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Abstract: Let G be a graph with diameter D, maximum vertex degree Δ, the largest 
eigenvalue λ1 and m distinct eigenvalues. The products mΔ and (D+1) λ1 are called the 
tightness of G of the first and second type, respectively. In the recent literature it was 
suggested that graphs with a small tightness of the first type are good models for the 
multiprocessor interconnection networks. We study these and some other types of 
tightness and some related graph invariants and demonstrate their usefulness in the 
analysis of multiprocessor interconnection networks. Tightness values for graphs of some 
standard interconnection networks are determined. We also present some facts showing 
that the tightness of the second type is a relevant graph invariant. We prove that the 
number of connected graphs with a bounded tightness is finite. 

Keywords: Multiprocessor systems, interconnection topologies, spectra of graphs, maximum 
vertex degree, diameter. 

1. INTRODUCTION 

Usually, a multiprocessor system consists of a number of processing units, each 
having its own local memory [10]. This type of multiprocessor system is known as a 
distributed memory system. Processing units may be identical or with different 
characteristics (as it is the case in heterogeneous computer networks). 

 
∗ This work has been supported by Serbian Ministry of Science and Technological Development, 
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The processors within the distributed memory multiprocessor system 
communicate by sending/receiving messages through the communication links. The 
structure of communication links defines the topology of the multiprocessor system. The 
main drawback of multiprocessor systems is the communication overhead [3,18], the 
time required to exchange data between different processing units. 

The easiest way to minimize the communication time within the multiprocessor 
system is to use completely connected topologies, the so called parallel processors. 
Unfortunately, it may not be feasible to design such topologies for many reasons [18]. 
Therefore, different interconnection networks have been proposed. These networks have 
to satisfy two contradictory properties: to minimize the "number of wires" and to 
maximize the data exchange rate. This means that the paths connecting each two 
processors have to be as short as possible while the average number of connections per 
processor has to be as small as possible. 

Of course, multiprocessor interconnection networks can be modeled by 
(undirected, connected) graphs [15,16]. Vertices of these graphs represent the processors, 
while edges denote the connection links between adjacent processors. The two main 
parameters of the graph, which play an important role in the design of multiprocessor 
topologies are the maximum vertex degree Δ  and the diameter D. In other words,  
directly corresponds to the number of adjacent processors (vertices in the graph model), 
while D represent the length of the longest path in processor graph, i.e. the maximum 
distance between two processors. 

Δ

Recently, the link between the design of multiprocessor topologies and the 
theory of graph spectra [8] has been recognized [9]. The main conclusion is that the 
product of the number  of distinct eigenvalues of a graph adjacency matrix and Δ  has 
to be as small as possible. We call this product the tightness of the first type for a graph. 
Here we introduce the tightness of the second type as the product 

m

1( 1)D λ+ , where 1λ  is 
the largest eigenvalue of a graph .  G

In fact, we shall define various types of graph tightness, and investigate the 
relation between the tightness values and the suitability of the corresponding 
multiprocessor architecture. We show that the graphs with a small tightness of the second 
type are suitable for the design of multiprocessor topologies.  

The paper is organized as follows. The next section contains basic definitions 
from graph theory, and especially from the theory of graph spectra. Definitions and 
properties of some new graph invariants, with common name tightness are given in 
Section 3. Some of the widely used interconnection topologies are described in Section 4 
and their tightness values are discussed. In Section 5, we investigate quasi-regular trees 
and show that, according to the tightness of the second type, they can be suitable for the 
multiprocessor architectures. Graphs with few eigenvalues are reviewed in Section 6 with 
an indication that they can provide some sporadic examples of graphs with small 
tightness values. 
 

2. PRELIMINARIES FROM GRAPH THEORY 

The graph  consists of a non-empty finite set  whose elements we 
call vertices, while  represents the connections between vertices and its 
elements are called edges. The number of elements in V  we denote by , i.e. | |  

( , )G V E= V
E V V⊂ ×

n V n=
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and it represents the order of a graph . Two vertices are called adjacent if they are 
connected by an edge. The adjacency matrix A is used to represent the adjacency relation 
between vertices. The element  is equal to 1 if vertices i  and  are connected by an 
edge, otherwise = 0. 

