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Abstract: The fact that polynomial time algorithm is very unlikely to be devised for an 
optimal solving of the NP-hard problems strongly motivates both the researchers and the 
practitioners to try to solve such problems heuristically, by making a trade-off between 
computational time and solution’s quality. In other words, heuristic computation consists 
of trying to find not the best solution but one solution which is “close to” the optimal one 
in reasonable time. Among the classes of heuristic methods for NP-hard problems, the 
polynomial approximation algorithms aim at solving a given NP-hard problem in poly-
nomial time by computing feasible solutions that are, under some predefined criterion, as 
near to the optimal ones as possible. The polynomial approximation theory deals with the 
study of such algorithms. This survey first presents and analyzes time approximation 
algorithms for some classical examples of NP-hard problems. Secondly, it shows how 
classical notions and tools of complexity theory, such as polynomial reductions, can be 
matched with polynomial approximation in order to devise structural results for NP-hard 
optimization problems. Finally, it presents a quick description of what is commonly 
called inapproximability results. Such results provide limits on the approximability of the 
problems tackled. 
Keywords: Computational complexity, approximation algorithms. 

1. WHAT IS POLYNOMIAL APPROXIMATION AND WHY WE DO IT? 

It is widely believed that no polynomial algorithm can be devised for an optimal 
solving of the NP-hard problems. So, several approaches, more or less satisfactory, can 
be followed when one tries to solve them. Roughly speaking, these approaches belong to 
one of the following two families. 
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Exact (optimal) algorithms, that compute optimal solutions for the problems but 
run in exponential time; such algorithms are based upon either search tree-based methods 
(branch-and-bound, branch-and-cut, branch-and-price, etc.), or upon dynamic 
programming etc. 

Heuristic methods, that run faster than the exact algorithms and compute sub-
optimal solutions (that are, sometimes, unfeasible); the most notorious among these 
methods being:  

• the polyhedral methods,  
• the metaheuristics (simulated annealing, genetic algorithms, tabou, etc.),  
• the polynomial approximation algorithms with (a priori) performance 

guarantees.  
The goal of this overview is to make a general presentation of the last category 

of heuristic methods, that is, the polynomial approximation algorithms. 
What is polynomial approximation? Roughly speaking, this is the art to achieve 

feasible solutions with the objective value as close as possible (in some predefined sense) 
to the optimal value in polynomial time. How can we do it? Hopefully, the reader will see 
it in what follows. 

Why do we use polynomial approximation rather than other heuristic methods? 
There are several reasons for that. The main reasons are, in our opinion, both 
“operational” and “structural”. 

A central operational reason is that there are problems that describe natural 
situations and either require feasible solutions to be obtained quickly (i.e., in polynomial 
time) and this fact must be guaranteed a priori, or where optimum is misdefined or 
senseless. Also, it is sometimes necessary for a decision maker to have an a priori 
estimation of the performance of the algorithms used in the context of handling these 
problems. 

On the other hand, the main structural reason is that polynomial approximation 
is a natural extension of the complexity theory into the combinatorial optimization and it 
largely contributes to the enrichment of both these domains. 

The aim of the study of polynomial approximation of combinatorial 
optimization problems is to characterize the ability of a specific problem to be “well-
solved” in polynomial time. This is done by determining both the upper and the lower 
bounds of approximability, i.e., by exhibiting specific approximation algorithms that 
have achieved a given level of approximation on one side, and, on the other side, 
showing that no algorithm can possibly provide a better approximation level, until 
something strange and unexpected happens, i.e., until a very highly improbable 
complexity hypothesis (e.g., P = NP) holds. 

The existence of polynomial approximation as a scientific area was started by a 
seminal paper by [46]. Since then, this research programme is one of the most active 
research programmes in operational research, combinatorial optimization and theoretical 
computer science. 

 
2. PRELIMINARIES 

The object of polynomial approximation is the class of the so-called NPO 
problems. Informally, this is the class of optimization problems the “decision”-
counterparts of which are in NP. Let us recall that, for a maximization problem (the case 
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of a minimization problem is completely analogous), its decision version can be 
expressed as follows:  

“Is there a solution with value greater than, or equal to K ?”, where K  is a 
constant that, for the decision version, is a part of the instance.  

Solving a decision problem Π  becomes to answer the question defining by 
yes or no correctly. For example, for the decision version of MAX INDEPENDENT SET

Π
T

1: 
“given a graph  and a constant G K , is there an independent set of G  of the size at least 
K ?”, to solve it becomes to correctly answer the question if  has an independent set of 
size at least 

G
K or not.  

Formally, an NPO problem Π  is a four-tuple (I, Sol, m, goal) such that:  
• I is the set of instances (recognizable in polynomial time);  
• for I ∈ I, Sol( )I  is the set of feasible solutions of ; feasibility of any 

solution can be decided on in polynomial time;  
I

• for any I ∈ I, at least one feasible solution can be computed in polynomial 
time;  

• the objective value  of any solution , is computable in polynomial 
time;  

( , )m I S S

• .  goal {min,max}∈
We shall now briefly present some of the basic notions of the polynomial 

approximation theory. More details can be found in [5, 44, 66, 72]. 
Having given an instance  of a combinatorial maximization (resp., 

minimization) problem Π = (I, Sol, m, goal), we denote by 
I

( )Iω ,  and opt (A ( , )m I S )I  
the value of the worst solution of  (in the sense of objective function), the value of a 
solution  (computed by some polynomial time approximation algorithm  supposed 
to feasibly solve the problem ), and the optimal value

I
S A

Π 2 for , respectively. The worst 
solution of  is the optimal solution for  with respect to the NPO problem Π′ = (I, Sol, 
m, goal′) where:  

I
I I

 
There exist mainly two paradigms dealing with polynomial approximation.  
Standard approximation. The quality of an approximation algorithm A is 

expressed by the ratio: 

 
Note that the approximation ratio for minimization problems is in [1 , while 

for the maximization ones this ratio is in .  
, )∞

(0,1]
Differential approximation. The quality of an approximation algorithm A is 

expressed by the ratio: 

                                                 
1 We properly define this problem in Section 4.1. 
2 The value of an optimal solution. 
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The value of the differential ratio is always in , independently on the 

optimization goal of the problem.  
[0,1]

For both paradigms, the closer the ratios are to 1, the better the performance of 
the approximation algorithm A. Let us also note that, as we will see, the results obtained 
by adopting one or the other of the two paradigms are very often different even for the 
same problem. 

The rest of the paper has been organized as follows. In Section 3 the main 
approximability classes have been defined. In Section 4 we have analyzed the polynomial 
approximation algorithms for several well-known hard optimization problems. In Section 
5, we have shown how the main tool of the complexity theory, polynomial reductions, 
can be adapted to the framework of polynomial approximation, in order to produce 
structural results. In Section 6 we have said a few words about the limits of 
approximability, i.e., for inapproximability of NP-hard problems. Providing 
inapproximability results that state that a specific problem is not approximable within 
better than some approximation level is crucial (although somewhat far from the classical 
operational researchers concerns; for this reason this part of the paper will be short) for 
characterizing the approximability of NP-hard problems and for the understanding of 
their structure. Finally, in Section 7 we have presented a quick overview on the 
completeness result in the approximation classes. 

To be brief, only the problems discussed in detail in this paper will be defined. 
For the other ones, the interested reader can referred to [35]. Also, for the notions and 
definitions of the graph theory, one can refered to [16]. 

 
3. APPROXIMATION CLASSES 

According to the best approximation ratios known for them, NP-hard problems 
are classified into approximability classes. These classes create a kind of hierarchy in the 
class of the NP-hard problems. The best known among them (going from the pessimistic 
to the optimistic ones) are the following classes (for any standard-approximation class C, 
DC denotes the respective differential class).  

Exp-APX and Exp-DAPX. The classes of problems for which the best ratio 
known is exponential (or the inverse3 of an exponential) with the size of their instance. 
The notorious member of Exp-APX is MIN TSP. On the other hand, no natural 
combinatorial optimization problem is still known to be in Exp-DAPX.  

Poly-APX and Poly-DAPX. The classes of problems for which the best ratio 
known is polynomial (or the inverse of a polynomial) with the size of their instance. MAX 
INDEPENDENT SET, MAX CLIQUE, MIN COLORING, etc., belong to Poly-APX. On the other 
hand, MAX INDEPENDENT SET, MAX CLIQUE, MIN VERTEX COVER, MIN SET COVER, etc., 
belong to Poly-DAPX.  

