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Abstract: In this paper a multi-step algorithm for LC' unconstrained optimization
problems is presented. This method uses previous multi-step iterative information and
curve search to generate new iterative points. A convergence proof is given, as well as an
estimate of the rate of convergence.
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1. INTRODUCTION

We shall consider the following LC' problem of unconstrained optimization
min{f(x)|xe D<= R"}, (1)

where f:DcR"—R is a LC' function on the open convex set D, that means the
objective function we want to minimize is continuously differentiable and its gradient is
locally Lipschitzian, i.e.

la(y)-a(x)|<L]y-x for x,ye D

for some L >0, where the gradient computed at X is denoted by g(X ).

We shall present an iterative multi-step algorithm which is based on the
algorithms from [1] and [4] for finding an optimal solution to problem (1) generating the
sequence of points {X,} of the following form:

Xy = %+, S +0d,, k=0,1,..,5 #0,d #0 )

where the step-size ¢, and the directional vectors S, and d, are defined by the
particular algorithms.
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2. PRELIMINARIES

We shall give some preliminaries that will be used for the remainder of the
paper.
Definition (see [5]) The second order Dini upper directional derivative of the function
f e LC' at x, e R inthedirection de R" isdefined to be

. ad) - "d
fD(X;d):limsup[g(XJr ) g(x)}
Ao A

If g is directionally differentiable at X, , we have

o e [g(x+/1d)—g(x)]Td
fo (%:d) =t (x:d)=lim 7

forall de R".

Lemma 1 (See [5]) Let f:DcR"—R bea LC' function on D, where DcR" isan
open subset. If x isa solution of LC' optimization problem (1), then:

f'(x,d)=0
and fJ(xd)=0,vde R".

Lemma 2 (See [5]) Let f:Dc R"—R bea LC' functionon D, where DcR" isan
open subset. If x satisfies

f/(x;d)=0

and fJ(xd)>0,vd=0,de R", then x isastrict local minimizer of (1).

3. THE OPTIMIZATION ALGORITHM
Algorithm: 0<o<1,0< p<1,x € D, mis a positive integer, K :=1.
Step 1. If ||gk|| =0 then STOP; else go to step 2.
Step 2. X,y =% + %S (4 )+ d, (¢4 ), where @, is selected by the curve search rule,

and S (o) and d,(e) are computed by the direction vector rules 1 and 2. For

simplicity , we denote S (¢ ) bys,,d, (¢ ) by d, and g(x,) by g,.

Curve search rule: Choose ¢, = qd®, 0<q<1, where i(k) is the smallest integer from
i =0,1,... such that
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X =%+ s +q""d, € D

and
f (%)= f (% +aYs+a"¥d, )2 0[-Q‘(”QISK +%q‘”(k’ fo (% )} (3)
Direction vector rule 1 :

s , ksm-1
k>m,

)= mo mo ,
5(@) —Hl—za'lp'kjnga”p'k%_m}
i i
where
ook
i =
(m_l)[”gkuz +|glsm+1

,i=23,...m
]

and s: #0,k<m-1 is any vector satisfying the descent property gIS: <0.

Direction vector rule 2. The direction vector d; ,k<m-1, presents a solution of the
problem

min{®, (d)|de R"}, 4)

where
1.
D, (d)= g:d+5 fD(Xk;d) )

and

d a)= m X N
(@) >aldy,, k=m
i=2

Step 3. ki=k+1, go to step 1.

We make the following assumptions.

Al. We suppose that there exist constants ¢, = ¢, >0 such that

¢ Jdf’ < fFoxd) < [df 5)
forevery de R".
A2. |d =1 and |s] =1, k=0,1L...

It follows from Lemma 3.1 in [5] that under the assumption Al the optimal
solution of the problem (4) exists.
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Proposition: If the function f e LC' satisfies the condition (5), then: 1) the function f
is uniformly and, hence, dtrictly convex, and, consequently; 2) the level set
L(x)={xe D: f(x)< f(x,)} is a compact convex set; 3) there exists a unique point

X suchthat f(x)= min f(Xx).
xeL (%)

Proof: 1) From the assumption (5) and the mean value theorem it follows that for all
Xe L(X,) there exists &€ (0,1) such that

()= (%)= 000) (x=%)+3 15 [ +6(x-%):x-x,]
>9(x) (x=x) 56 =% > 905)" (x-,).

that is, T is uniformly and consequently strictly convex on L(X,) .

2) From [3] it follows that the level set L(X,) is bounded. The set L(X,) is closed
because of the continuity of the function f ; hence, L(X,) is a compact set. L(X,) is
also (see [6]) a convex set.