G

ija j

ija
The number of neighbors vertex i  connected to is called vertex degree and it is 

denoted by . Maximum vertex degree id maxdΔ =  is the maximum over all 
. If there exists a path between any two vertices in  we say that graph  

is connected. Otherwise, G  is disconnected. Minimum number of edges along a path 
connecting two vertices is called distance between these two vertices. Maximum distance 
between two vertices in a connected graph is called diameter and it is denoted by .  

, 1,2...,id i n= G G

D
The characteristic polynomial of the adjacency matrix  of a graph  defined 

as det
A G

( )xI A−  is called the characteristic polynomial of  and is denoted by G ( )GP x . 
The eigenvalues of A (i.e. the zeros of ( )GP x ) and the spectrum of A (which consists of 
the n eigenvalues) are also called the eigenvalues and the spectrum of , respectively. 
The eigenvalues of a graph  with n vertices are usually denoted by 

G
G 1,..., nλ λ , they are 

real because A is symmetric.  Unless we indicate otherwise, we shall assume that λ1 ≥ λ2 
≥⋅⋅⋅≥ λn and the largest eigenvalue λ1 is called the index of G. The number of distinct 
eigenvalues is denoted by m. 

In graph theory and in the theory of graph spectra, some special types of graphs 
are studied in detail and their characteristics are well known and summarized in literature 
(see, for example, [8]). We emphasize complete graphs Kn of order n with each two 
vertices connected by an edge (the number of edges is equal to n(n-1)/2). The other 
extreme is a path Pn, containing n vertices and n-1 edges. Connecting two end vertices of 
a path Pn by an edge we obtain a circuit Cn. Complete bipartite graphs  consist of 
n1+n2 vertices divided into two sets of the cardinalities n1 and n2 with the edges 
connecting each vertex from one set to all the vertices in the other set. This means that 
the number of edges is n1n2. More generally, bipartite graphs consist of two sets of 
vertices with the edges connecting vertices from one set to vertices in the other set. A 
special case of complete bipartite graph is a star, more precisely, Sn = K1,n-1 containing 
central vertex connected to all the others by n-1 edges.  

21nnK

These types of graphs are used in various combinations for multiprocessor 
system design. In Section 4 we shall analyze some widely used multiprocessor 
interconnection networks trying to describe their suitability by using tools from the graph 
theory. 
 

3. VARIOUS TYPES OF TIGHTNESS OF A GRAPH 
 
As we already pointed out, the graph invariant obtained as the product of the 

number of distinct eigenvalues m and the maximum vertex degree Δ of G has been 
investigated in [9] related to the design of multiprocessor topologies. The main 
conclusion of [9] with respect to the multiprocessor design and, particularly to the load 
balancing within given multiprocessor systems was the following: if mΔ is small for a 
given graph G, the corresponding multiprocessor topology was expected to have good 
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communication properties and has been called well-suited. It has been pointed out that 
there exists an efficient algorithm which provides optimal load balancing within m-1 
computational steps. The graphs with large mΔ were called ill-suited and were not 
considered suitable for design multiprocessor networks. 

On the other hand there are many known widely used multiprocessor topologies 
based on graphs which appear to be ill-suited according to [9]. Such an example is the 
star graph Sn = K1,n-1. 

In order to extend the application of the theory of graph spectra to the design of 
multiprocessor topologies, in this paper we define some other types of tightness and 
investigate their suitability for describing the corresponding interconnection networks. 
 
Definition 1. The tightness t1 of a graph G is defined as the product of the number of 
distinct eigenvalues m and the maximum vertex degree Δ of G, i.e. t1(G) = mΔ. 