Log-APX and Log-DAPX. The classes of problems for which the best ratio 
known is an logarithm (or the inverse of an logarithm) of the size of their instance. MIN 

                                                 
3 Recall that when goal=max the approximation ratio is smaller than 1. 
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SET COVER and MIN DOMINATING SET are the most notorious representatives of Log-APX. 
On the other hand, no natural combinatorial problem is known to be in Log-DAPX.  

APX and DAPX. Here the “more optimistic” approximability classes start. APX 
and DAPX are the classes of problems approximable within the ratios that are fixed 
constants. MIN VERTEX COVER, MIN METRIC TSP4, BIN PACKING, MAX TSP, etc., belong to 
APX, while MIN TSP, MAX TSP, MIN COLORING, etc., belong to DAPX.  

PTAS and DPTAS. The classes of problems admitting polynomial time 
approximation schemata. A polynomial time approximation scheme, is a sequence of 
algorithms  achieving ratio 1εA ε+ , for every > 0ε  (1 ε−  for maximization problems, 
or for the differential paradigm), in time which is polynomial with the size of the instance 
but exponential with 1/ε . MAX PLANAR INDEPENDENT SETT

5, MIN PLANAR VERTEX 

COVER6, MIN EUCLIDEAN TSP7, etc., are in PTAS. On the other hand, MAX INDEPENDENT 
SET, MIN PLANAR VERTEX COVER, BIN PACKING, etc., are known to belong to DPTAS.  

FPTAS and DFPTAS. The classes of problems admitting fully polynomial time 
approximation schemata. A fully polynomial time approximation scheme is a polynomial 
time approximation scheme that is, furthermore, polynomial with 1/ε . Also, KNAPSACK 
is in both FPTAS and DFPTAS.  

Let us also mention the existence of another approximability class denoted by 0-
DAPX (defined in [13]) that is meaningful only for the differential approximation 
paradigm. 0-DAPX is the class of problems for which any polynomial algorithm returns 
the worst solution in at least one of their instances. In other words, for problems in 0-
DAPX, the differential approximation ratio is equal to 0. MIN INDEPENDENT DOMINATING 
SET is known to be in 0-DAPX. 

Finally, let us note that, judging by the way the approximability classes are 
defined (i.e., as functions of the instance size), there is indeed a continuum of such 
classes. Figures 1 and 2 illustrate the approximability classes landscapes for standard and 
differential approximability paradigms, respectively. 

Dealing with the classes defined above, the following inclusions hold:  

 
These inclusions are strict unless P = NP. Indeed, for any of these classes, there 

are natural problems that belong to each of them but not to the immediately smaller ones. 
For instance, for the standard paradigm:  

                                                 
4 MIN TSP in complete graphs whose edge-weights verify the triangle-inequality. 
5 MAX INDEPENDENT SET in planar graphs. 
6 MIN VERTEX COVER in planar graphs. 
7 MIN METRIC TSP in (0,1)-plane. 
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Figure 1: Standard approximability classes (under the assumption P ≠ NP). 

 

 

Figure 2: Differential classes (under the assumption P ≠ NP). 
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4 APPROXIMATION ALGORITHMS FOR SEVERAL NP-HARD 
PROBLEMS 

4.1. Max independent set  

Given a graph , the MAX INDEPENDENT SET problem consists of 
determining a maximum-size set V

( , )G V E
V′ ⊆  so that, for every ( , )u v V V′ ′∈ × , ( , .  )u v E∉

Let us first consider the integer-linear formulation of the MAX INDEPENDENT SET 
and its linear relaxation, denoted by MAX INDEPENDENT SET-R, where in the given graph 

, ( , )G V E A  denotes its incidence matrix:  

 

The following seminal theorem, due to [57] gives a very interesting 
characterization for the basic optimal solution of (2). 

Theorem 1. ([57]). The basic optimal solution of MAX INDEPENDENT SET-R is 
semi-integral, i.e., it assigns values from { to the variables. If ,  and  
are the subsets of V  associated with 0, 1 et 1/2, respectively, then there exists a 
maximum independent set  so that: 

0,1,1/2} 0V 1V 1/2V

*S
1.   *

1 SV ⊆
2.   *

0 \ SVV ⊆
A basic corollary of Theorem 1 is that in order to solve MAX INDEPENDENT SET, 

one can first solve its linear relaxation MAX INDEPENDENT SET-R (this can be done in 
polynomial time [3, 37, 48, 69]) and store  and then solve the MAX INDEPENDENT SET 
in some way in , i.e., the subgraph of G  induced by . 

1V

1/2[G V ]

]

1/2V
Indeed, the solution of the MAX INDEPENDENT SET-R provides sets ,  and 

 that form a partition of V . Furthermore, by the constraint set of this program, edges 
can exist into  and  and between  and  and  and , but not between  
and  (see also Figure 3 where thick lines indicate the possible existence of edges 
between vertex-sets). So, the union of  (that is an independent set per se) and of an 
independent set of  is an independent set for the whole of G . 

0V 1V

1/2V

0V 1/2V 1V 0V 0V 1/2V 1V

1/2V

1V

1/2[G V
Let us now consider the following algorithm, due to [43], denoted by IS:  
1. solve MAX INDEPENDENT SET-R in order to determine ,  et ;  0V 1V 1/2V
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2. color  with at most 1/2[G V ] 1/2( [ ])G VΔ  colors (where, for a graph ,  

denotes its maximum degree) using the algorithm by [53]; let  be the 
largest color  

G ( )GΔ

Ŝ

3. output   1
ˆ=S V S∪

 

 

Figure: 3: A graph and the possibility of existence of edges between sets ,  and 

 computed by the solution of MAX INDEPENDENT SET-R. 

G 0V 1V

1/2V

Theorem 2.The algorithm IS achieves the approximation ratio  for the 
MAX INDEPENDENT SET problem. 

2/ ( )GΔ

Proof. Let us first recall that the vertices of a graph G  can be feasibly colored8 
with at most ( )GΔ  colors in polynomial time ([53]). This result is, in fact, the 
constructive proof of an existential theorem about such coloring originally stated by [18]. 

 
Fix a maximum independent set  of G  that contains  (by item 1 in 

Theorem 1 this is always possible). Since  is the largest of the at most  
colors (independent sets) produced in step 2 of Algorithm IS, its size satisfies:  

*S 1V

Ŝ 1/2( [ ])G VΔ

[ ]( )
1/2

1/2

ˆ V
S

G V
≥
Δ

 (3) 

The size of  returned by the algorithm at step 3 is given by:  S

[ ]( )
(3)

1/2 1/2
1 1 1

1/2

ˆ( , ) =| |=
( )

V V
m S G S V S V V

GG V
+ ≥ + ≥ +

ΔΔ
 (4) 

                                                 
8 On the given graph , a coloring of V  consists of coloring the vertices of V  in such a 
way that no adjacent vertices receive the same color; in other words, a color has to be an 
independent set and a coloring of V  is, indeed, a partition of V  into independent sets. 

( , )G V E
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Finally, denote by  a maximum independent set in . Observe that the 
value of the optimal solution for MAX INDEPENDENT SET-R in  is equal to . 
Since MAX INDEPENDENT SET is a maximization problem, the objective value of (integer) 
MAX INDEPENDENT SET is bounded above by the objective value of (continuous) MAX 
INDEPENDENT SET-R. Hence:  

*
1/2S 1/2[G V ]

]1/2[G V 1/2 /2V

1/2*
1/2 2

V
S ≤  (5) 

Denote by ( )Gα , the size of . Then, obviously, the following holds: 

opt

*S
(5)

1/2* *
1 1/2 1( ) = =

2
V

G S V S V+ ≤ +  (6) 

Putting together (4) and (6) we get the claimed ratio and complete the proof of 
the theorem. 

A slight improvement of the ratio claimed in Theorem 2 appears in [63]. 
An immediate corollary of Theorem 2 is that MAX INDEPENDENT SET belongs to 

Poly-APX. Also, since the value ( )Gω  of the worst solution to the problem is 0 (i.e., we 
can consider the empty vertex-set as a feasible MAX INDEPENDENT SET solution), 
standard- and differential-approximation ratios coincide. So, MAX INDEPENDENT SET 
belongs to Poly-DAPX also. Finally, let us note that the strongest approximation results 
known for this problem are the following:  

 MAX INDEPENDENT SET is asymptotically approximable (i.e., for large  
within ratio , for every fixed constant  ([28, 64]);  

( )GΔ
/ ( )k GΔ k

 MAX INDEPENDENT SET is approximable within ratio  ([39]) and 
within  ([29]);  

2( /logO n n)

)
(log / ( ) loglog )O n G nΔ

 MAX INDEPENDENT SET is inapproximable within better than  for 
any 

1(O nε −

> 0ε , unless P = NP ([42]).  
 

