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Abstract: This paper is concerned with the receding horizon control of the production 
rate of a deteriorating production system with a nonlinear inventory-level-dependent 
demand. Both continuous and periodic review policies are discussed and numerical 
illustrations are provided. 
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1. INTRODUCTION 

Receding Horizon Control (RHD) or Model Predictive Control (MPC), is by 
now a well established control method (see for instance [6, 7]). It is a scheme that, at 
each instant of time, implements the first component of an optimal control vector 
minimizing some performance criterion. It has emerged as a successful control strategy, 
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especially Linear Model Predictive Control (LMPC), i.e., predictive control for linear 
systems, which is widely used both in academic and industrial fields. 

Motivated by the success of LMPC, Nonlinear Model Predictive Control 
(NMPC) has gained significant interest over the past decade. Various NMPC strategies 
that lead to stability of the closed-loop have been developed in recent years and key 
questions such as the efficient solution of the occurring open-loop control problem have 
been extensively studied. 

Recently, Hedjar et al. [3] investigated the predictive control of a linear 
periodic-review production inventory system with deteriorating items. In this paper, we 
generalize their model to the case of a nonlinear system. We consider here not only the 
periodic-review but continuous-review policy as well. The nonlinearity of the system is 
obtained by assuming that the demand rate depends on the stock on hand. Researchers as 
Levin et al. [5] and Silver and Peterson [9] have observed that the presence of more 
quantities of the same product tends to attract more customers. In other words, the 
consumption rate may be influenced by the stock levels. This phenomenon is termed as a 
stock-dependent consumption rate. The optimization of production systems with stock-
dependent demand rate is widely available [2, 10], but literature on the optimal control of 
such systems is rather sparse [1]. 

The next section is concerned with the formulation of the models (continuous 
and periodic) and the derivation of the optimal solutions. For the continuous model we 
use an approximation approach to transform the given problem into an unconstrained 
quadratic minimization problem in terms of the control variable only. Similarly, the 
periodic model is also reformulated into an unconstrained nonlinear (not necessarily 
quadratic) minimization problem. Some illustrative numerical examples are presented in 
each case. The last section concludes the paper. 

2. MODELS FORMULATION AND ANALYSIS 

Given a planning horizon of length H > 0, we consider a manufacturing firm 
producing a single item at rate P. The inventory level is denoted by I and the demand 
rate, function of the stock on hand, is denoted by D(I). We assume that the stocked items 
deteriorate at rate µ > 0. 

 
2.1. Continuous-Review Model 

In the continuous-review model, the dynamics of the inventory level are 
governed by the following state equation 

( ) ( ) ( ( )) ( ), [0, ]d I t P t D I t I t t H
dt

θ= − − ∀ ∈ . (2.1) 

As in [8], we assume that the firm has set an inventory goal level Î  and a 
production goal rate P̂  and penalties are incurred for deviating from these goals. Given 
an instant of time t in [0;H] and given a prediction horizon of length T > 0 (T << H), 
then the objective is to determine the production rate that minimizes the performance 
index 
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2 2 21 1: ( , ) ( ) [ ( ) ( )]
2 2

t T

t
J J I P p I t T q I r P dτ τ τ

+
= = Δ + + Δ + Δ∫ , (2.2) 

subject to (2.1). Here p, q and r are positive costs and the shift operator ∆ is such that 

ˆ( ) ( )I t I t IΔ = −  and ˆ( ) ( ) , [0, ]P t P t P t TΔ = − ∀ ∈ . 

We adopt the widely used quadratic objective function of Holt, Modigliani, 
Muth, and Simon (HMMS) [4]. The interpretation of this objective function is that 
penalties are incurred when the inventory level and production rate deviate from their 
respective goals. 

Note that in order to have 0PΔ → , one has to choose the desired production 
ˆ ˆ ˆ( )P D I Iθ= + . Let 2 2( ) ( ) ( )F t q I t r P t= Δ + Δ . The interval [t; t + T] is divided into 2m 

subintervals of equal width / 2h T m= . Using the composite Simpson's rule for 2m 
intervals, the objective function can be approximated as 

1
2

1 1

1 ( ) ( ) 2 ( 2 ) 4 ( (2 1) ) ( 2 )
2 3

m m

i i

hJ p I t T F t F t ih F t i h F t mh
−

= =

⎡ ⎤
≈ Δ + + + + + + − + +⎢ ⎥

⎣ ⎦
∑ ∑ . (2.3) 

By the first-order Taylor approximation, we have for 1,...,2i m= . 

