Yugoslav Journal of Operations Research Vol 18 (2008), Number 2, 167-172 DOI: 10.2298/YUJOR0802167G

ON SOME OPTIMIZATION PROBLEMS IN NOT NECESSARILY LOCALLY CONVEX SPACE

Ljiljana GAJIĆ

Department of Mathematics and Informatics University of Novi Sad, Serbia gajic@im.ns.ac.yu

Received: April 2006 / Accepted: May 2008

Abstract: In this note, by using O. Hadžić's generalization of a fixed point theorem of Himmelberg, we prove a non - cooperative equilibrium existence theorem in non compact settings and a generalization of an existence theorem for non - compact infinite optimization problems, all in not necessarily locally convex spaces.

Keywords: Set valued mapping, quasi - convex map, non-cooperative equilibrium.

1. INTRODUCTION

In paper [5], Kaczynski and Zeidan introduced the concept of the continuous cross - section property and by using the Ky Fan fixed point theorem proved an existence theorem for finite optimization problem in compact convex seting. A few years later S.M. Im and W.K. Kim, by using Himmelberg's [4] non - compact generalization of the K. Fan fixed point theorem, proved a non - cooperative equilibrium existence theorem in non compact setting. Using O. Hadžić's generalization of Himmelberg's fixed point theorem we shall prove existence theorem for non-cooperative equilibrium and existence theorem to non - compact infinite optimization problems in not necessarily locally convex spaces.

2. PRELIMINARIES

Let *I* be any (possibly uncountable) index set and for each $i \in I$, let X_i be a Hausdorff topological vector space and $X = \prod_{i \in I} X_i$ be the product space. We shall use the following notations:

168 Lj. Gajić / On Some Optimization Problems

$$
X^i = \prod_{\substack{k\in I\\ k\neq i}} X_k
$$

and $p_i: X \to X_i$, $p^i: X \to X^i$ be the projection of *X* onto X_i and X^i respectively. For any $x \in X$, we simply denote $p^{i}(x) \in X^{i}$ by x^{i} and $x = (x^{i}, x_{i})$. For any given subset *K* of *X*, *K_i* and *Kⁱ* denote the image of *K* under the projection of *X* onto *X_i* and X^i , respectively.

For each $i \in I$, let $S_i : X^i \to 2^{X_i}$ be a given set valued map. We are concerned with the existence of a solution $\bar{x} \in K$ to the following system of minimization problems:

$$
f_i(\tilde{x}) = \min\{f_i(\tilde{x}^i, z) \mid z \in S_i(\tilde{x}^i)\},\tag{*}
$$

where $f_i: X \to \mathbf{R}$ is a real valued function for each $i \in I$.

Such problems arise from mathematical economics or game theory where the solution $\bar{x} \in X$ is usually called the non - cooperative equilibrium or social equilibrium.

Of course, it is clear that when the functions f_i are continuous and K is compact, the minimum in (*) is obtained for each $i \in I$ but not necessarily at \bar{x}_i . Therefore we shall need a consistency assumption between f_i and S_i in order to obtain a solution of a system of minimization problem.

Now let us recall some definitions and results which will be useful later.

Let X and Y be two Hausdorff topological spaces and 2^Y a set of non - empty subset of *Y*. Under a multivalued mapping of X into *Y* we mean a mapping $f: X \rightarrow 2^Y$. Then *f* is called:

(1) Lower semicontinuous (l.s.c.) if the set $\{x \in X \mid f(x) \cap V \neq \emptyset\}$ is open in *X* for every open set *V* in *Y*.

(2) Upper semicontinuous (u.s.c.) if the set $\{x \in X \mid f(x) \subset V\}$ is open in X for every open set *V* in *Y*.

(3) Continuous if it is both l.s.c. and u.s.c..

Lemma 1. [1] Suppose that $W : X \times Y \to \mathbf{R}$ is a continuous function and $G : X \to 2^Y$ *is continuous with compact values. Then the marginal (set valued) function*

$$
V(x) = \{ y \in G(x) \mid W(x, y) = \sup_{z \in G(x)} W(x, z) \}
$$

 is u.s.c. mapping.

Definition 1. *A function* $f: K \to \mathbf{R}$, where *K* is a subset of a vector space, is called *quasi - convex on K if the set* $\{x \in K \mid f(x) \le r\}$ *is convex set for all r* $\in \mathbb{R}$. *Of course every convex function is quasi - convex but the converse is not true.*

Definition 2. Let X be a Hausdorff topological space, $K \subset X$ and $\mathcal U$ the fundamental *system of neighbourhoods of zero in X*. *The set K is said to be of Z* − *type if for every* $V \in \mathcal{U}$ there exists $U \in \mathcal{U}$ such that

$$
conv(U \cap (K - K)) \subset V.
$$

($convA = convex hull$ of the set *A*).