4.2. Min set cover  

Given a ground set  and a collection 1  of 
subsets of , MIN SET COVER consists of determining a minimum-size sub-collection 

 that covers C , i.e., such that . 

1= { , , }nC c c… = { , , } 2C
mS S S ⊂…

C
'S S⊆ ' =S S S C∈∪

Let us consider the following natural greedy algorithm for MIN SET COVER 
denoted by GREEDYSC:  

1. set: , where ' = ' { }S S S∪ {| |}S S ii
S S∈∈  (  is assumed to be empty at the 

beginning of the algorithm);  

'S

2. update ( , )I S C  by setting: ,  and, for , 
;  

= \{ }S S S = \C C S jS S∈

= \j jS S S
3. repeat steps 1 and 2 until =C ∅ ;  
4. output .  'S
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This algorithm has been independently analyzed by [46, 52]. Its version for 
WEIGHTED MIN SET COVER where we ask for determining a set cover of minimum total 
weight has been analyzed by [20]. It is easy to see that Algorithm GREEDYSC runs in 
polynomial time. 

Theorem 3. The standard-approximation ratio of Algorithm GREEDYSC is 
bounded above by 1 l , where n+ Δ = {|max S S S∈ |}Δ .  

Proof. Denoted by ( , )i i iI S C , the surviving instance in the first moment residual 
cardinalities of sets in  are at most i ; denoted by  the number of sets of 
residual cardinality i  placed in  and note that . Following these 
notations:  

S ( , ')im I S
'S ( , ') = ( , ')m I S m I SΔ

=C CΔ  (7) 

( ) (
=1

, ' = , 'i
i

m I S m I S
Δ

∑ )  (8) 

For , we have the following = 1, ,i Δ… Δ -line equation-system:  

(
=1

=
i

i
k

C k m I S×∑ ), 'k  (9) 

where any of the above equations expresses the facts that: (1) any time a set  
is chosen to be part of , Algorithm GREEDYSC removes from  the elements of  
and (2) for any , the remaining ground set  to be covered, is covered by sets of 
cardinality at most equal to i  chosen later by the algorithm.  

S
'S C S

i iC

Multiplying the th line of (9) by 1/Δ Δ  and, for the other lines, line i  by 
 and taking into account (7), (8) and the fact that:  1/( ( 1))i i +

1 1 1=
( 1) 1i i i i

−
+ +

 

we finally obtain:  

( ) (
1

=1 =1

| | = , ' = ,
( 1)

i
i

i i

C C m I S m I S
i i

Δ− Δ⎛ ⎞
+⎜ ⎟

+ Δ⎝ ⎠
∑ ∑ )'  (10) 

Consider now an optimal solution  of *S ( , )I S C  and let  be an optimal 
solution for 

*
iS

( , )i i iI S C , = 1, ,i Δ… . Elements of  covering  are always present and 
form a feasible solution for 

*S iC

iI . Therefore:  

 

( )iC i opt I≤ × i  (12) 
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where (12) expresses the fact that in order to cover |  elements by sets 
covering at most i  of them, at least |  such sets will be needed. Putting (10), (11) 
and (12) together, we get:  

|iC
| /iC i

( )
=1

1, ' ( ) ( )(1 ln )
i

m I S opt I opt I
i

Δ

≤ × ≤ +∑ Δ  

that is the ratio claimed.  
Let us now show that the ratio proved in Theorem 3 is asymptotically tight. 

 

Figure 4: On the tightness of GREEDYSC with . = 4k

 Some is fixed and the instance of Figure 4, designed for , is considered. 
We are given a set  of 

k = 4k
C 3 2k×  elements:  and a family 

 of  subsets of . 
= {1, 2, ,3 2 }kC ×…

1 2 4= { , , , }kS S S S +… 4k + C
For the reasons of simplicity, we shall consider that the elements of  are 

entries of a  matrix. Then, the sets in  are as follows:  
C

3 ( 1)k× + S
• three disjoint sets: ,  et , each one containing the  elements of 

each of the three lines of the matrix; they form a partition on C , i.e., 
 et 

1S 2S 3S 2k

1 2=C S S S∪ ∪ 3 =i jS S∩ ∅ , ;  , = 1,2,3i j

• 1k +  sets 4 , , kS S 4+… , of respective sizes: 1 2 13 2 ,3 2 , ,3 2 ,3 2k k− − 0× × ×… ×
0

 
and 3 contain, respectively, the points of the  and 1 
columns.  

1 2 12 ,2 , , 2 ,2k k− − …

It is easy to see that Algorithm GREEDYSC will choose the 1k +  sets , in 
this order, returning a set cover of size 

4 4, , kS S +…
1k + , while the optimal set cover is the family 

 of size 3. Note finally that, for the instance considered, . Conse-
quently, the approximation ratio achieved here is .  

1 2 3{ , , }S S S 1= 3 2k−Δ ×
1( 1)/3 = (ln(3 2 ))kk O −+ ×

More recently, another analysis of Algorithm GREEDYSC has been presented 
by [71] providing a tight ratio of . On the other hand, as stated in [67] (see 
[31] for an informal proof), it is impossible to approximate MIN SET COVER within better 
than , unless a highly unlikely complexity classes 

(log | |)O C

(log | |) (log log | |)O C O C−
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relationship is true. Note finally that the result of Theorem 3 has been slightly improved 
down to ln  by [36]. (5/6)Δ +

A direct corollary of Theorem 3 (or alternatively of [71]) and of [67] is that MIN 
SET COVER definitely belongs to Log-APX. 

Dealing with the differential approximation paradigm, MIN SET COVER is 
approximable within differential ratio bounded below by 1.365/Δ  ([12]) and 
inapproximable as is ([27]). So, it belongs to Poly-DAPX. 

 
4.3. Min vertex cover  

Given a graph , MIN VERTEX COVER consists of determining a 
minimum-size set V  so that, for every ( ,

( , )G V E
V′ ⊆ )u v E∈ , at least one among u  and v  

belongs to V . ′
Consider the following algorithm, denoted by MATCHING:  
1. compute a maximal matching9 M  in G ;  
2. return the set  of the endpoints of the edges in C M .  
Algorithm MATCHING is polynomial since a maximal matching can be easily 

computed by picking an edge , deleting it from  together with any edge sharing an 
endpoint with  and iterating these operations until no edge survives in G .  

e G
e

Theorem 4. Algorithm MATCHING is a 2-standard-approximation algorithm 
for MIN VERTEX COVER.  

Proof. Let us first prove that  is a vertex cover for G . The endpoints of any 
edge  of 

C
e M  cover e  itself and any other edge sharing a common endpoint with e . 

Denote by  the set of endpoints of the edges of ( )V M M . Since M  has been built to be 
maximal, the edges in M  have common endpoints with any edge in , so, V M  
cover both 

\E M ( )
M  and E , i.e., the whole of . \ M E

Set ; then:  =| |m M

| ( ) |= ( , ) = 2V M m G C m  (13) 

On the other hand, since edges in M  do not share common endpoints pairwise, 
any solution (a fortiori an optimal one) must use at least  vertices in order to cover 
them (one vertex per edge of 

m
M ). So, denoting by ( )Gτ  the cardinality of a minimum 

vertex cover in G , we have:  

( ) = ( )G opt G mτ ≥  (14) 

 Putting (13) and (14) together, we immediately get: ( , )/ ( ) 2m G C Gτ ≤  
as claimed.  

                                                 
9 Given a graph , a matching is a subset ( , )G V E M E⊆  such that no two edges in M  share a 
common endpoint; the matching is maximal (for inclusion) if it cannot be augmented when 
remaining a matching. 
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We now show that the ratio claimed in Theorem 4 is tight. Let us consider the 
graph of Figure 5. The thick edge is the maximal matching for this graph and, 
consequently, the solution taken by the Algorithm MATCHING will contain two vertices 
(the two endpoints of the thick edge). On the other hand, the center of the star suffices to 
cover all its edges. 

 
 

 

Figure 5: Tightness of the ratio achieved by Algorithm MATCHING. 