( ) ( ) ( ) ( )

ˆ(1 ) ( ) [ ( ) ( ( ))] ( ) ( ),

dI t ih I t ih I t ihO ih
dt

ih I t ih D I D I t ih P t ihO ihθ

Δ + = Δ + +

= − Δ + − + Δ +
 

where ( ) 0O h →  0 as 0h → . Hence, the objective function can be further approximated 
as 

( ( ), ) ( ) ( ) ( ) ( )
3

T ThJ M I t h U t U t G t U t⎡ ⎤≈ + +⎣ ⎦R , (2.4) 

where 

( ) [ ( ), ( ),..., ( (2 1) )]

diag( ,4 ,2 ,4 ,2 ,...,4 ,2 ,4 ) with
2

ˆ( ) [ ( ) ( ( ) ( ( ))),0,...,0] ,

T

T

U t P t P t h P t m h

r r r r r r r r

G t I t D I D I t

μγ γ

λ μ

= Δ Δ + Δ + −

= = +

= Δ + −

R  

with  

28 (3 2 ), 12 ( ) ,hm p hqm m p qhmμ λ μθ= + = + −  

and where ( ( ), )M I t h  is independent of U(t). It is easy to see that the minimum of J is 
reached at 

11( ) ( ),
2

U t G t−= − R  whenever 0r > . 
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In receding horizon, we obtain ( )P tΔ  as 
ˆ( ) ( ( ) ( ( )))( ) [1,0,...,0] ( )

2
I t D I D I tP t U t λ μ

γ
Δ + −Δ = = − . 

If r = 0, then relation (2.4) becomes 

2 ˆ( ( ), ) ( ) [ ( ) ( ( ) ( ( )))] ( ) ,
3 2
hJ M I t h P t I t D I D I t P tμ λ μ⎧ ⎫≈ + Δ + Δ + − Δ⎨ ⎬
⎩ ⎭

 (2.5) 

and so the minimum of J is reached at 

12 ( ) ˆ( ) ( ) ( ( )) ( ).m p hqmP t I t D I t D Iθ
μ

⎡ ⎤+Δ = − − Δ + −⎢ ⎥
⎣ ⎦

 

Thus, state equation (2.1) yields 
12 ( )

12 ( )( ) ( ) and so ( ) (0)
m p hqm td m p hqmI t I t I t I e

dt
μ

μ

+−+Δ = − Δ Δ = Δ . 

For illustration purposes, we use in the following example the demand rate that is widely 
used in the literature (see for instance [2, 10]), ( ( )) ( ) , [0, ,]D I t I t t Hβα= ∀ ∈ , with 

0α > and 0 1β< < . 
 

Example 2.1. Let  0.1,β =  3,α =  0.01,θ = 10,r =  5,p =  1,q =  5,m = 1,T =  0 5,I =  and 
ˆ 10I = . Then, h = 0.01 and ˆ ˆ ˆ 19.0287P I Iβα θ= + = . Figure 1 shows the variations of the 

optimal inventory level *I , the optimal production rate *P , and the corresponding optimal 
cost *J . As expected *I  converges to Î , *P  converges to P̂ , and *J  converges to 0. 

 

 
Figure 1: Variations of *I , *P , and *J  as functions of time t. 
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To assess the effect of the cost parameters (p; r; q) on the solutions, a sensitivity 
analysis has been conducted. We were mainly interested in the optimal initial production 
rate *

0 : (0)P P=  and the rise time (RT), which is the time required for the stock to achieve 
the target. We noticed that as q increases the rise time decreases and 0P  increases. Also, 
as r increases the rise time increases and 0P  decreases. We observed that the cost p has 
not effect RT and 0P . We could have performed many other sensitivity analysis in a 
similar way, but we refrained from doing so for brevity. 