As we can see, tightness is defined as the product of one spectral invariant m 
and one structural invariant Δ. Therefore, we will refer to this type of tightness as the 
mixed tightness. In the following, we introduce two alternative (homogeneous) 
definitions of tightness, the structural and the spectral one. Moreover, we introduce 
another mixed tightness, and therefore t1 is called type one mixed tightness. 
 
Definition 2. Structural tightness stt(G) is product (D+1)Δ where D is the diameter and Δ 
is the maximum vertex degree of a graph G. 
 
Definition 3. Spectral tightness spt(G) is product of the number of distinct eigenvalues m 
and the largest eigenvalue λ1 of a graph G. 
 
Definition 4. Second type mixed tightness t2(G) is defined as a function of the diameter 
D of G and the largest eigenvalue λ1, i.e. t2(G) = (D+1)λ1. 
 

If the type of tightness is not relevant for the discussion, all four types of 
tightness will be called, for short, tightness. In general discussions we shall use t1, t2, stt, 
spt independently of a graph to denote the corresponding tightness. An alternative term 
for tightness could be the word reach. 

 The use of the largest eigenvalue, i.e. the index, of a graph instead of the 
maximal vertex degree in description of multiprocessor topologies seems to be 
appropriate for several reasons. By Theorem 1.12 of [8] the index of a graph is equal to a 
kind of mean value of vertex degrees, i.e. to the so called dynamical mean value, which 
takes into account not only immediate neighbors of vertices but also neighbors of 
neighbors, etc. The index is also known to be a measure of the extent of branching of a 
graph, and in particular of a tree (see [6] for the application in chemical context and [5] 
for a treatment of directing branch and bound algorithms for the travelling salesman 
problem). The index, known also as the spectral radius, is a mathematically very 
important graph parameter as presented, for example, in a survey paper [7]. 

 
According to the well-known inequality ([8], p. 85) 

min 1 max ,d d dλ≤ ≤ ≤ = Δ we have that spt ( ) 1( )G t G≤ . 
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Here dmin and dmax denote minimum and maximum vertex degree, respectively 
and d  is used to denote the average value of vertex degrees. 

The relation between stt(G) and t1(G) is t1(G) ≥ stt(G), since m ≥ 1+D (see 
Theorem 3.13. from [8]). For distance-regular graphs [2] m = 1+D holds. 

We also have t2(G)≤ spt(G) and  t2(G)≤ stt(G). 
 The two homogeneous tightness values appear to be incomparable. To illustrate 
this, let us consider star graph with n=5 vertices (S5=K1,4) given on Figure 1a, and the 
graph 5S  obtained if new edges are added to the star graph as it is shown on Figure 1b. 

 

a) b)

 
  

 
 
 

 
Figure 1: a) Star graph with n=5 vertices and         b) extended star graph 

 
 From [8], pp. 272⎯275, Table 1, we can see that for S5 it holds D=2, Δ=4, m=3 
and λ1=2 and hence spt(S5)=mλ1=6 < 12=(D+1)Δ=stt(S5). On the other hand for the graph 

5S  we have D=2, Δ=4, m=4 and λ1=3.2361 yielding to spt( 5S ) > stt( 5S ). 
The above mentioned table shows that this is not the only example. For n=5, 

there exist 21 different graphs. Only for 3 of them the two homogeneous tightness have 
the same value, while stt(G) is smaller for 9 graphs, and for the remaining 9 spt(G) has a 
smaller value.  

For two graph invariants α(G) and β(G) we shall say that the relation α(G)  
β(G) holds if α(G) ≤ β(G) holds for any graph G. With this definition we have the Hasse 
diagram for the relation ≺  between various types of tightness given on Figure 2. 
 

≺

t G( )

t G ( )

stt G( ) spt G( )

1

2  

 
Figure 2: Partial order relation between different types of graph tightness 

 

 In order to study the behavior of a property or invariant of graphs when the 
number of vertices varies, it is important for that property (invariant) to be scalable. 
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Scalability means that for each n there exists a graph with n vertices having that property 
(invariant of certain value). 