One of the best known open problems in polynomial approximation is the 
improvement of ratio 2 for MIN VERTEX COVER. A lot of unsuccessful effort has been put 
into such improvement until now. All this long effort has only produced ratios of the 
form:  

• 2 (log log / log )n n−  ([10, 54]);  
• 2 (2ln ln / ln )n n−  ([40]);  
• 2 (log log ( )/ log ( ))G G− Δ Δ  ([40]).  
Unfortunately, a more recent result by [50] gives strong evidence that this 

improvement is likely to be impossible. 
In the differential approximation paradigm, MIN VERTEX COVER is 

equiapproximable with MAX INDEPENDENT SET ([27]). So, it definitely belongs to Poly-
DAPX. 

 
4.4. Min TSP  

Given a complete graph on n  vertices, denoted by nK , with positive weights on 
its edges, MIN TSP consists of determining a Hamiltonian tour10 of nK  of minimum total 
cost. 

Let us note that, with respect to the differential paradigm, computing the worst 
solution for MIN TSP is not trivial at all. As opposed to the problems seen in the previous 
sections that had “trivial” worst solutions (the empty set for MAX INDEPENDENT SET, the 
whole family  for MIN SET COVER, or the whole vertex-set V  of the input-graph for S

                                                 
10 A simple cycle passing through all the vertices of nK . 
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MIN VERTEX COVER) the worst solution of MIN TSP is an optimal solution of MAX TSP, 
where we wish to determine a maximum total-cost Hamiltonian cycle. This problem is 
also NP-hard. So, determining the worst solution of MIN TSP is as hard as to determine an 
optimal solution. 

Let us consider the following well-known algorithm for MIN TSP, denoted by 
2_OPT, originally devised by [25], where  denotes the weight of edge ( , :  ( , )d i j )i jv v

 

 
Figure 6: Algorithm 2_OPT 

1. construct some Hamiltonian tour T  (this can be done, for example, by the 
nearest-neighbor heuristic);  

2. consider the two edges  and ( , )i jv v ( , )i jv v′ ′  of T ; if 

, then replace  and  in ( , ) ( , ) > ( , ) ( , )d i j d i j d i i d j j′ ′ ′ ′+ + ( , )i jv v ( , )j ′iv v′ T  
by  and ( ,( , )i iv v ′ )j jv v ′  (Figure 6) i.e., produce a new Hamiltonian tour 

;  \ {( , ), ( , )} {( , ), ( , )}i j i j i i j jT v v v v v v v v′ ′ ′ ′∪

3. repeat step 2 until no swap is possible;  
4. output T  the finally produced tour.  
Algorithm 2_OPT is polynomial when, for instance,  the maximum edge-

weight is bounded above by a polynomial of . For other cases where 2_OPT is 
polynomial, see [56]. 

maxd
n

Theorem 5. ([56]) The algorithm 2_OPT achieves a differential-approximation 
ratio bounded below by 1/2. 

Proof. Assume that T  is represented as the set of its edges, i.e.:  

( ) ( ) ( ){ }1 2 1 1= , , , , , , ,i i nT v v v v v v+… …  

and denote by  an optimal tour. Let *T ( )s i∗  be the index of the successor of  
in T . So,  is the index of the successor of 

iv
∗ ( ) 1s i∗ +

( )s i
v ∗  in T  (mod ) (in other words, 

if 

n

( ) =s i∗ j , then ( ) 1 = 1s i j∗ + + ).  
The tour T  computed by 2_OPT is a local optimum for the 2-exchange of edges 

in the sense that every interchange between the two non-intersecting edges of T  and the 
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two non-intersecting edges of  will produce a tour of total distance at least equal to 
, where  denotes the total weight of T . This implies in particular that, 

:  

\E T
( )d T ( )d T

{1, , }i n∀ ∈ …

( ) ( ) ( )( , 1) ( ), ( ) 1 , ( ) 1, ( ) 1d i i d s i s i d i s i i s i∗ ∗ ∗ ∗d+ + + ≤ + + +  (15) 

 
 

 

Figure 7: Tours  and T*T ′  of the proof of Theorem 5 for a 6K . 

Observe now that (see also Figure 7), denoted by  the worst tour in wT nK  the 
following holds: 

 
Add inequalities in (15), for :  = 1, ,i n…

( )( ) ( ) (( )
=1 =1

( , 1) ( ), ( ) 1 , ( ) 1, ( ) 1
n n

i i
d i i d s i s i d i s i d i s i∗ ∗ ∗ ∗+ + + ≤ + + +∑ ∑ )  (19) 

Putting (19) together with (16), (17) and (18) we get:  

( )
=1 =1

(16) ( , 1) ( ), ( ) 1 = 2 ,
n n

n
i i

d i i d s i s i m K T∗ ∗⎡ ⎤⇒ + + +⎣ ⎦∑ ∑  

( )
=1

(17) , ( ) =
n

n
i

d i s i opt K∗⎡ ⎤⇒ ⎣ ⎦∑  
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( )
=1

(18) 1, ( ) 1 = ( )
n

n
i

d i s i d T Kω∗ ′⎡ ⎤⇒ + + ≤⎣ ⎦∑  

Then, some easy algebra, and taking into account that the differential ratio for a 
minimization problem increases with ω , lead to the differential ratio claimed and 
completes the proof of the theorem.  

We shall now show that the ratio 1/2 is tight for the Algorithm 2_OPT. Let us 
consider a 2 8nK + , , set 0n ≥ = { : = 1, , 2 8}V i i n +… , set:  

(2 1, 2 2) = 1 = 0,1, , 3
(2 1, 2 4) = 1 = 0,1, , 2

(2 7, 2) = 1

d k k k n
d k k k n

d n

+ + +
+ + +

+

…
…  

and set the distances of all the remaining edges to 2. 
Consider the tour = {( , ( 1)) : = 1, , 2 7} {((2 8),1)}T i i i n n+ + ∪ +…  and observe 

that it is a local optimum for the 2-exchange on 2 8nK + . Indeed, let  and 
 be the two edges of T . We can assume w.l.o.g. that 

, otherwise, the cost of T  cannot be improved. Therefore, 
, for some .  

( , ( 1))i i +
( , ( 1))j j +
2 = ( , 1) ( , 1)d i i d j j+ ≥ +

= 2i k k
In fact, in order for the cost of T  to be improved, there are two possible 

configurations, namely  and ( , 1) = 2d j j + ( , ) = ( , 1) = ( 1, 1) = 1d i j d j j d i j+ + + . Thus, 
the following assertions hold:  

• if , then ( , 1) = 2d j j + = 2j k ′ , for some k ′ , and, according to the 
construction of 2 8nK + ,  (since  and ( , ) = 2d i j i j  are even), and 

 (since ( 1, 1) = 2d i j+ + 1i +  and 1j +  are odd); so the 2-exchange does 
not yield a better solution;  

• if , then according to the construction 
of  we will have 

( , ) = ( , 1) = ( 1, 1) = 1d i j d j j d i j+ + +

2 8nK + = 2 1j k ′ +  and =k k 1′ + ; so, we lead a 
contradiction since 1 = ( 1, 1) = 2d i j+ + .  

Furthermore, one can easily see that the tour:  

{ } { }
{ }

* = (2 1)(2 2) : = 0, , 3 (2 1)(2 4) : = 0, , 2

(2 7)2

T k k k n k k k n

n

+ + + ∪ + + +

+

… …
 

is an optimal tour of value opt 2 8( ) = 2nK n+ 8+  (all its edges have distance 1) 
and that the tour:  

{ } { }
{ }

= (2 2)(2 3) : = 0, , 2 (2 2)(2 5) : = 0, , 1

(2 8)1, (2 6)1, (2 8)3

T k k k n k k k n

n n n
ω + + + ∪ + + +

∪ + + +

… …
 

realizes a worst solution for 2 8nK +  with value 2 8( ) = 4 1nK n 6ω + +  (all its edges 
have distance 2). 
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Consider a 12K  constructed as described just above (for ). Here, 

 

= 2n
(1, 2) = (3, 4) = (5,6) = (7,8) = (9,10) = (11,12) = (1, 4) = (6,3)

= (5,8) = (7,10) = (9,12) = (11,2) = 1
d d d d d d d d

d d d d
while all the other edges are of distance 2. In Figures 8(a) and 8(b),  and T*T ω , 

respectively, ( ) are shown. Hence, in = {1, ,11,12,1}T … 2 8nK +  considered, the 
differential-approximation ratio of 2_OPT is equal to 1/2. 

