=  Ti-1 ≤ t ≤ ti1                                        (1) 

                       with  I1(Ti-1) = 0; 

and                    
dt

tdI )(2  ),(tD−=  ti1 ≤ t ≤ Ti                                        (2) 

                       with  I2(Ti) = 0. 
 

The solutions of the differential equations (1) and (2) are given by 

                          I1(t) = ( ) ( )111122

1

1

2

2 −− −−− ii TbtbTbtb eeee
b

A

b

A
,  Ti-1 ≤ t ≤ ti1                           (3) 

and 

I2(t) = ( )tbTb ee i

b

A
11

1

1 − ,   ti1 ≤ t ≤ Ti,                                                                                      (4)  

respectively. Since the total quantity produced during the time period [Ti-1, ti1] satisfies 
the total demand during the period [Ti-1, Ti], therefore, we have 

          .)()(
1

1

1

dttDdttP
i

i

i

i

T

T

t

T ∫∫
−−

=  

After integrating and simplifying, we get 

                        ti1 = { } ][ /)1(/)1(/

12

21

2

211log1 nHbinHbinHib eee
bA
bA

b
−− +−                               (5) 

The total cost in this model includes the set up cost, inventory holding cost and 
production cost. Since the set up cost is needed at the beginning of each cycle, therefore, 
the present value of the set up costs for n setups during the planning horizon H is given 
by 

                        (OC)PV = .
1
1

/

1

0 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−= −
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i
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δ

δ
δ                                                     (6) 

The present value of the holding costs for n cycles is 

       (HC)PV = ⎥⎦
⎤

⎢⎣
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=
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where mj = bj - δ  for j = 1,2.  
Let us suppose that c(t) = c0e-ct, where c = -log(1-u/100). In the i-th cycle 

[Ti-1, Ti], i = 1,2, ...,n, the production starts at time t = Ti-1 and stops at t = ti1, therefore, 
the present value of the production costs for n cycles is given by 

=PVPC)( ∑∫
=

−

−

n

i

tt

T
dtetPtc

i
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1
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20 212               (8) 

Hence from equations (6), (7) and (8) the present worth of the total cost over the finite 
time horizon H is given by 

TC1(n) = 
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 Our objective is to find the optimal value of n which minimizes TC1(n). Since n is a 
discrete variable, the minimum value of TC1(n) can be obtained by satisfying the 
condition  Δ TC1(n-1) < 0 < Δ TC1(n)  where Δ TC1(n) = TC1(n+1) - TC1(n). 

 
 

4. THE MODEL WITH SHORTAGE: MODEL 2 

We now extend the model developed in the previous section by allowing 
shortages to occur in inventory. The following additional assumption and notation are 
adopted to develop the model: 

(i) Unsatisfied demands are not backordered and are assumed to be lost 
completely. 

(ii) r2 is the cost of running out one unit of the product for a unit time 
(iii) I3(t) is the inventory level at any time t. 
 
Let us consider the i-th production-inventory cycle [Ti-1, Ti], i = 1,2, ...,n,  where 

the production starts at time Ti-1 stops at time ti1 (Ti-1 <. ti1 < Ti). The inventory level 
decreases from the maximum level at time ti1 to the zero level at time ti2 (Ti-1 <. ti1 < ti2 < 
Ti). The inventory remains in the negative level during the time period [ti2, Ti], i = 1,2, 
...,n because of continuous demand for the product. The maximum shortage level occurs 
at time Ti, where the production again starts for the next cycle. The graphical 
representation of the inventory system is shown in Figure 2.   