A family of graphs is called scalable if for any n there exists an n-vertex graph 
in this family. For example, in [9] the scalable families of sparse graphs (maximal vertex 
degree O(log n)) with small number of distinct eigenvalues are considered. Obviously, 
sometimes it is difficult to construct scalable families of graphs for a given property. 

We present a theorem which seems to be of fundamental importance in the 
study of the tightness of a graph. 
 

Theorem 1. For any kind of tightness, the number of connected graphs with a bounded 
tightness is finite. 
 

Proof: Let t(G) ≤ a for a given positive integer a, where t(G) stands for any kind of 
tightness. In all four cases, we shall prove that there exists a number b such that both 
diameter D and maximum vertex degree Δ are bounded by b. We need two auxiliary 
results from the theory of graph spectra. 

By Theorem 3.13. from [8] we have D ≤ m-1 for the diameter D of G. For the 

largest eigenvalue λ1 of a graph G the inequality λ1 ≥ Δ  holds (cf. [8], p. 112). 
Now, t(G) ≤ a implies 

Case t(G)=t1(G).  mΔ ≤ a, m ≤ a and Δ ≤ a, D ≤ a-1, and we can adopt b = a; 
Case t(G) = stt(G). (D+1)Δ ≤ a, D ≤ a-1 and Δ ≤ a, here again b = a; 
Case t(G) = spt(G). mλ1 ≤ a, m ≤ a and λ1 ≤ a, D ≤ a-1, and Δ ≤ λ1

2 ≤ a2, and now b = a2; 
Case t(G)=t2(G). (D+1)λ1 ≤ a, D ≤ a-1, and Δ ≤ a2, and again b = a2. 

It is well known that for the number of vertices n in G the following inequality 
holds 

2 11 ( 1) ( 1) ( 1)Dn .−≤ + Δ + Δ Δ − + Δ Δ − + + Δ Δ −"  

 (Here, we have enumerated all vertices of G starting from a particular vertex and 
counting maximal numbers of neighbors at particular distances from that vertex.) Based 
on this relation and assuming that both D and Δ are bounded by a number b, we have 
 

2 3 2 3

2 3

1 1
1 .

D b

b

n
b b b b

< + Δ + Δ + Δ + + Δ ≤ + Δ + Δ + Δ + + Δ
≤ + + + + +

" "
"

 

In such a way we proved that the number of vertices of a connected graph with a 
bounded tightness is bounded. Therefore, it is obvious that it can be only finitely many 
such graphs and the theorem is proved.                                                                              � 
 
Corollary 1. The tightness of graphs in any scalable family of graphs is unbounded. 
 
Corollary 2.  Any scalable family of graphs contains a sequence of graphs, not 
necessarily scalable, with increasing tightness diverging to +∞. 

 
The asymptotic behavior of the tightness, when n tends towards +∞, is of 

particular interest in the analysis of multiprocessor interconnection networks. 
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 In a forthcoming paper [4] we shall present further results involving theoretical 
analysis of all four types of tightness. Here we reproduce just one theorem from that 
article. 
 
Theorem. Among connected graphs G on n (n ≤ 10) vertices the value t1(G) is minimal 
for following graphs: 
                            K2,            for n = 2, 
                            K3,            for n = 3, 
                            K4,            for n = 4, 
                            C5,            for n = 5, 
                            C6,             for n = 6, 
                            C7,            for n = 7, 
                            C8,         for n = 8, 
                            C9,        for n = 9, 
      the Petersen graph,   for n = 10. 
 
The theorem is obtained by theoretical means without using a computer search. 
 