Remark. *Every subset* $K \subset X$, *where X* is a locally convex topological vector space, is *of* $Z -$ *type.* In [3] examples of subset $K \subset X$ of $Z -$ type, where X is not locally *convex topological vector spaces, are given.*

The next fixed point theorem will be an essential tool for proving the existence of solution in our optimization problems.

Theorem A. [3]. *Let K be a convex subset of a Hausdorff topological vector space X and D is a nonempty compact subset of K. Let* $S: K \rightarrow 2^D$ *be an u.s.c. mapping such that for each* $x \in K$, $S(x)$ *is nonempty closed convex subset of D and* $S(K)$ *is of* Z *type. Then there exists a point* $\overline{x} \in D$ *such that* $\overline{x} \in S(\overline{x})$ *.*

3. RESULTS

We begin with the following:

Proposition 1. Let $\{K_i\}_{i\in I}$ be a family of nonempty compact convex subsets of Hausdorff *topological vector spaces* $\{X_i\}_{i \in I}$ $(K_i \subset X_i)$, for every $i \in I$, $X = \prod_{i \in I} X_i$ and $K = \prod_{i \in I} K_i$. *If for every i* \in *I* the set K_i is of Z − type in X_i then K is of Z − type in X.

Proof: For each $i \in I$ let \mathcal{U}_i be a fundamental system of zero neighbourhoods in space X_i and let us denote by U the fundamental system of zero neighbourhoods in the product (Tihonov) topology on $X = \prod_{i \in I} X_i$. For any $V \in \mathcal{U}$ we have to prove that there exists $U \in \mathcal{U}$ such that $conv(U \cap (K - K)) \subset V$. Suppose that $V \in \mathcal{U}$. Then there exists a finite set $\{i_1, i_2, ..., i_n\} \subset I$ such that $V = \prod_{i \in I} X'_i$, where

$$
X'_{i} = \begin{cases} X_{i}, & i \in I \setminus \{i_{1}, i_{2}, \dots, i_{n}\}, \\ V_{i}, & i \in \{i_{1}, i_{2}, \dots, i_{n}\}, \end{cases}
$$

and V_i ∈ U_i , for each $i \in \{i_1, i_2, ..., i_n\}$. Since $K_i \subset X_i$, $i \in I$, and K_i is of $Z -$ type, there exists $U_i \in \mathcal{U}_i$ where $i \in \{i_1, ..., i_n\}$ such that

> $conv(U_i \cap (K_i - K_i)) \subset V_i$. Let $U = \prod_{i \in I} X_i^{\prime\prime}$. for

170 Lj. Gajić / On Some Optimization Problems

$$
X_i'' = \begin{cases} X_i, & i \in I \setminus \{i_1, i_2, ..., i_n\}, \\ U_i, & i \in \{i_1, i_2, ..., i_n\}, \end{cases}
$$

Now, suppose that $z \in conv(U \cap (K - K))$. This implies that there exist r_k , $k = 1, 2, ..., m$, and $u^k \in U \cap (K - K)$, $i = 1, 2, ..., m$, so that $r_k \ge 0$, $k = 1, 2, ..., m$, $\sum_{k=1}^{m} r_k = 1$ and $z = \sum_{k=1}^{m} r_k u^k$. Let us prove that $z \in V$. It is enough to prove that $p_i(z) \in V_i$ for every $i \in \{i_1, ..., i_n\}$.

For $z = \sum_{k=1}^{m} r_k u^k$ it follows that $p_i(z) = \sum_{k=1}^{m} r_k p_i(u^k)$ for all $z = \sum_{k=1}^{m} r_k u^k$ it follows that $p_i(z) = \sum_{k=1}^{m} r_k p_i(u^k)$ for all $i \in I$. Suppose now that $i \in \{i_1, ..., i_n\}$.

Since $p_i(u^k) \in X_i^{\prime\prime} \cap (K_i - K_i) = U_i \cap (K_i - K_i)$ it follows that

$$
p_i(z) \in conv(U_i \cap (K_i - K_i)) \subset V_i.
$$

Now, we shall prove our main result.

Theorem 1. *Let K be a non-empty convex subset of Hausdorff topological vector space X* and *D* be a nonempty compact subset o K. Suppose that $\phi: X \times X \to \mathbf{R}$ is *continuous function and* $S: K \rightarrow 2^D$ *a continuous set valued map such that*

(1) far each, $x \in K$, $S(x)$ *is a nonempty closed convex subset of D*;

(2) $S(K)$ *is of* $Z -$ *type subset:*

(3) for each $x \in K$, $y \rightarrow \phi(x, y)$ *is quasi - convex on* $S(x)$.

Then there exists a point $\breve{x} \in D$ *such tha* $\breve{x} \in S(\breve{x})$ *and* $\phi(\breve{x}, y) \geq \phi(\breve{x}, \breve{x})$ *for all* $y \in S(\bar{x})$.

