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Abstract: In this paper we consider the NP-hard problem of determining the strong 
metric dimension of graphs. The problem is solved by a genetic algorithm that uses 
binary encoding and standard genetic operators adapted to the problem. This represents 
the first attempt to solve this problem heuristically. We report experimental results for the 
two special classes of ORLIB test instances: crew scheduling and graph coloring. 
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1. INTRODUCTION 

The strong metric dimension problem (SMDP) was recently introduced by A. 
Sebö and E. Tannier [25] and further investigated by O.Oellermann and J. Peters-Fransen 
[24]. The strong metric dimension of a graph is a more restricted invariant than the so 
called metric dimension, which arises in many diverse areas and has been widely 
investigated [3-7, 9, 13-17, 22, 23, 26, 27].  

 
1 This research was partially supported by Serbian Ministry of Science under the grant no. 
144015G. 
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Given a simple connected undirected graph ( , )G V E= , where , 
,  denotes the distance between vertices u and v, i.e. the length of a 

shortest u-v path. A vertex x of the graph G is said to resolve two vertices u and v of G if 
. An ordered vertex set 

{1,2,..., }V n=
mE =|| ( , )d u v

( , ) ( , )d x u d x v≠ 1 2{ , ,..., }kS x x x= of  is a resolving set of G if 
every two distinct vertices of G are resolved by some vertex of  S. Given a vertex 

G
t , the 

k- touple  is called the vector of metric coordinates 
of  t with respect to S. The metric basis of G is a resolving set of the minimum 
cardinality. The metric dimension of G, denoted by

)),(),...,,(),,((),( 21 kxtdxtdxtdStr =

( )Gβ , is the cardinality of its metric 
basis. 

Cáceres et al. [4] introduce a more restricted invariant of G , based on the notion 
of a doubly resolving set, as follows. Vertices yx, of the graph G are said to 
doubly resolve vertices   of  G  if 

)2( ≥n
vu, ),(),(),(),( yvdxvdyudxud −≠− . A vertex set D 

of  G  is a doubly resolving set of  G  if every two distinct vertices of  G  are doubly 
resolved by some two vertices of  D. Now the invariant )(Gψ is defined as the cardinality 
of a minimal doubly resolving set of  G.  Note that if yx, doubly resolve  then 

or 
vu,

0),(),( ≠− xvdxud 0),(),( ≠− yvdyud and hence x or y  resolves  u, v. Therefore a 
doubly resolving set is also a resolving set and )()( GG ψβ ≤ . 
 In this paper we consider the strong metric dimension of  G , which is defined as 
follows. For two distinct vertices u and v of G let us denote by  the set of all 
vertices that belong to some shortest u-v path. A vertex w strongly resolves two vertices u 
and v if or if . A vertex set W of G is a strong resolving set of G if 
every two distinct vertices of G are strongly resolved by some vertex of W.  Now the 
strong metric dimension sdim  is defined as the cardinality of a minimal strong 
resolving set of  G. It is easy to see that if a vertex w strongly resolves vertices u and v 
then w also resolves these vertices. Hence every strong resolving set is a resolving set and 

],[ vuI

],[ wuIv∈ ],[ wvIu∈

)(G

≤)(Gβ sdim . )(G
 It has been proved in [24] that the problem of finding the strong metric 
dimension sdim is NP-hard. Nevertheless, for some simple classes of graphs it is 
possible to determine sdim  explicitly: the complete graph  with n vertices has 
sdim =

)(G
)(G nK

)( nK 1−n , the cycle  with n vertices has sdim =nC )( nC ⎡ ⎤2/n  and if  T  is a tree, 
sdim  is equal to the number of its leaves minus 1 [25]. )(T

If W is a strong resolving set of G, then the set }|),({ VvWvr ∈   uniquely 
determines graph G in the following sense. If  is the graph with  such 
that W is a strong resolving set of  and if for all vertices v we have 

, then . If  W is a resolving set,  then the set  
need not uniquely determine G (see [25]). The next three examples illustrate previously 
defined invariants 

'G )()'( GVGV =
'G

),(),( ' WvrWvr GG = 'GG = }|),({ VvWvr ∈

( ), ( )G Gβ ψ  and sdim . )(G
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Example 1. Consider the graph of Figure 1. The set 1G },{1 BAS =  is a resolving set of 
since the vectors of metric coordinates for the vertices of  with respect to are: 

; ; 
1G 1G 1S

)1,0(),( 1 =SAr )0,1(),( 1 =SBr )2,1(),( 1 =SCr ; )1,2(),( 1 =SDr . On the other hand, a 
singleton set, e.g. {A}, is not a resolving set since 1),(),( == ADdABd . Therefore, is 
a minimal resolving set and 

1S
2)( 1 =Gβ .  