 
 
 

 
 

Figure 8: Tightness of the 2_OPT approximation ratio for . = 1n
 
The best differential-approximation ratio for MIN TSP is 3/4 ([30]) but it does not 

admit a polynomial time differential-approximation schema ([56, 55]. So, MIN TSP 
definitely belongs to DAPX. Furthermore, it is proved in [56] that MIN TSP and MIN 
METRIC TSP are equiapproximable for the differential approximation. 

Dealing with the standard approximation paradigm, the MIN TSP is in Exp-APX 
(see Section 6). On the other hand, the MIN METRIC TSP is approximable within standard-
approximation ratio 3/2 by the celebrated Christofides algorithm ([19]) while the most 
famous relaxation of MIN METRIC TSP, that is when the edge-weights are either 1 or 2 is 
approximable within 8/7 ([17]). Finally, the MIN EUCLIDEAN TSP is in PTAS ([1]). 

 
4.5. Min coloring  

Given a graph , MIN COLORING consists of determining the minimum 
number of colors (i.e., of independent sets, see also footnote 8), that feasibly color the 
vertices of G . 

( , )G V E

The worst-solution value for MIN COLORING is equal to , since coloring any 
vertex of the input graph with its own color produces a feasible coloring. Furthermore, 
this coloring cannot be augmented without producing empty colors. 

n

Consider the following algorithm for MIN COLORING, denoted by COLOR and 
devised by [41] (see also [65]):  
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1. find an independent set  of size 3 in ; color its vertices with a new 
color and remove it from ;  

S G
G

2. repeat step 1 until no independent set of size 3 is found;  
3. determine a maximum family of disjoint independent sets of size 2 in (the 

surviving) graph  and color the vertices of each of them with a new 
color;  

G

4. color the remaining vertices of  using as new colors as the vertices to be 
colored;  

G

5. output C  the union of colors used at steps 2, 3 and 4.  
Observe first that Algorithm COLOR runs in polynomial time. Indeed, step 1 is 

greedy. For a graph of order11 , all the independent sets of size 3 can be found in time 
 by an exhaustive search. Step 2 can be performed in polynomial time since it 

amounts to a maximum matching computation that is polynomial ([61]). Indeed, at step 
3, the maximum independent set of the surviving graph  has size at most 2. Consider 

n
3( )O n

G
G  that is the complementary12 of G . Any independent set of size 2 in G  becomes an 
edge in G  and maximum family of disjoint independent sets of size 2 in G  is exactly a 
maximum matching in G . So, computation in step 3 is nothing else than computation of 
a maximum matching.  

Lemma 1. Steps 3 and 4 of Algorithm COLOR optimally color a graph  with G
( ) = 2Gα .  

Proof. Since ( ) = 2Gα , colors in G  are either independent sets of size 2, or 
singletons. Fix some coloring C  using x  colors of size 2 and  colors that are single 
vertices. If  is the order of G , we have:  

y
n

| |=C x y+  (20) 

= 2n x y+  (21) 

By (20) and (21), | |=C n x− . Hence, the greater the x , the better the coloring 
 and a minimum coloring corresponds to a maximum C x . This is exactly what Step 3 of 

Algorithm COLOR does.  
We are ready now to prove the following theorem. 
Theorem 6. ([41]) The algorithm COLOR is a 2/3-differential-approximation 

algorithm for MIN COLORING. 
Proof. We prove the theorem by induction on n, the size of the input graph. 
If n = 1, then Algorithm COLOR optimally colors it with one color. Assume 

that theorem's statement remains true for n k≤  and consider a graph G  of order 
. We distinguish two cases. =n k +1

                                                 
11 The order of a graph is the cardinality V  of its vertices. 
12 Given a graph , the complementary graph ( , )G V E ( , )G V E  of G  is the graph having the 

same set of vertices V  as  and G { }( , ) : ( , )i j i jE i j and Eυ υ υ υ= ≠ ∉ . 
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If G does not contain an independent set of size greater than 2, then by Lemma 
1, Algorithm COLOR computes an optimal coloring for G . 

Assume now that  is such that G ( ) 3Gα ≥  and denote by ( )Gχ  the chromatic 
number (i.e., the cardinality of a minimum coloring) of G . Then, obviously, at least an 
independent set  has been found by COLOR at step 1 and:  S

( [ \ ]) ( )G V S Gχ χ≤  (22) 

 Consider the graph G of order n[ \ ]V S  3−  an  Thi
 colo

d its coloring \C S s 
graph is colored with | |C − rs and, by the induction hypothesis:  

.
1

 
 

Figure 9: The complement of a graph where differential ratio 2/3 is attained by 
Algorithm COLOR. 

23 | \ | ( 3 ( [ \ ]))
3

n C S n G V Sχ− − ≥ − −  (23) 

Combining (22) and (23) we get:  

2| |= | \ | 1 ( 3 ( [ \ ])) 2 ( ( ))
3 3

n C n C S n G V S n Gχ− − − ≥ − − + ≥ −
2 χ  (24) 

Taking into account that ( ) =G nω , (24) directly derives the differential ratio 
claimed.  

We now prove that the differential ratio 2/3 is tight for the Algorithm COLOR. 
Consider a graph  the complement of which is shown in Figure 9. It is easy to see that 
in , Algorithm COLOR would produce , while the optimal 
coloring is . Taking into account that 

G
G = {{ },{ },{ , , }}C a d b c e

* = {{ , },{ , , }}C a b c d e ( ) = 5Gω , ratio 2/3 for this 
instance is immediately proved. 

Dealing with standard paradigm, the best known approximation ratios for MIN 
COLORING are:  

•  ([38]);  32( (log log ) / )logO n n n
•  ([29]).  log log / lognΔ Δ
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On the other hand, it is inapproximable within better than:  
• 1n ε−  for any constant > 0ε , unless  ([34]);  NP coRP⊆

• (1/5)n ε−  for any > 0ε , assuming that NP coRP≠  ([15]);  
• (1/7)n ε−  for any > 0ε  unless P ≠ NP ([15]).  
More about the complexity classes mentioned in the results above can be found 

in [59]. 
 

4.6. Min weighted bipartite coloring  

Consider a vertex-weighted graph  and denote by  the weight of 
vertex . For any subset V

( , )G V E iw

iv V∈ V′ ⊆  define its weight ( )w V ′  by:  

( ) { }= max :i iw V w v V′ ∈ ′  (25) 

MIN WEIGHTED COLORING consists of determining a coloring  of 
 minimizing the quantity:  

1= ( , , )kC S S…
G

( )
=1

( , ) =
k

i
i

m G C w S∑  (26) 

where, for ,  is defined as in (25). = 1, ,i k… ( )iw S
MIN WEIGHTED COLORING is obviously NP-hard in general graphs since setting 

, , it becomes the classical MIN COLORING problem. However, it is proved in 
[26] that it is NP-hard, even in bipartite graphs (MIN WEIGHTED BIPARTITE COLORING). 
Let us note that MIN COLORING is polynomial in these graphs since they are 2-colorable. 

= 1iw iv V∈

In what follows in this section, we shall present a polynomial time differential-
approximation scheme originally developed by [26]. 

Consider a vertex-weighted bipartite graph  and the following 
algorithm denoted by BIC:  

( , , )B U D E

1. range the vertices of  in decreasing order with respect to their weights;  B
2. fix an > 0ε  and set = 1/η ε⎡ ⎤ ; set  and 

;  
4 3= { , , }U nS v v Uη+ ∩…

4 3= { , , }D nS v v Dη+ ∩…

3. compute an optimal weighted coloring  in C� 1 4 2= [{ , , }]B B v v η+′ … ;  

4. output .  = U DC S S C∪ ∪ �

Since the graph  of step 3 has a fixed size, the computation of  can be 
performed in polynomial time by an exhaustive search. So, Algorithm BIC is polynomial. 

B′ C�

Denote by  an optimal MIN WEIGHTED BIPARTITE COLORING-
solution of  and let 

* * * *
1 2= ( , , , )pC S S S…

B 1 1 2
= i i ip

w w w w≥ ≥ ≥…  be the weights of its colors. Remark also 

that:  
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The proof of the existence of a polynomial time differential-approximation 

scheme for MIN WEIGHTED BIPARTITE COLORING is based upon the following two 
lemmata. 
Lemma 2. | | 2 2C η≤ +� . 

Proof. Note first that it cannot exist more than 2 colors that are singletons in C . A 
contrario, at least two of them are in U  or in . By concatenating them into a single 
color we reduce the objective value (26) of C . 