Let k (0 < k <1) represent the fraction of each length during which inventory is 
carried for each cycle. Then we have,  

      ti1 = (k + i -1)H/n,   i =1,2, ...,n. 
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Figure 2: Schematic of diagram of the model with shortage  
 

 
The inventory level at any time t (Ti-1 ≤ t ≤ Ti) can be described by the following 

differential equations: 

        
dt

tdI )(1  ),()( tDtP −=  Ti-1 ≤ t ≤ ti1                                                          (10) 

            with  I1(Ti-1) = 0; 

                    
dt

tdI )(2  ),(tD−=  ti1 ≤ t ≤ ti2                                                         (11) 

             with  I2(ti2) = 0, 

                    
dt

tdI )(3  ),(tD−=  ti2 ≤ t ≤ Ti                                                        (12) 

            with  I3(ti2) = 0. 
The solutions of equations (10), (11) and (12) are respectively 

                         I1(t) = ( ) ( )111122

1

1

2

2 −− −−− ii TbtbTbtb eeee
b

A

b

A
,  Ti-1 ≤ t ≤ ti1                       (13) 

I2(t) = ( )tbtb ee
b
A

i 121
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1 − ,   ti1 ≤ t ≤ ti2,                                                                                 (14) 

I3(t) = ( )tbtb ee
b
A

i 121

1

1 − ,   ti2 ≤ t ≤ Ti.                                                                                  (15) 

Since I1(ti1) = I2(ti1), therefore, we have from equations (13) and (14) 
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where m3 = k + i -1,  i = 1,2, ...,n. 
The present value of the holding costs for n cycles is given by 
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where mj = bj - δ  for j = 1,2. 
 

Similarly, the present value of the shortage costs for n cycles is  

(SC)PV =∑∫
=

−−
n

i

tT

t
dtetIr

i

i1
33

2

)( δ  

= { } { }].[
1

/

1

/

1

21 2112121
11∑

=

− −+−
n

i

tmnHimtmnHitb iii ee
m

ee
b
Ar δ

δ
                    (18) 

Hence, the present value of the total cost over the entire time horizon H is 
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Since the above cost function is a function of a continuous variable k and a discrete 
variable n, it is very difficult to find the optimal values of k and n simultaneously. So, for 
any given n, necessary condition for optimal TC2(n, k) is 

                 .0),(2 =
dk

kndTC                                                                                             (20) 

A solution k* of equation (20) would be a minimizer of  TC2(n, k) provided that 
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Applying the line search technique on n one can find n*, the optimal value of n and the 
corresponding k* which jointly determine the minimum total discounted cost TC2(n*, k* ). 
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5. NUMERICAL EXAMPLES 

5.1. Example 1 

Let us consider the parameter values of Model 1 as given in the following: A1 = 
20, A2 = 30, b1 = 0.01, b2 = 0.02, r1 = 20, cs = 400, u = 40, c0 = 200, δ = 0.03, H = 14 in 
appropriate units. 

We apply the line search technique on n. Table 1 shows that TC1(n) is convex in 
n and the minimum value 12944.6 is obtained for n = 8. As n increases, the present value 
of set up cost increases whereas the present values of holding cost and production cost 
decrease. Table 2 shows the optimal results of Model 1 for different lengths of the time 
horizon H. The number of production-inventory cycles as well as the total discounted 
cost increase with H, as expected. 
 

Table 1: Optimal results in Model 1 
n (OC)PV (HC)PV (PC)PV TC1(n) 
1 400.000 11725.00 11421.13 23546.0 
2 724.234  6138.62 10747.40 17610.2 
3 1050.060 4155.46 10077.30 15282.8 
4 1376.280 3140.44   9596.89 14113.6 
5 1702.660 2523.85  9256.89 13483.4 
6 2029.120 2109.62  9008.51 13147.2 
7 2355.630 1812.17  8820.67 12988.5 
8* 2682.170 1588.23  8674.24 12944.6* 
9 3008.720 1413.55  8557.16 12979.4 

10 3335.290 1273.48  8461.54 13070.3 
 

 
Table 2: Optimal results in Model 1 for different values of H 

H n* TC1(n* ) 
10 6 11800.4 
12 7 12394.4 
14 8 12944.6 
16 9 13465.9 
18 10 13964.1 
20 11 1442.2 

 

5.2. Example 2 

We consider the following data for Model 2: A1 = 20, A2 = 30, b1 = 0.01, b2 = 
0.02, r1 = 20, r2 = 80, cs = 400, u = 40, c0 = 100, δ = 0.03, H = 14 in appropriate units. 