A B

C D  
Figure 1: Graph G1 from Example 1 

 

Set S1 is also a strong resolving set of G1. Really, all possible sets I[u,v], where u is a 
vertex of G1 and v is a vertex of S1, have the form:  I[A,A]={A}; I[B,A]=I[A,B]={A,B}; 
I[C,A]={A,C,}; I[D,A]={A,B,C,D}; I[B,B]={B}; I[C,B]={A,B,C,D}; I[D,B]={B,D}. 
Starting from these sets it is easy to check that for every two distinct vertices of G1 there 
exists a vertex from S1 which strongly resolves them. For example, since C∈I[D,A], C 
and D are strongly resolved by A, while B and D are strongly resolved by B, as B∈I[D,B]. 
Hence, 2 = β(G1) ≤ sdim(G1) ≤ |S1| = 2 which implies  sdim(G1)=2.  

Note that S1 is not a doubly resolving set because d(C,A) - d(A,A) = d(C,B) - d(A,B) = 1. 
Similarly, it can be verified that none of the subsets consisting of two nodes is a doubly 
resolving set of . But, S2={A,B,C} is a doubly resolving set, as the vectors of metric 
coordinates with respect to S2 are: r(A,S2)=(0,1,1);  r(B,S2)=(1,0,2);  r(C,S2)=(1,2,0);  
r(D,S2)=(2,1,1). Therefore, S2 is a minimal doubly resolving set and ψ(G1)=3.  � 

1G

Example 2. For graph G2 of Figure 2 values β(G2), ψ(G2) and sdim(G2) are all different. 
Namely, it is easy to check that {A,B} is a minimal resolving set, {A,B,E,F} is a minimal 
doubly resolving set, while {A,B,E} is a minimal strong resolving set of . Therefore, 
β(G2)=2, ψ(G2)=4 and sdim(G2)=3.  � 

2G

 

F

A B

C D

E  
Figure 2: Graph G2 from Example 2 
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Example 3. The Petersen graph G3, given on Figure 3, has β(G3)=ψ(G3)=3 and 
sdim(G3)=8. Really, it can be shown that {A,C,I} is both a minimal resolving and a 
minimal doubly resolving set, while {A,B,C,D,E,F,G,I} is a strong resolving set of G3.  � 

A

D

F

C

BE

G

HI

J

 
Figure 3: Petersen graph G3 from Example 3 

The paper is organized as follows. Section 2 includes the main features of a 
genetic algorithm (GA) implementation designed for the SMDP, while in Section 3 we 
report computational results on two special classes of ORLIB test instances: crew 
scheduling and graph coloring.  

2. GENETIC ALGORITHM FOR SMDP 

GAs are stochastic search techniques which imitate some spontaneous 
optimization processes in the natural selection and reproduction. At each iteration 
(generation) GA manipulates with a set (population) of encoded solutions (individuals), 
starting from either randomly or heuristically generated one. Individuals from the current 
population are evaluated using a fitness function to determine their qualities. Good 
individuals are selected to produce the new ones (offspring), applying operators inspired 
from those of genetics (crossover and mutation), and they replace some of the individuals 
from the current population. Detailed description of GAs is out of this paper's scope and 
it can be found in [11, 21, 29]. Extensive computational experience on various 
optimization problems shows that GA often produces high quality solutions in a 
reasonable time [8, 11, 17-20, 28-30]. In most cases GA has shown to be robust with 
respect to parameter choice in reasonable bounds. 

In [17] we developed a genetic algorithm for determining the metric dimension 
of an arbitrary graph which was successfully tested on several classes of graph instances. 
A similar genetic approach has also been successfully applied for finding the cardinality 
of a minimal doubly resolving set [18]. As the strong metric dimension problem is 
closely related to the metric dimension problem, the existing genetic algorithm from [17] 
was easily accommodated to solve the SMDP. It was done by replacing the procedure of 
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checking whether the current individual corresponds to a resolving set or not by the 
procedure of identifying it as a code of a strong resolving set. 

Here, we will give only the main features of our GA implementation for the 
strong metric dimension problem (for more details see [17]). 

The algorithm uses a binary encoding of the individuals, where each solution 
W⊆V  (i.e. a candidate for a strong resolving set) is represented by a binary string of 
length n. Digit 1 at the i-th position of the string denotes that the vertex i belongs to W, 
while 0 shows the opposite.  

For each pair of distinct vertices u,v∈V we check whether there exists w∈W 
such that d(u,w) = d(u,v)+d(v,w) or d(v,w) = d(v,u)+d(u,w). If this condition is satisfied, 
then W is a strong resolving set as the condition is equivalent to v∈I[u,w] or u∈I[v,w]. If 
it is not satisfied, then the following "reparation" technique is applied: an additional 
randomly chosen vertex from V \ W is added to W and this procedure is iterated until W 
becomes a strong resolving set. The cardinality of the obtained strong resolving set W is 
the objective value of the current individual. 