4. A SURVEY OF FREQUENTLY USED INTERCONNECTION 
NETWORKS  

 
 In this section we survey the graphs that are often used to model multiprocessor 
interconnection networks and examine the corresponding tightness values. Since the 
tightness is product of two positive quantities, it is necessary for both of them to have 
small values to assure a small value of tightness. 
 1. An example of such a graph is the d-dimensional hypercube Q(d). It consists 
of n = 2d vertices, each of them connected with d neighbors. The vertices are labeled 
starting from 0 to n-1 (considered as binary numbers). An edge connects two vertices 
with binary numbers differing in only one bit. For these graphs we have m = d+1, D = d, 
Δ = d, λ1 = d and all four types of tightness are equal to (d+1)d=O((log n)2). 
 2. Another example is butterfly graph B(k) containing  vertices. The 
vertices of this graph are organized in k+1 levels (columns) each containing 2k vertices. 
In each column, vertices are labeled in the same way (from 0 to 2k-1). An edge connects 
two vertices if and only if they are in the consecutive columns i and i+1 and their 
numbers are the same or they differ only in the bit at the i-th position. The maximum 
vertex degree is Δ = 4 (the vertices from two outer columns have degree 2 and the 
vertices in k-1 inner columns all have degree 4). Diameter D equals 2k while the 
spectrum is given in [9], Theorem 11. Therefrom, the largest eigenvalue is λ1 = 4 cos 
(π/(k+1)). However, it is not obvious how to determine parameter m. Therefore, we got 
only the values stt = 4(2k+1) = O(log n) and t2 = 4(2k+1) cos (π/(k+1)) = O(k) = O(log n). 

( 1)2kn k= +

 Widely used interconnection topologies include some kinds of trees, meshes and 
toruses [14]. We shall describe these structures in some details. 
 3. Stars Sn = K1,n-1 are considered as ill-suited topologies in [9], since the 
tightness t1(Sn) is large. However stars are widely used in multiprocessor system design: 
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the so-called master-slave concept is based on the star graph structure. This fact may be 
an indication that the classification of multiprocessor interconnection networks based on 
the value for t1 is not always adequate. 

 

For Sn: m = 3, Δ = n-1, D = 2, λ1 = 1n −  and we have 

t1(Sn) = 3(n-1), 
stt (Sn) = 3(n-1),                         spt (Sn) = 3 1n − , 
 t2 (Sn) = 3 1n − . 
 

Stars are only the special case in more general class of bipartite graphs. The 
main representatives of this class are complete bipartite graphs 

1 2n nK  having vertices 
divided into two sets and edges connecting each vertex from one set to all vertices in the 
other set. For 

1 2n nK  we have m = 3, Δ = max{n1, n2}, D = 2, λ1 = 1 2n n  and hence 
 

1 2 1 2 1 2 1 21 1 2 2( ) ( ) 3max{ , }, ( ) ( ) 3 1 2n n n n n n n nt K stt K n n spt K t K n n= = = = .  

In the case n1 = n2 = n/2 all tightness values are of order O(n). However, for the 
star Sn we have t2(Sn) = O( n ). This may be the indication that complete bipartite graphs 
are suitable for modelling multiprocessor interconnection networks only in some special 
cases. � 

4. Mesh or greed (Figure. 3a) consists of n = n1n2 vertices organized within 
layers. We can enumerate vertices with two indices, like the elements of a n1 × n2 matrix. 
Each vertex is connected to its neighbors (the ones whose one of the indices is differing 
from its own by one). Inner vertices have 4 neighbors, corner ones only 2, while the outer 
(but not corner ones) are of degree 3. Therefore, Δ = 4, D = n1 + n2 - 2. Spectrum is given 
in [8], p. 74. In particular, the largest eigenvalue is λ1 = 2cos (π/(n1+1)) + 2cos (π/(n2 
+1)) and for the tightness of the second type we obtain t2 = (n1 + n2 - 1)(2cos (π/(n1+1)) + 
2cos(π /(n2 +1))). Hence, t2 = O( n ) if n1 ≈ n2.  � 
 
 

a) b)

 
 
 
 
 
 
 

Figure 3: a) Mesh of order 3 × 4 and b) corresponding torus architecture 
 
 

5. Torus (Figure 3b) is obtained if mesh architecture is “closed” with respect to 
both dimensions. We do not distinguish corner or outer vertices any more. The 
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characteristics of a torus are Δ = 4, D = [n1/2] + [n2/2]. Spectrum is given in [8], p. 75. In 
particular, the largest eigenvalue is λ1 = 2 cos (2π/n1) + 2 cos (2π/n2) and thus t2 = ([n1/2] 
+ [n2/2] + 1) (2 cos (2π/n1) + 2 cos (2π/n2)). As in the previous case (for mesh) we have t2 
= O( n ) if n1 ≈ n2. � 
 