�
D

�
Denote by x  the number of colors that are singletons and by  the number of 

the other colors of C . Then, obviously, 

y
� 2 4x y 2η+ ≤ +  and, as mentioned just before, 

; henceforth:  2x ≤

2 2 4 4 = 2 2x y C x yη+ ≤ + ⇒ + ≤ +� η  that proves the lemma.  

 
Proof. Just remark that coloring ( * * *

1 2( ), ( ), , ( ))pS V B S V B S V B′ ′∩ ∩ ∩… ′  is feasible for 

 and it is only a part of .  B′ *C
We are ready now to prove the following theorem.  

Theorem 7. ([26]) The algorithm BIC is a polynomial time differential-approximation 
schema for the MIN WEIGHTED BIPARTITE COLORING. 
Proof. Using (27) and Lemma 2 we have:  

 
On the other hand:  

( ) 4 2Uw S w η+≤  (30) 

( ) 4 2Dw S w η+≤  (31) 

From (29), (30) and (31), we get:  
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that gives the schema claimed.  
As shown in [26], the MIN WEIGHTED BIPARTITE COLORING cannot be solved by 

fully polynomial time differential-approximation scheme. On the other hand, it is 
approximable within standard-ratio slightly better that  and inapproximable within 
standard ratio 8/ , unless  ([26]). 

4/3
7 = NPP

 
4.7. Knapsack 

We finish Section 4 by handling one of the most famous problems in 
combinatorial optimization, that is KNAPSACK. An instance  of KNAPSACK is the 
specification of two vectors  and c

I
aG G  and of a  constant b  and can be defined in terms 

of an integer-linear program as follows:  

max
=

a x
I

c x b
⋅⎧

⎨ ⋅ ≤⎩

G G
G G  

Consider the following algorithm for KNAPSACK presented by [45]:  
1. fix an > 0ε  and build the instance =1, ,= (( , ) , )i i i nI a c b′ ′ …  with 

max= /( )i ia a n a ε′ ⎣ ⎦ ;  
2. output := DYNAMICPROGRAMMING(I )S ′ .  
This dynamic programming algorithm is a classical example of how polynomial 

time approximation schemata are constructed. In fact, the most common technique for 
them consists first of scaling down data in such a way that the new instance becomes 
polynomial, then of solving it and, finally, of proving that the solution obtained 
corresponds to a feasible solution of the initial instance whose value is “very close” to the 
optimal value. 

Step 2 above runs in 2 3
max max max( log ) = (( log )/O n a c O n c )ε′  ([45]). So the whole 

running time of the algorithm is polynomial. 
Theorem 8. KNAPSACK ∈ FPTAS. 
Proof. Let  be an optimal solution of . Obviously,  is feasible for *S I *S I ′ . Let:  

max=
a

t
n
ε  (32) 

Then, for every :  = 1, ,i n…

= i
i

a
a

t
⎢ ⎥′ ⎢ ⎥⎣ ⎦

 (33) 
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and the following holds:  

( )
* *

i
i S i S t
∈ ∈

⎜ ⎟
⎝

1ia
opt I a ⎛ ⎞′ ′≥ ≥ −

⎠
∑ ∑  

( )*( ) ( ) ( )opt I opt IS n t opt I opt I nt
t t

′≥ − ≥ − ⇒ ≥ −  (34) 

Note now that the largest , i.e., that whose index veri
feasible fo . Hence,  

(3

Putting (32), (35) and

)

ia fy: 0 max= argmax{ }i a  is 
r I

max
*

( ) = i
i S

opt I a a
∈

≥∑  5) 

 (34) together, we get:  

max= (nt a Iε ε≤  (36) 

e solution  returned by the 
algorithm:  

t

clude, it suffices to observe that the complexity of the algorithm is 
“fully” polynomial, since it does not depend on

Then the following hold for the value of th  S

( )( , ) = = ( ) (1 ) ( )i i
i S i S

m I S a t a t opt I opt I nt op Iε′
∈ ∈

′≥ ≥ − ≥ −∑ ∑  

To con

(33) (34) (36)

 ε . Moreover, since it depends on the 
logarithm of , the algorithm remains polynomial even if  is expon ntial with the 
size o

f
alue anc

forth, KNAPSACK belongs 
also to D

he transformation of a problem into a different, but related, problem with the 
aim of expl rmer, has 
always been present in ematicians 
and, sub

 not only specifies how the former can be solved starting 
from the

id

max max

f the instance. The proof of the theorem is completed.  
Let us note that, taking that nothing is easible for KNAPSACK, producing a 

solution of v  0  that is the worst solution for any inst e I . So, standard and 
differential approximation ratios coincide for KNAPSACK. Hence

c c e
n  

FPTAS. 
 

5. APPROXIMABILITY PRESERVING REDUCTIONS 

T
oiting the information we have on the latter in order to solve the fo

mathematics. Consider, for example, how Greek math
sequently, Al Khuwarizmi ([14]) made use of geometrical arguments in order to 

solve algebraic problems. 
In recent times, a particular type of transformation, called reduction has been 

introduced by logicians in computability theory ([51]). In this case, a reduction from a 
problem Π  to a problem ′Π

 solution of the latter but, possibly more important in such context, it allows 
showing that if problem Π  is unsolvable (i.e., no algorithm for its solution may exist), 
and so is problem ′Π . Such  development of the notion of problem transformation is of 
great importance because it determines a twofold application of mathematical 
transformations: on one s e they allow transfering positive results (solution techniques) 

 a
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from one problem  another and on the other side they may also be used for deriving 
negative (impossible) results. 

The first application of the concept of reduction in computer science and 
combinatorics arose in the early seventies in the seminal paper by [21], and was soon 
followed by the equally fund

to

amental paper by [47]. Actually, both Cook's and Karp's 
reductio

olving them. However, this 
classific

 how can one compare the approximability of different versions of the same 

• r 

n dealing 

ns where conceived to relate to decision problems from a complex, theoretical 
point of view. So, if we want to use reductions in solving optimization problems, we need 
other types of more “optimization-oriented” reductions. 

Why do we need them? NPO hierarchy discussed in Section 2 (Figures 1 and 2) 
has been built in a somewhat ad-hoc and “absolute” way in the sense that problems are 
(constructively) classified following algorithms s

ation does not allow comparisons between approximability properties of 
problems. For instance, we cannot answer or we can only partially answer the questions 
such as:  

• how can one compare problems with respect to their approximability 
properties and independently on their respective approximation levels?  

•
problem (for example, weighted version vs. unweighted one)?  
how can one link different types of approximation for a same problem (fo
instance, do there exist transfers of approximability results between 
standard and differential approximation for a given problem)?  

• how to apprehend the role of parameters in the study of approximability 
(for example, we have seen in Section 4.1 that the functions describing 
approximation ratios for MAX INDEPENDENT SET are different whe
with n  or when dealing with ( )GΔ )?  
can we transfer approximation results from one problem to another one?  
can we refine the structure of the approximation classes given above by 
showing, for instance, that so f the problem

• 
• 

me o s are harder than the other 

reductions c
imposes part ion 
ratios et

ones within the same approximability class (completeness of results)?  
Researchers try to provide answers to these questions by using carefully defined 

alled the approximation preserving reductions. Any of the existing ones 
icular conditions on the way to the optimal solutions, or the approximat

c. are transformed from one problem to another. For more details, the interested 
reader can referred to [5, 8, 9, 22, 32, 44, 66, 72]. 