 
2.2. PERIODIC-REVIEW MODEL 

In the periodic-review model the inventory is reviewed every h units of time. 
Without loss of generality we may assume that : /HN H h=  is integer. In this case, the 
dynamics of the inventory level are given by the following difference equation: 

( 1) ( ) ( ) ( ( )) ( ), {0,..., }H
I k I k P k D I k I k k N

h
θ+ − = − − ∀ ∈ . (2.6) 

Introduce the shifted variables ( ), ( )I k u kΔ Δ , and ( ( ))D I kΔ  as 

ˆ ˆ( ) ( ) ( ), ( ) ( ) ( )I k I k I k P k P k P kΔ = − Δ = −   and  ˆ ˆ( ) ( ) ( )D z D z I D IΔ = + − . 

Note that the inventory goal level ˆ( )I k  must satisfy the equation 

ˆ ˆ ˆ ˆ ˆ( 1) ( ) [ ( ) ( ( )) ( )], {0,..., 1},HI k I k h P k D I k I k k Nθ+ = + − − ∀ ∈ −  (2.7) 

and therefore equations (2.6) and (2.7) lead to 

( 1) (1 ) ( ) ( ) ( ).I k h I k h D k h P kθΔ + = − Δ − Δ + Δ  (2.8) 

The above discrete equation represents the model of the periodic-review production 
inventory systems with items deterioration. 

Now we are in a position to formulate the finite horizon optimal control 
problem. Given an instant k, a prediction horizon of length N, the current state of the 
inventory I(k), and the target inventory ˆ( )I k , we want to find the vector P of N 
production rates: 

( ( ), ( 1),..., ( 1)) ,TP k P k P k N= Δ Δ + Δ + −P  (2.9) 

that minimizes the performance index: 

1
2 2 2( ( ), ) ( ) [ ( ) ( ) ],

k N

i k
I k p I k N q I i r P i

+ −

=
Δ = Δ + + Δ + Δ∑V P  (2.10) 

subject to the equation (2.8) and the equality constraints: 

( ) 0P k iΔ + =   if  i N≥  (2.11) 
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where 2( )p I k NΔ +  is the terminal cost function. To minimize the predicted cost function 
(2.10), define 

( )
(1 )( ( )) ( ( )), 1 ,

( ) :
(1 ) ( ), 0P k i

h z h P k i h D z h P k i i N
z

h z h D z i
θ

α
θΔ +

− + Δ + − Δ + Δ + ≤ ≤⎧
= ⎨ − − Δ =⎩

 

then state equation (2.8) leads to the i-step ahead predictor 

( 1) ( )( 1) ( ( )) ( ), 1 ,P k i P kI k I k h P k i i Nα αΔ + − ΔΔ + = Δ + Δ + ≤ ≤  (2.12) 

which can be written in the following form 

( , ( )),I k= ΔX G P  (2.13) 

where X is an N component column vector and G is a map from N ×  to N , given 
by 

1

2

( , ( ))( 1)
( 2) ( , ( ))

, ,

( ) ( , ( ))h N

G I kI k
I k G I k

I k N G I k

ΔΔ + ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟Δ + Δ⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Δ + Δ⎝ ⎠ ⎝ ⎠

P
P

X G

P

 

with 

( 1) ( )( , ( )) ( ( )) ( ), 1 .i P k i P kG I k I k h P k i i Nα αΔ + − ΔΔ = Δ + Δ + ≤ ≤P  

Thus, the performance index (2.10) can be expressed as: 
2( ( ), ) ( ) ,T TI k q I kΔ = Δ + +V P X QX P RP  (2.14) 

where ( , ,..., , ), ( , ,..., ),diag q q q p diag r r r= =Q R  and dim( ) dim( ) .N N= = ×Q R  
The performance index (2.14) with the predicted model (2.13) becomes: 

2( ( ), ) ( ) [ ( , ( ))] [ ( , ( ))] .T TI k q I k I k I kΔ = Δ + Δ Δ +V P G P Q G P P RP  (2.15) 

The necessary condition for *P  to be an optimal predicted control that minimizes the cost 
function (2.15) is *( ( ), ) 0,P I k∇ Δ =V P  which is equivalent to 

* *1
* *

1

( , ( )) ( , ( ))( , ( )) ( , ( )) ( ) 0, 1,..., .
( ) ( )

N
i N

i n
i

G I k G I kq G I k pG I k r P k j j N
P k j P k j

−

=

∂ Δ ∂ ΔΔ + Δ + Δ + = =
∂Δ + ∂Δ +∑ P PP P

 (2.15) 

It is not hard to show that the necessary optimality condition (2.16) is also sufficient if 
the functions iG  are convex. 