All these architectures satisfy the both requests of designing the multiprocessor 
topologies (small distance between processors and small number of wires). Those of 
them which have a small value for t1 are called well-suited interconnection topologies in 
[9]. The other topologies are called ill-suited. Therefore, according to [9], well-suited and 
ill-suited topologies are distinguished by the value for the mixed tightness of the first 
type t1(G). 
 The star example suggests that t2(G) is more appropriate parameter for selecting 
well-suited interconnection topologies than t1(G). Namely, the classification based on the 
tightness t2 seems to be more adequate since it includes stars into the category of well-
suited structures. 
 The obvious conclusion following from the Hasse diagram given on Figure 2, is 
that a well-suited interconnection network according to the value for t1 remains well-
suited also when t2 is taken into consideration. In this way, some new graphs become 
suitable for modelling multiprocessor interconnection networks. Some of these "new" 
types of graphs have already been recognized by multiprocessor system designers (like 
stars and bipartite graphs). In the next section we propose a new family of t2-based well-
suited trees. 
 

 
5. COMPLETE QUASI-REGULAR TREES 

 
In this section we shall study properties of some trees and show that they are 

suitable for our purposes. 
The complete quasi-regular tree T(d,k) (d=2,3,..., k=1,2,...) is a tree consisting of 

a central vertex and k layers of other vertices, adjacencies of vertices being defined in the 
following way. 
 The central vertex (the one on the layer 0) is adjacent to d vertices in the first 
layer. 

1. For any i=1,2,...,k-1 each vertex in the i-th layer is adjacent to d-1 vertices in the 
(i+1)-th layer (and one in the (i-1)-th layer). 
The graph T(3,3) is given in the Figure 4. 

 

 
 
 

 

Figure 4: Quasi-regular tree T(3,3) 

The graph T(d,k) for d > 2, has n = 1 + d((d - 1)k-1)/(d-2) vertices, maximal 
vertex degree Δ = d, diameter D = 2k and the largest eigenvalue λ1 < d. (The spectrum of 
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T(d,k) has been determined in [13]). We have k = O(log n) and, since t2(T(d,k)) = (D + 
1)λ1 < (D + 1)Δ = stt(T(d,k)) = (2k + 1)d, we obtain t2(T(d,k)) = O(log n). This is 
asymptotically better than in the case of hypercube Q(d), where 

_ 2( ( )) ((log )t Q d O n= ∧2)or in the case of a star graph where t2(K1,n-1) = O( n ) (see 
Section 4). Note that the path Pn with t2(Pn) = 2n cos(\π(n+1))=O(n) also performs worse. 

The coefficient of the main term in the expression for t2(T(d,k)) is equal to 
d/log(d-1) with values  4.328, 3.641, 3.607, 3.728, 3.907, 4.111, 4.328 and  4.551 for d = 
3,4,5,6,7,8,9,10 respectively. Further on, the coefficient is an increasing function of d. 
Therefore the small values of d are desirable and we shall discuss in details only the case 
d = 3 since it is suitable for resolving the stability issues. The other cases with small 
values of d can be analyzed analogously. 

To examine the suitability of graphs T(3,k), we compared its tightness values 
with the corresponding ones for two interesting classes of trees: paths Pn and stars Sn = 
K1,n-1 containing the same number of vertices n = 3 ⋅ 2k-2. The results for small values of k 
are summarized in the Table 1. 