Proof: Define a set valued mapping $V : K \rightarrow 2^D$ by

$$
V(x) = \{ z \in S(x) \mid \phi(x, z) = \inf_{y \in S(x)} \phi(x, y) \}
$$

for all $x \in K$. Since ϕ is continuous and $S(x)$ is non-empty compact, $V(x)$ is nonempty compact subset of *D* for all $x \in K$. For each $z_1, z_2 \in V(x)$ and $t \in [0,1], \quad tz_1 + (1-t)z_2 \in S(x).$

Since $\phi(x, z_1) = \phi(x, z_2) = \inf_{y \in S(x)} \phi(x, y) = r$ and $\{z \in S(x) \mid \phi(x, z) \le r\}$ is convex, one can see that $tz_1 + (1-t)z_2 \in V(x)$ so $V(x)$ is convex for every $x \in K$. By Lemma 1., *V* is u.s.c. mapping. Now, by Theorem A, there exists a fixed point $\bar{x} \in D$ of *V*, i.e. $\tilde{x} \in V(\tilde{x})$. But this point is just what we need to find.

In [6] S.M. Im and W.K. Kim give an example which show that, even when *X* is a locally convex Hausdorff topological spaces, the lower semicontinuity of S is essential in Theorem 1.

Next we shall prove a generalization of Kaczynski - Zeidan's result to non compact infinite optimizations problems in not necessarily locally convex space.

Theorem 2. *Let I any (possibly uncountable) index set and for each i* \in *I*, *let* K_i *be a convex subset of Hausdorff topological vector space* X_i and the D_i be a non - empty *compact subset of* K_i *. For each* $i \in I$ *, let* $f_i : K = \prod_{i \in I} K_i \to \mathbf{R}$ *be a continuous function*

and $S_i : K^i \to 2^{D_i}$ *be a continuous set valued mapping such that for each* $i \in I$

- *(1)* $S_i(x^i)$ is non empty closed convex subset of D_i ;
- *(2)* $S_i(X^i)$ *is of* $Z type$;
- (3) $x_i \rightarrow f_i(x^i, x_i)$ is quasi convex on $S_i(x^i)$.

Then there exists a point $\tilde{x} \in D = \prod_{i \in I} D_i$ such that for each $i \in I$, $\tilde{x}_i \in S_i(\tilde{x}^i)$ and

$$
f_i(\vec{x}^i, \check{x}_i) = \inf_{z \in S_i(\vec{x}^i)} f_i(\check{x}^i, z).
$$

Proof: For each $i \in I$, let us define a set valued function $V_i : K^i \to 2^{K_i}$ by

$$
V_i(x^i) = \{ y \in S_i(x^i) \mid f_i(x^i, y) = \inf_{z \in S_i(x^i)} f_i(x^i, z) \}.
$$

As in the proof of Theorem 1. $V_i(x^i)$ is non- empty compact convex set and V_i is u.s.c. mapping. Now, we define $V: K \to 2^D$ by

$$
V(x) := \prod_{i \in I} V_i(x^i),
$$

for each $x \in K$.

Then $V(x)$ is non - empty compact convex subset of D and V is u.s.c. mapping. By Proposition 1 subset $V(K)$ is of Z – type. Using Theorem *A* again one can see that there exists a point $\bar{x} \in D$ such that $\bar{x} \in V(\bar{x})$ i.e. $\bar{x}^i \in V_i(\bar{x}^i)$ and

$$
f_i(\vec{x}^i, \vec{x}_i) = \inf_{z \in S_i(\vec{x}^i)} f_i(\vec{x}^i, z)
$$

for al $i \in I$.

In special case of Theorem 2, when K_i is a compact convex and S_i is the cross section of $K = \prod_{i \in I} K_i$ (i.e. $S_i : K^i \to 2^{K_i}$ is defined by $S_i(x_i) = \{ z \in X_i \mid (x^i, z) \in K \}$), then the continuous cross - section property from [5] clearly implies the assumption of Theorem 2 by letting $K_i = D_i$ for each $i \in I$. Therefore, Theorem 2 is an infinite generalization of Theorem in [6] to non - compact setting in not necessarily locally convex space.

REFERENCES

- [1] Aubin, J.P., and Ekeland, I., *Applied Nonlinear Analysis*, John Wiley & Sons, New York, 1984.
- [2] Fan, K., "Fixed point and minimax theorems in locally convex topological linear spaces", *Proc. Math. Acad. Sri. U.S.A*., 38 (1952) 121-126.
- [3] Hadžić, O.*, Fixed Point Theory in Topological Vector Spaces*, University of Novi Sad, Novi Sad, 1984.
- [4] Himmelberg, C.J., "Fixed point of compact multifunctions", *J. Math. Anal. Appl*, 38 (1972) 205-207.
- [5] Kaczynski, T., and Zeidan, V., "An application of Ky Fan fixed point theorem to an optimization problem", *Nonlinear Anal. TMA*, 13 (1989) 259-261.
- [6] Im, S.M., and Kim, W.K., "An application of Himmelberg's fixed point theorem to not compact optimization problems", *Bulletin of the Institute of Mathematics Academia Sinica*, 19(2) (1991) 147-151.