Due to the nonlinearity of the functions iG , the resolution of Equations (2.16) 
gets harder and harder for large values of N. 
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Example 2.2: Assume N = 3 and put for simplicity : ( 1), 1,2,3.ix P k i i= Δ + − =  In this 
case, : ( , ( ))i iG G I k= ΔP  are given by 

1 1

2 1 1 2

3 2 2 3

(1 ) ( ) ( ( ))
(1 ) ( )
(1 ) ( ) .

G h I k h D I k hx
G h G h D G hx
G h G h D G hx

θ
θ
θ

= − Δ − Δ Δ +
= − − Δ +
= − − Δ +

 

Obviously, 1G  is convex in P. We check the convexity of 2G  and 3G  in P. The Hessian 
matrices of 2G  and 3G  are given by 

3
2 1

2
( ) 0

0 0
h D GG

⎛ ⎞′′− Δ∇ = ⎜ ⎟⎜ ⎟
⎝ ⎠

 

and 

1 2
1 2 1 2 1 2

2 3
3 1 2 2

( )[ ( ) ] [ ( )] ( ) ( ( ) ) ( ) 0
( ( ) ) ( ) ( ) 0

0 0 0

D G h D G h h h h D G D G h D G h D G
G h h D G h D G D G

−⎛ ⎞′′ ′ ′ ′′ ′ ′′Δ Δ − − − Δ Δ Δ − Δ
⎜ ⎟

′ ′′ ′′∇ = Δ − Δ −Δ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

where 1 .h hθ= −  Assuming D concave yields 1( ) 0D G′′Δ ≤  and then 2
2G∇  is positive 

semi-definite which ensures the convexity of 2G  in P. In order to obtain the convexity of 

3G  it suffices to make the following additional assumption on D and h: 

0

1 .
( )

h
D Iθ

<
′+

 (2.17) 

Simple computations show that the Hessian matrix 2
3G∇  is semi-definite 

positive and therefore the function 3G  is convex in P provided (2.17) is satisfied. Thus 
(2.16) yields the following necessary and sufficient optimality condition: 

1 2 1 3 1 2 1

2 3 2 2

3 3

( ( )) ( ) ( )) ( ( )) 0

( ( )) 0
0

qhG qG h h h D G pG h h h D G h h D G rx

qhG pG h h h D G rx
phG rx

′ ′ ′+ − Δ + − Δ − Δ + =
′+ − Δ + =

+ =
 

which can be solved numerically. To illustrate the results obtained, we perform a 
simulation with the same nonlinear form of the demand rate ( ) .D I I βα=  We also set 

00.81, 3, 0.01, 10, 5, 1, 0.4, 5,r p q h Iβ α θ= = = = = = = =  and ˆ 10I = . Then, ˆ ˆ ˆP I Iβα θ= + =  

19.0287.=  Figure 2 shows the variations of the optimal inventory level *,I  the optimal 
production rate *,P  and the corresponding optimal cost *J . As expected *I  converges to 
ˆ,I  *P  converges to ˆ ,P  and *J  converges to 0. As in the continuous-review case, a 

sensitivity analysis has been done to evaluate the effect of the cost parameters (p; r; q) on 
the optimal initial production rate 0P  and the rise time (RT). We noticed the same effect 
as in the continuous-review case. 
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Figure 2: Variations of *,I  *,P  and *J  as functions of time t. 

 
3. CONCLUSION 

We presented in this paper the predictive control of both continuous-review and 
periodic-review production inventory systems with deteriorating items. The model in the 
continuous case consists of a predictive cost function and a differential equation while in 
the discrete case, it consists of a predictive cost function and a recurrent difference 
equation. These two models are reformulated as unconstrained minimization problems in 
terms of the control variable. The optimal production rates are the solutions of the 
obtained unconstrained minimization problems. Numerical simulations show the 
effectiveness of the proposed approach. The multi-variable and stochastic cases are being 
investigated by the authors. 
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