Population in each generation contains Npop = 150 individuals. The fitness find of 
individual ind = 1,2, ..., Npop is computed by scaling objective values objind of all 
individuals into the interval [0,1], so that the best individual indmin has fitness 1 and the 

worst one indmax has fitness 0. More precisely, max

max min

ind ind
ind

ind ind

obj obj
f

obj obj
−

=
−

. Next, individuals 

are arranged in non-increasing order of their fitness: f1 ≥ f2 ≥ ... ≥ Npop
f . 

The population of the first generation is randomly generated, providing the 
maximal diversity of the genetic material. In order to prevent an undeserved domination 
of some individuals in the current population an elitist strategy is used. The fitness of 
Nelite = 100 elite individuals over the population are decreased by folowing formula. 

,

0 ,
ind ind

ind

ind

f f f f
f

f f

⎧ − >⎪= ⎨
≤⎪⎩

,   1 ,eliteind N≤ ≤    
1

1 popN

ind
indpop

f f
N =

= ∑  

The first Nelite individuals are directly passing to the next generation. Genetic 
operators are applied to the rest of the population, so that only one third is replaced in 
every generation. 

The selection operator, which chooses the parent individuals that will produce 
offspring in the next generation, is an improved tournament selection operator known as 
the fine-grained tournament selection (see [10, 11]). This operator uses a real (rational) 
parameter Ftour which denotes the desired average tournament size. Two types of 
tournaments are performed: the first type is held k1 times on ⎣Ftour⎦  individuals, while the 
second type is applied k2 times with ⎡Ftour⎤ individuals participated, so  

1 2tour tour
tour

nnel

k F k F
F

N
+⎢ ⎥ ⎡⎣ ⎦ ⎢≈

⎤⎥  , where Nnnel = Npop - Nelite . 

In our implementation Ftou = 5.4 and, therefore, the corresponding values k1 and 
k2 for Nnnel = 50 non-elitist individuals are 20 and 30, respectively. 
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When a pair of parents is selected, an one-point crossover operator is applied 
with probability pcross = 0.85. It means that approximately 85% pairs of individuals 
exchange segments of their genetic codes. 

The simple mutation operator is performed by changing a randomly chosen gene 
in the code of the individual, with a certain mutation rate (probability) pmut . In order to 
prevent a premature convergence the mutation rate is increased on each so-called frozen 
gene, i.e. a gene on a certain position with the same value which appears in all 
individuals in the current population. In our implementation the mutation rate depends on 
dimension n and it is 2.5 times higher on frozen genes (pmut = 1.0/n) then on non-frozen 
ones (pmut = 0.4/n). 

Duplicated individuals are removed from the current population by setting their 
fitness to zero. This is a very effective method for saving diversity of the genetic material 
and keeping the algorithm away from a premature convergence. Individuals with the 
same objective value and different genetic codes, in some cases may dominate in the 
population and lead the algorithm to a local optimum. For that reason, number of such 
individuals in one generation is limited to Nrv = 40. 

The run-time performance of GA is optimized by a caching technique. The main 
idea is to avoid computing the same objective value every time when genetic operators 
produce individuals with the same genetic code. Evaluated objective values are stored in 
a hash-queue data structure using the least recently used (LRU) caching technique. When 
the same code is obtained again, its objective value is taken from the cache memory, that 
provides time-savings. In this implementation the number of individuals stored in the 
cache memory is limited to 5000. 

3. EXPERIMENTAL RESULTS 

In this section we present the computational results for two different ORLIB 
classes of graph instances: crew scheduling [1, 2] and graph coloring [1, 12]. This is the 
first computational study of the strong metric dimension problem and it was not possible 
to make a comparison with other approaches. The GA tests were performed on an AMD 
Sempron 1.6 GHz with 256 MB memory, under Linux (Knoppix 5.0) operating system. 
The stopping criterion was the maximum number of generations equal to 5000 or at most 
2000 generations without improvement of the objective value. The GA has been run 20 
times for each instance and the results are summarized in Table 1 and Table 2. The tables 
are organized as follows:  
• the first three columns contain the test instance name, the number of nodes and edges 

respectively; 
• the fourth column contains the best GA solution (named GAbest) obtained in 20 runs; 
• the average execution time (t) used to reach the final GA solution for the first time is 

given in the fifth column, while the sixth and seventh column (ttot and gen) show the 
average total execution time and the average number of generations for finishing 
GA, respectively; 

• the eighth and the ninth column (agap and σ) contain information on the average 

solution quality: agap is a percentage gap defined as 
20

1

1
20 i

i

agap gap
=

= ∑ , where 
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100 i be
i

best

GA GA
gap

GA
−

= ⋅ st  and GAi represents the GA solution obtained in the i-th run, 

while σ  is the standard deviation of gapi, i = 1,2,...,20, obtained by formula 
20

2

1

1 ( )
20 i

i

gap agapσ
=

= −∑ . 