3) The existence of X~ follows from the continuity of the function f on the bounded set
L(X,) - From the definition of the level set it follows that

f(X')= min f(x)=min f
(x) min, () =min f(x)

Since f is strictly convex it follows from [6] that X  is a unique minimizer.

Lemma 3 (See [5]) The following statements are equivalent:

1. d =0 isaglobally optimal solution of the problem (4);
2. 0 isthe optimum of the objective function of the problem (4);
3. the corresponding x, isa stationary point of the function f .

Lemma4: For ae[0,1] andall k>m, we have

2
s (@)<-(1-p)|a -
Proof is analogous to the proof of Lemma 2.1 in [4].
Conver gence theorem. Suppose that f € LC' and that the assumptions A1 and A2 hold.

Then for any initial point x,€ D, X, > X, as k —e, where X is a unique mnimal
point.

Proof: Ifdy # 0 is a solution of (3), it follows that @, (d, )< 0=, (0).. Consequently,
we have by (5) that
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1, 1 .
g(xk)T dkS_E fD(Xk;dk)S_ECl"dk”<0’ L.€. (6)

d, is a descent direction at X, . From (3), (5) and Lemma 4 it follows that
i L i) ¢»
f05)- (%) 2] -a¥gls a1 (x:0,) 2

O i

o (1-p)|auf + 26" o >0 g

q

Hence { f(x,)} is a decreasing sequence and consequently {x,} < L(X,). Since
L(x,) is by Proposition a compact convex set, it follows that the sequence {Xk} is
bounded. Therefore there exist accumulation points of {X, ] . Since the gradient g is by
assumption continuous, then, if g (Xk) —0 as k—oo, it follows that every
accumulation point X of the sequence {x} satisfies g(X)=0.. Since f is by the
Proposition strictly convex, it follows that there exists a unique point Xe L(X,) such
that g(X)=0.. Hence, {X } has a unique limit point X — and it is a global minimizer.

Therefore we have to prove that g(X, ) — 0, k — co. There are two cases to consider.

a) The set of indices {i(k)} for ke K, , is uniformly bounded above by a number | , i.c.
i(k) <1 <o for ke K, . Consequently, from (3) and (7) it follows that

i 1 4 "
f (Xk)_ f (Xk+1) 20‘[—q(k)g:sK +Eq4(k) fo (Xk;dk):| 2
1 "
0[—(1'91% +5q4' fo(xk;dk)}z ®)

. . c .
(since g(xk)T S <0and f; (x;d,)>0) > q'O'(l—p)"gk"2 +5q4' fo (X dy ).
Since {f (Xk)} is bounded below (on the compact set L(X,)) and monotone

(by (7)), it follows that f(x.,,)— f(X,)—>0 as k— e, ke K, ;hence from (8) it follows
that |g(x )| =0 and f5(x.d) =0,k >, ke K.

b) There is a subset K, < K such that &imi(k) =00,
This part of proof is analogous to the proofin [1].

In order to have a finite value i(K), it is sufficient that 5 and d, have descent
properties, i.e.

g(xk)TsK <0 and g(xk)T d, <0

whenever g(X,)# 0. The first relation follows from Lemma 4 and the second follows
from (6). At a saddle point the relation (3) becomes
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(4= 1 (%)20] 30" (50, | ©)

In that case by Lemma 3 d, # 0 and hence, by (5), f”(X.;d,)>0;so (9) clearly can be
satisfied.

Convergence rate theorem: Under the assumptions of the previous theorem we have
that the following estimate holds for the sequence {x,} generated by the algorithm.

-1

Fl) f () | 1420 5 T )= (%)
(%)= f(X)<u nzé ool

n=1,2,... where g, =f(x)—-f(X), and diamL(x,) =7 <e since by Proposition it
followsthat L(X,) isbounded.

Proof: The proof directly follows from the Theorem 9.2, page 167 in [2]., since the
assumptions of that theorem are fulfilled.

4. CONCLUSION

The algorithm presented in this paper is based on the algorithms from [1] and
[4]. The convergence is proved under mild conditions. This method uses previous multi-
step iterative information and curve search rule to generate a new iterative point at each
iteration. Relating to the algorithms in [1] and [4], in [4] it is supposed that the
function f has a lower bound on the level set L(x,) and that the gradient g(x) of f(X) is

uniformly continuous on an open convex set B that contains L(X,), while in this paper

and in the previous paper [1] we supposed that f:D c R — R is a LC' function on

the open convex set D, and that the second order Dini upper directional derivative
satisfies the condition (5).
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