In general, given the two NPO problems Π = (I, Sol, m, goal) and Π′ = (I, Sol, 
m, goal′), an approximation preserving reduction R from Π  to ′Π  (denoted R ′Π ≤ Π ) is 
a triple ( , , )f g c  of polynomially computable functions such that:  

• f  transforms an instance I ∈ I into an insta e f(I ∈ I;  
 transforms a solution Sol'( ( ))S f I

nc ) 
• g ′∈  into a solutio  ( , ) Sol( )g I S I′ ∈n ;  
• transforms ratio ( ( ), )f I Sρ′ ′  into ( , ( , )) = ( (I g I S cc  ( ), ))f I Sρ ρ′ ′ ′ .  

basic ation preser R ′A  property of an approxim ving reduction Π ≤ Π  is that:  
if • ′Π  is approxim  ratio ρ′ , Πable within  is approximable wit ratio hin 

= ( )cρ ρ′ ;  
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• on e other hand, if, under a likel plexity hypothesis, Π  is not 
able with

 th y com
approxim in ratio ρ , then (provided that  is invertible)  is not  c ′Π

approximable within ratio 1= ( )cρ ρ−′ .  
ry reduction can be seen as a binary hardness-relation among problems. 
 study and the use of approx eservi

Eve
The imation pr ng reductions is interesting and 

relevant arch 
commun

 for both the theoretical computer science and the operational rese
ities for two main reasons. 
The first reason is “structural”. By means of these reductions, one refines the 

class of NP-hard problems by drawing a hierarchy of classes in the interior of NP-hard. 
This hierarchy can be seen as a sequence of strata, each stratum containing problems of 
“comparable approximability difficulty (or easiness)”. Indeed, any stratum C draws the 
capacity of its problems to be approximable within the approximation level represented 
by C and, simultaneously, the limits to the approximability of these problems. For 
instance let us refer to Figure 10. Let us assume that the two strata C' and C'' represent 
the two approximation levels and suppose, w.l.o.g. that C' is the class APX and C'' is the 
class Log-APX. Let us also suppose that a new problem Π , for which no approximation 
result was known, has been reduced to a problem Π′ ∈ Log-APX by a reduction 
preserving logarithmic approximation ratios. An immediate corollary is then that Π  also 
belongs to Log-APX and, unless a stronger positive result is proved for it, does not 
belongs to APX. 

 

  
 

Figure 10 Designing an approximability hierarchy for NP-h rd class. 

The ions 
represent a k  for 
particula

: a
  

second reason is “operational”. Approximability preserving reduct
ind of alternative in the achievem nt of new approximation resultse

r hard problems. When one tries to approximately solve a new problem Π  (or to 
improve existing approximation results for it) a possible way is to operate autonomously 
by undertaking a thorough and “from-the-beginning” study of the approximability of Π . 
However, another way to apprehend Π  is to put in contribution not only the structural 
characteristics of this problem but also the whole knowledge dealing with all the 
problems “similar” to Π . For instance, assume that there exist two approximation 
preserving reductions R from Π  to a problem ′Π  and Q from a problem ′′Π  to Π  and 
that we know a positive approximation result for ′Π  (i.e., an algorithm achieving 
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approximation ratio r ′  f  it), and a negative result for or ′′Π  i.e, an assertion that ′′Π  is 
not approximable within som  ratio re ′′ , unless an unlikely complexity-theoretical 
assumption (for example, P = NP) holds. Then, according to the particular characteristics 
of R and Q, one deri s that Π  is approximable within tio, say ( )c rve  ra ′ ′ , but it ot 
approximable within ratio ( )c r′′ ′′ , where c

is n
′  and c′′  are positive real functions 

depending on R and Q, respectively (see the definition of an approximability preserving 
reduction given above). 

There exist a lot of ximability reservin reductions devised today for 
several combinatorial optimization problems. Let us give two very simple examples: 

Example 1. MA 13

 appro  p g 

X INDEPENDE  and MAX CLIQUE ry well-known 
from gra

NT SET . It is ve
ph theory that an independent set in a graph G  becomes a clique of the same 

size in G  and vice-versa.  
Assume now that we know an approximation algorithm A for MAX 

INDEPENDENT SET achieving an approximation ratio exp ssed as function of n  (the size 
of the input-graph). Assum

re
e also that we want to approximately solve MAX CLIQUE in a 

graph G . Then, we can build G  and run A on it. Algorithm A will return an independent 
set of G  that becomes a clique in G . This clique has the same size as the independent 
set initially computed and since G  and G  have the same size, the approximation ratio 
achieve for MAX INDEPENDENT SET s also achieved for MAX CLIQUE. The inverse is also 
true. 

Example 2. MIN COLORING and MIN PARTITION INTO CLIQUES14. Using the 
relation between a clique and an independent set in Example 10, it can easily be seen that 
a coloring in G  becomes a pa

d  i

rtition into cliques (of the same size) in G . So, an 
approxim

 io

p

 function of, say, , then 

ation algorithm A for say MIN COLORING achieving an approximation ratio 
expressed as function of n  can be used in the same way as previously to solve MIN 
PARTITION INTO CLIQUES (and vice-versa) with the same approximation rat  in both 
standard and differential paradigms. 

For a long time, a proximability-preserving reductions have been considered as 
a kind of “universal” tools allowing us to produce any kind of results and for any kind of 
approximation ratios (i.e., independently on their forms and parameters). But this is 
absolutely not true. In fact, reductions are not universal. Most of them cannot preserve 
neither every value nor every form of approximation ratio. 

Let us revisit the reduction of Example 10. If, as we did there, we assume that 
the ratio is function of n , then preservation works. The same would hold if the ratio 
assumed was a constant. If, on the other hand, this ratio is a  ( )GΔ

things become complicated, since no general relation exists between ( )GΔ  and ( )GΔ . 
So, reduction of Example 10 does not preserve ratios functions of the maximum degree 
of the input graph. The same observation can be also made for Example 10. 
                                                 
13 Given a graph , MAX CLIQUE consists of determining a maximum-size subset V V  

such that 

( , )G V E ′ ⊆

[ ]G V ′  is a complete graph. 
14 Given a graph G , MIN PARTITION INTO CLIQUES consists of determining a minimum partition of 
the vertex-set G  into sets each of them inducing a complete subgraph of G , i.e., a clique. 
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Let us finally note that most of the reductions known are de  to pr e 
approximation ratios that are “better than constants”. 

As a last example, let us consider the following classical reduction between MAX 

vised eserv

WEIGHTED INDEPENDENT SET15 and MAX INDEPENDENT SET ([70]). 
Let us consider an instance ( ( , ), )G V E wG  of MAX WEIGHTED INDEPENDENT SET 

and sup
ce 

pose, in order that the reduction that follows is polynomial, that weights are 
polynomial with the order n  of G . We transform it into an instan ( , )G V E′ ′ ′  of MAX 

INDEPENDENT SET as follows:  
• we replace every vertex iv V∈  by an independent set iW  of iw  new 

vertices;  
• we replace every edge ( , )i jv v E∈  by a complete bipartite graph among the 

vertices of the independent sets iW  et jW  in G ′  (see Figur 11 wh re the e e
vertices iv  and jv  have ly weights 3 and 2).  

 transformation is polynomial si resul g graph G

 respecti

This nce the tin

ve

′  has 
=1

n
ii

w∑  

very iw   polynomial with n . vertices and e is
 

 
 

Figure 11: Transformation of an instance ( ( , ), )G V E wG  of MAX WEIGHTED 

INDEPENDENT SET into an instance ( , )G V E′ ′ ′  of MAX INDEPENDENT SET. 

Let
 

 us now consider an independent set S ′  of G ′  and w.l  is 
maximal wit , we c we 
reach a maximal independent set). Then =S W′ ∪ , i.e., there exists a  such that 

.o.g. let us assume it
h respect to inclusion (in case it is an easily add vertices until not

, =1
k
j i j

consists of k  independent sets i

k S ′  

j
W , = 1, ,j k… , corresponding to k  independent 

vertices 
1
, ,i ik

v v V∈… . So, 
=1

| |= k
ij j

S w′ ∑ . 

                                                 
15 Given a vertex-weighted graph G , the objective is to determine an independent set maximizing 
the sum of the weights of its vertices. 
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Hence, consider an independent set S ′  of G ′ . If iW , = 1 ,i k… , are the 

independ form S
1

,

ent sets that | |= k
ii

S w′′  (
=∑ ), then an pe  set  fo  can be 

built tha  of weights 

t of  is then 

 inde ndent  S r G

t contains all corresponding vertices , kv v…  V  with 1, , kw w… , 

respectively. The total weigh
=1

=| |k
ii

w S
1,

S ′∑  
Let us now suppose that we have a polynomial time approximation alg  

with ratio r  for MAX INDEPENDENT SET and con ce of ( ( , ),G V E wG X 

WEIGHTED INDEPENDENT SET. T en the lg

orithm A
sider an instan  of MA

h following a orithm is a polynomial time 
approxim

)

ation algorithm for MAX WEIGHTED INDEPENDENT SET, denoted by WA:  
• construct G ′  as previously;  
• run A on G ′ ; let S ′  be the computed independent set;  
• construct an independent set S  of G  as explained before.  
From what has een discussed ju b st above from any solution for  in  we 

can buil s o f v
 S ′  G ′

d a olution S  f G  o alue (total weight) | |S ′ . So, the samr e ratio achieved by 
A on

n s. 
a

 G ′  is also guaranteed by WA on G . 
It is easy to see that this reduction preserves constant approximatio  ratio But, 

it is also easy to see th t a ratio ( ( ))f GΔ  (i.e., function ( )G of Δ ) for MAX INDEPENDENT 