 
Table 1: Tightness values for some trees 

k n Pn t1(≥ t2) T(3,k) stt(≥ t2) Sn t1 (t2) 
1 4 4⋅2 3⋅3 3⋅3   (3⋅ 3 ) 
2 10 10⋅2 5⋅3 3⋅9   (3⋅ 9  = 3⋅3) 
3 22 22⋅2 7⋅3 3⋅21   (3⋅ 21  < 3⋅5) 
4 46 46⋅2 9⋅3 3⋅45   (3⋅ 45 < 3⋅7) 
5 94 94⋅2 11⋅3 3⋅93   (3⋅ 93 < 3⋅10) 
6 190 190⋅2 13⋅3 3⋅189   (3⋅ 189 > 3⋅13) 
7 382 382⋅2 15⋅3 3⋅381   (3⋅ 381 > 3⋅19) 

 
Since for paths and quasi-regular trees mixed tightness of the second type has 

almost the same value as the mixed tightness of the first type, we put only the values for 
the first type mixed tightness for paths, while for T(n,k) the structural tightness is given. 

The last column (for stars) contains the values for two types of tightness, first 
for the mixed tightness of the first type and then the value for the mixed tightness of the 
second type in the parentheses. 

As it can be seen from the Table 1, the tightness values for paths Pn are 
significantly larger than the values stt(T(3,k)). Star architecture seems to be better for 
small values of k, but starting from k = 6, we have t2(T(3,k)) < stt(T(3,k)) < t2(Sn). 

The intention when comparing complete quasi-regular trees T(3,k) with paths Pn 
and stars Sn is to examine their place between two kinds of trees, extremal for many 
graph invariants. In particular, among all trees with a given number of vertices, the 
largest eigenvalue λ1 and maximum vertex degree Δ have minimum values for the path 
and maximum for the star, while, just opposite, the number of distinct eigenvalues m and 
the diameter D have maximum values for the path and minimum for the star. Since the 
tightness (of any type) is the product of two graph invariants having, in the above sense, 
opposite behavior, it is expected that its extremal value is attained "somewhere in the 
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middle". Therefore, for a tree of special structure (like quasi-regular trees) we expect the 
both tendencies to be in the equilibrium. 

It is not difficult to extend the family of complete quasi-regular trees to a 
scalable family. A quasi-regular tree is a tree obtained from a complete quasi-regular 
tree by deleting some of its vertices of degree 1. If none or all vertices of degree 1 are 
deleted from a complete quasi-regular tree we obtain again a complete quasi-regular tree. 
Hence, a complete quasi-regular tree is also a quasi-regular tree. 

While a complete quasi-regular tree is unique for the given number of vertices, 
there are several non-isomorphic quasi-regular trees with the same number of vertices 
which are not complete. Therefore, there are several ways to construct a scalable family 
of quasi-regular trees. The following way is a very natural one. 

Consider a complete quasi-regular tree T(d,k) and perform the breadth first 
search through the vertex set starting from the central vertex. Adding to T(d,k-1) pendant 
vertices of T(d,k) in the order they are traversed in the mentioned breadth first search 
defines the desired family of quasi-regular trees. 

The constructed family has the property that its each member has the largest 
eigenvalue λ1 among all quasi-regular trees with the same number of vertices [17]. At the 
first glance this property is something what we do not want since we are looking for 
graphs with the tightness t2 as small as possible. Instead we would prefer, unlike the 
breadth first search, to keep adding pendant vertices to T(d,k-1) in such a balanced way 
around that we always get a quasi-regular tree with largest eigenvalue as small as 
possible. Such a way of adding vertices is not known and its finding represents a difficult 
open problem in spectral graph theory. 

A scalable family of trees with O((log n)2) distinct eigenvalues have been 
studied in [9]. An open question remains to compare the performances of these two 
families. 

In our context fullerene graphs are also interesting, corresponding to carbon 
compounds called fullerenes. Mathematically, fullerene graphs are planar regular graphs 
of degree 3 having as faces only pentagons and hexagons. It follows from the Euler 
theorem for planar graphs that the number of pentagons is exactly 12. Although being 
planar, fullerene graphs are represented (and this really corresponds to actual positions of 
carbon atoms in a fullerene) in 3-space with its vertices embedded in a quasi-spherical 
surface. 