• in the last two columns eval represents the average number of the objective function 
evaluations, while cache displays savings (in percent) achieved by using the caching 
technique. 

 
Table 1: Results on crew scheduling ORLIB instances 

Inst. n m GAbest t ttot gen agap σ eval cache 
csp50 50 173 29 4.108 26.769 2271 3.103 3.429 30309 73.5 
csp100 100 715 61 100.787 528.21 2420 3.279 3.864 49099 59.1 
csp150 150 1355 98 540.584 3166.3 2867 8.98 7.418 70178 50.7 
csp200 200 2543 144 4978.7 8047.6 3010 8.125 5.135 81943 45.4 
csp250 250 4152 178 4941.3 17060 2478 3.034 2.372 70516 43.2 

 
Table 2: Results on graph coloring ORLIB instances 

Inst. n m GAbest t ttot gen agap σ eval cache 
gcol1 100 2487 91 18.119 172.732 2142 0.769 0.531 32411 69.6 
gcol2 100 2487 91 28.443 182.663 2294 0.769 0.531 34094 70.1 
gcol3 100 2482 91 49.108 198.800 2500 0.989 0.811 38425 68.8 
gcol4 100 2503 91 33.926 173.360 2343 0.879 0.463 32905 72.4 
gcol5 100 2450 91 22.734 166.339 2191 0.989 0.624 31639 71.2 
gcol6 100 2537 91 46.603 194.784 2478 0.330 0.531 36725 70.3 
gcol7 100 2505 91 15.826 170.525 2128 1.099 0.518 33391 68.6 
gcol8 100 2479 90 16.111 177.131 2134 2.000 0.703 33075 68.8 
gcol9 100 2486 91 15.676 178.285 2133 1.099 0.518 34353 67.8 

gcol10 100 2506 91 17.327 167.539 2137 0.659 0.567 31565 70.5 
gcol11 100 2467 91 18.700 169.150 2146 0.769 0.531 31415 70.7 
gcol12 100 2531 91 20.990 166.088 2184 0.440 0.567 31359 71.5 
gcol13 100 2467 91 25.398 171.383 2237 0.989 0.348 32965 70.5 
gcol14 100 2524 91 27.909 169.664 2282 1.099 0.518 33341 70.9 
gcol15 100 2528 91 44.315 182.577 2436 0.989 0.624 36497 70.6 
gcol16 100 2493 91 33.121 173.897 2349 0.659 0.567 32784 72.0 
gcol17 100 2503 91 25.073 172.929 2214 0.440 0.567 31882 71.4 
gcol18 100 2472 91 34.893 173.495 2337 0.440 0.567 31481 73.1 
gcol19 100 2527 91 14.407 163.039 2106 0.659 0.567 31065 70.5 
gcol20 100 2420 91 31.080 175.908 2287 1.209 0.962 33936 70.1 

 
It is important to note that the checking whether a set is a strong resolving set 

has the complexity O(n2 ⋅ sdim(G)), while the checking whether a set is a resolving set 
requires only O(n ⋅ log n ⋅ β (G)) operations. Also, the strong metric dimension of a 
graph G is usually much larger than the metric dimension. Consequently, the GA running 
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times in Table 1 and Table 2 are much larger than the GA running times for the metric 

dimension problem in [17].  For example, for instance csp250 the ratio 
2 sdim( )
log ( )

n G
n n Gβ

⋅
⋅ ⋅

 is 

aproximately 300, while the real running time ratio is 17060/25.4 ≈ 672. For this reason, 
experiments in this paper are performed only on a subset of crew scheduling instances 
with n ≤ 250 in Table 1 and graph coloring instances with n =100 in Table 2.  

The running times displayed in column ttot would be considerebly larger without 
the caching technique, which can be seen from the last column of Table 1 and Table 2. 
Time savings vary from 43.2% to 73.5% for crew scheduling instances, i.e. from 67.8% 
to 73.1% for graph coloring instances.  

4. CONCLUSIONS 

In this paper an evolutionary metaheuristic for solving the strong metric 
dimension problem is presented. It uses the binary representation, the mutation with 
frozen genes, a limited number of different individuals with the same objective value and 
the caching technique. Checking whether a set is a strong resolving set requires that for 
each pair of the vertices of the graph one member of that set which strongly resolves 
them is found. Infeasible individuals, candidates which are not strongly resolving sets, 
are corrected by adding necessary vertices in order to become feasible. 

Further research should be directed to testing instances of larger dimensions on 
more powerful and/or parallel computers as well as to using computational results to 
generate theoretical hypotheses about the strong metric dimension. 
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