Table 3 shows that the minimum value of TC2(n,k ) is 11120.1 and it is obtained 
for n = 10 and k = 0.412773. Comparing the results in Table 1 and 3 we find that Model 2 
provides lower cost than Model 1. Like Model 1, both the number of production- 



 S. Mandal, B.C. Giri, K.S. Chaudhuri / Optimal Batch Production Strategies  173 

inventory cycles and the total discounted cost increase as the length of the time horizon 
increases, see Table 4. 
 
Table 3: Optimal results in Model 2 

n k TC2(n,k ) 
1 0.595319 22400.1 
2 0.567733 16671.1 
3 0.544458 14190.8 
4 0.523368 12867.1 
5 0.503609 12099.5 
6 0.484671 11638.5 
7 0.466261 11363.0 
8 0.448205 11207.7 
9 0.430399 11134.6 

10* 0.412773* 11120.1* 

11 0.395281 11148.7 
12 0.377893 11210.0 

 
 
Table 4 Optimal results in Model 2 for different values of H 

H n* k* TC2(n*,k*) 
10 10 0.250377 9611.42 
12 10 0.354908 10474.10 
14 10 0.412773 11120.10 
16 11 0.433619 11681.40 
18 11 0.457352 12179.70 
20 12 0.463805 12640.80 

 
 

Table 5 Influence of δ on the total discounted cost in Model 2 
δ n* k* TC2(n*,k*) % change in TC2(n*,k*) 

0.00 9 0.452558 12643.70 0.00000 
0.01 9  0.445580 12102.70 -4.27881 
0.02 9 0.438198 11601.00 -8.24679 
0.03 10 0.412773   11120.10 -12.05030 
0.04 10 0.403499  10670.40 -15.60700 
0.05 11 0.374118  10246.10 -18.96280 
0.06 11 0.362713   9837.64 -22.19330 
0.07 12 0.328932   9448.79 -25.26880 
0.08 12 0.315146   9073.31 -28.23850 
0.09 13 0.276512  8705.95 -31.14400 
0.10 14 0.234664   8346.13 -33.98980 
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Table 6 Sensitivity analysis with respect to u in Model 2 
u n* k* TC2(n*,k*) 

30 13 0.267852 12781.80 
32 12 0.312935 12444.70 
34 11 0.352775 12099.50 
36 11 0.368346 11763.40 
38 10 0.401049 11432.30 
40 10 0.412773 11120.10 
42 10 0.423487 10827.10 
44 9 0.449015 10543.00 
46 9 0.457227 10274.40 
48 9 0.464824 10021.80 
50 9 0.471879   9783.66 

 
Table 5 shows the effects of time value of money on the total cost. When δ 

varies from 1% to 10%, the total cost varies from 4% to 34%. Table 6 shows the 
sensitivity analysis with respect to the model parameter u in Model 2. The total 
discounted cost decreases significantly with the increase in percentage increase in unit 
price. For a 25% decrease in the value of u (u = 40  to u = 30), TC2(n*,k*) increases 15% 
whereas for 25% increase in the value of u (u = 40  to u = 50), TC2(n*,k*) decreases 12%. 
 

 
6. CONCLUSIONS 

In this paper, we have developed inventory models for items whose demand and 
production rates are dependent on time and unit price decreases continuously with time. 
We have obtained optimal decisions by taking into account the time value of money over 
a finite planning horizon. Some realistic features that are highlighted in the developed 
models are likely to be associated with an inventory of electronic goods for which the 
assumption of continuous price decrease is quite appropriate. It is a well known fact  that 
the prices of electronic goods are becoming increasingly lower each year. So the idea of 
continuous price decrease for these products can not be ignored. Moreover, the 
assumption of time dependent production and demand rates is also realistic. In any 
industry, the production rate and demand rate can not remain constant for long time; it 
might vary with time. In that sense, the idea of time dependent production and demand 
rate is more appropriate than the idea of constant production and demand rates. 
Furthermore, the occurrence of shortages in inventory is a natural phenomenon in real 
situations. Finally, the effect of time value of money is taken into account as it may be 
observed that today's economy of many countries is in the grip of a large scale inflation 
and a consequent sharp decline in the purchasing power of money. 
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