A typical fullerene C60 is given in Figure 5. It can be described also as a 
truncated icosahedron and has the shape of a football. 
 

a) b)  
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Figure 5: a) Planar and b) 3D visualization of the icosahedral fullerene C60 

 
Without elaborating in details we indicate the relevance of fullerene graphs to 

our subject by comparing them with quasi-regular trees. 
 For a given number of vertices the largest eigenvalues of the two graphs are 
roughly equal (equal to 3 in fullerenes and close to 3 in quasi-regular trees) while the 
diameters are also comparable. This means that the tightness t2 is approximately the same 
in both cases. In particular, values of relevant invariants for the fullerene graph C60 are n 
= 60, D = 9 (see [11]), m = 15 (see [12]), Δ = λ1 = 3. Hence, stt = t2 = 30. A quasi-regular 
tree on 60 vertices has diameter D = 9 and we also get stt = 30. 

Note that the tightness t1 is not very small since it is known that fullerene graphs 
have a large number of distinct eigenvalues [12]. It is also interesting that fullerene 
graphs have a nice 3D-representation in which the coordinates of the positions of vertices 
can be calculated from the eigenvectors of the adjacency matrix (the so called topological 
coordinates which were also used in producing the atlas [12]). 
 

6. GRAPHS WITH FEW DISTINCT EIGENVALUES 
 

 Graphs with a small number of distinct eigenvalues have attracted much 
attention in the research community. Since they are of interest in finding well-suited 
interconnection topologies, we shall survey some basic facts about them in this section. 
 The number of distinct eigenvalues of a graph is correlated with its symmetry 
property [1]: the graphs with a small number of distinct eigenvalues are (very frequently) 
highly symmetric. They also have a small diameter. 

Let m be the number of distinct eigenvalues of a graph G. 
Trivial cases are m = 1 and m = 2. If m = 1, all eigenvalues are equal to 0 and G 

consists of isolated vertices. Such a graph, of course, is not suitable for the 
multiprocessor topology since it does not contain communication links and the data 
exchange between processors is impossible. In the case m = 2, if G is connected it is a 
complete graph with  vertices and eigenvalues are λ1 = n-1, and λi=-1, for i = 
2,3,…,n, i.e. it is the value of multiplicity n-1. Completely connected multiprocessor 
topologies were designed, but for a small n. When n is growing, it is hard not only to 
realize all the necessary wires, but also to control all required communications. 

2n ≥

Further, we shall consider only connected graphs. If m = 3 and G is regular, then 
G is strongly regular (cf. [8], p. 108). For example, the well known Petersen graph is 
strongly regular with distinct eigenvalues 3, 1, -2 of multiplicities 1, 5, 4 respectively. 

It is difficult to construct scalable families of strongly regular graphs and it is 
also not clear what would be the order of magnitude of the tightness in such families. It 
could be rather expected that one can find sporadic examples with small tightness 
compared with the number of vertices like it appears in the Petersen graph. Let us note 
that there are only finitely many strongly regular graphs and they cannot constitute a 
scalable family. 

There are also some non-regular graphs with three distinct eigenvalues [19]. 
Although, such graphs usually have a vertex adjacent to all other vertices they may still 
be of interest for the design of multiprocessor systems (like star graphs are). 
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Several classes of regular graphs with four distinct eigenvalues are described in 
[19], but the whole set is not described yet. 

Although graphs with few distinct eigenvalues allow a quick execution of load 
balancing algorithms [9], it is not expected that scalable families of such graphs with 
small tightness t1 or t2 can be constructed. 

7. CONCLUSION 

We have given several definitions of graph tightness in order to describe 
multiprocessor interconnection networks. It was shown that in scalable families the 
tightness of any kind is unbounded. Graphs which are expected to be good networks 
models have small tightness values. 

The material from this paper shows that the tightness t2(G) is more suitable than 
the tightness t1(G) (previously used in the literature) for describing and classifying 
multiprocessor interconnection networks. According to the classification based on t2(G), 
quasi-regular trees perform better than hypercube graphs. 
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