SET transforms into a ratio max( ( ( ) )O f G w )Δ  (where s the maximum weight-value) 
and not 

maxw  i
into ( ( ))f GΔ  for MAX WEIGHTED INDEPENDENT SET. Hence, the reduction does 

not preserve ratios functions of Δ . The same observation ediately holds for ratios 
functions of the order of the i

 
6. SOME WORDS ON INAPPROXIMALITY 

tudy of approximability proper

 imm
nput-graph. 

ties of a problem includes two complementary 
issues: t develo ” approximation 
ratios and the ach approximability 
result is t

S
he pment of approximation algorithms guaranteeing “good

ievement of inapproximability results. The goal of an in
o provide answers to a global question, addressed this time not to a single 

algorithm but to a combinatorial optimization problem Π  itself. This stake does not only 
consist of answering whether the analysis of a specific approximation algorithm for Π  is 
fine or not but, informally, if the algorithm devised is the best possible (with respect to 
the approximation ratio it guarantees); in other words, it provides answers to questions 
as: “are there other better algorithms for Π ?”. Or, more generally, “what is the best 
approximation ratio that a polynomial algorithm could ever guarantee for Π ?”. Hence, 
the goal is to prove that Π  is inapproximable within some ratio r  unless a very unlikely 
complexity hypothesis becomes true (the strongest such hypothesis is obviously P = NP). 

This type of results is very interesting and adds new insights to computationally 
hard problems. An important characteristic of complexity theory is that very frequently 
knowledge is enriched more by impossibility proofs than by possibility ones, even if the 
latter introduce some pessimism.  

“When we exclusively see things from a positive point of view, very frequently 
we elude fine and efficient approaches, we ignore or we cannot see large avenues that 
lead to new areas and open new possibilities. When we try to prove the impossible we 
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have to 

shortly explain the former of these techniques, that is the older 
techniqu

ould contradict a commonly accepted complexity 
the

sh

first apprehend the complete spectrum of the possible” ([60], translation from 
Greek by the author).  

There are three fundamental techniques to prove inapproximability results: the 
GAP-reductions, the PCP theorem and the approximability preserving reductions. In 
what follows we shall 

e for proving such results. For the PCP theorem, the interested reader can 
referred to [2] as well as to [5, 66, 72]. 

As we have already mentioned, an inapproximability result for an NPO problem 
Π  consists of showing that if we had an approximation algorithm achieving some 
approximation ratio r , then this fact w
hypo sis (e.g., P ≠ NP). How can we do this? Let us consider the following example 

owing that MIN COLORING is not approximable within standard-ratio less than 4/3 ε− , 
for any > 0ε . 

Example 3. Let us revisit the NP-completeness proof for the decision version of 
MIN COLORING given in [35]. The reduction proposed there constructs, starting f n 
instance 

rom a
o 3SAT16, a graph  such that if G ϕϕ  f E  is satisfiable then  is 3-colorable 

(i.e., its 

in io

 G
vertices can be colored by 3 colors), otherwise G  is at least 4-colorable. 
Suppose now that there is a polynomial algorithm for MIN COLORING 

guarantee g standard-approximat n ratio (4/3) ε− , with > 0ε . Run it n the graph G  
constructed from 

 o
ϕ . If ϕ  is not satisfiable, then this a orithm computes a cololg

G  using more than 4 colors. On the other hand, if 
ring for 

ϕ  is satisfiable (hence G  is 3-
colorable), then the algorithm produces a coloring using at most 3((4/3) ) < 4ε−  colors, 
i.e., a 3-coloring. So, on the hypothesis that a polynomial algorithm for MIN COLORING 
guaranteeing approximation ratio (4/3) ε−  exists, one can in polynomial time de e if a 
formula 

cid
φ , instance of E3SAT, is satisfiable or not, contradicting so the NP-c eteness 

of this problem. Hence, MIN COLO s not ((4/3) )
ompl

RING i ε− -standard-approximable, unless 
P = NP.  

The reduction of Example 6 is a typical example of a GAP-reduction. Via such 
reductions, one tries to create a gap separatin nces (i.e., the instances of the 
problem w

g yes-insta
here answer is yes) of a decision problem from no-instances (i.e., the instances 

of the problem where answer is no). 
More generally, denoting, for some decision problem Π , by ΠΟ  the set of its 

yes-instances, the basic idea of a GAP-reduction is the following. 
Consider a decision problem Π  that is NP-complete and an NPO problem 
 w.l.o.g. that goal( ) = min′Π ). If we devise a polynom l redu on from Π  to 

′Π  such that there exist , > 1c r  for which:  

′Π  
(suppose ia cti

• if I  is a yes-instance of Π , then ( )I c′ ≤ ,  
• if I  is a no-i ce of nstan Π , then ( ) >I rc′ ,  

                                                 
16 Given a set of  clauses over a set of  variables, SAT consists of finding a model for the con-
junction of these clauses, i.e., an assignment of truth values to the variables that simultaneously 
satisfies all the clauses; E3SAT is the restriction of SAT to clauses with exactly three literals. 

m n
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the , th  reduction above is a GAP-red pron e uction ving that ′Π  is inapproximable 
within standa rrd- atio r . 

Indeed, if ′Π  was approximable within r , then:  
• I Π∀ ∈Ο  (the set yes-instances), ( ( ), )m f I S rc′ ≤ ;  

for any o-instance I, ( ( ), ) ( ( ))m f I S pt f I n o rc′ ≥ > .  
quently ation criterion, i , a gap (see also Figure 

12), that can ial time, between the yes- and the no-instances of 
Such a cr

Conse , we would have a separ .e.
be checked in polynom
ion is impossible since 

Π . 
iter Π  is NP-complete. 

 
 

Figure 12: The gap. 
 
How can we extend such resul ? Assume, for example, that a 

GAP-red ction is devised between an n problem
ts to othe problems
 NP-complete decisio

r 
 Πu  and an NPO 

problem ′ , deriving that ′Π  is not approximable within ratio better than r . Suppose 
also that an approximability preserving reduction ( , , )

Π
f g c  (see Section 5) is devised 

from ′Π  t some other NPO roblem o  p ′′Π . Then ′′Π  is not approximable w hin better 
than 1 ( )c r− . 

We conclude this short section ith anoth xample of GAP-reduction settling 
MIN T

it

 w er e
SP. 

-appro

lete  b

Example 4. ([35, 68]).Let us prove that (general) MIN TSP is not approximable 
within any constant standard-approximation ratio, unless P = NP. Suppose a contrario, 
that MIN TSP is polynomially approximable within standard ximation ratio r  for 
some constant r , denote by A an approximation algorithm achieving this ratio and 
consider a graph ( , )G V E  of order n , instance of the HAMILTONIAN CYCLE17 problem. 
Starting from G onstruct an instance of MIN TSP as follows:  

• comp in order to uild a complete graph n

 c
G  K ;  

• fo  every ( )ne E K∈  (the edge-set of nr K ) set:  

 
Consider now the following two cases depending on the fact that  is 

Hamiltonian (i.e., it has a Hamiltonian cycle) or not:  
on

G

1. G  is Hamiltonian; then, ( ) =nopt K n , since the edges of the Hamilt ian 
cycle of G  exist in nK  and have all weights equal to 1; in this case, 

                                                 
17 Given a graph  the HAMILTONIAN CYCLE problem consists of deciding if  contains a Hamil-
tonian tour (see footnote 10); this problem in NP-complete ([35]) 

G G
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Al a solutio

2. 

gorithm A will produce n (tour) T  for MIN TSP of value 
( , )nm K T rn ;  

G  is Hamiltonian; then, obviously, no tour in n

≤
 K  can only use edges 

 (if sucweighted by h tour existed, it would iltonian cycle in ) 
so f 

a

We so have a gap between 
value at mo n-Hamiltonian graphs im ing MIN TSP solutions of value 
greater t

i

 1 be a Ham  G
, any tour will use at least one edge o weight rn ; hence, 

( ) 1 >nopt K rn n rn≥ + −  and, since A will produce something worse th n 
the optimum, A ( , ) ( ) >n nm K T opt K rn≥ .  

Hamiltonian graphs, deriving MIN TSP solutions of 
st rn , and no ply

han rn . 
So, on the hypothesis that MIN TSP is approximable within standard-

approximation rat o r , one could polynomially solve Hamiltonian cycle as follows:  
• starting from an instance G  of Hamiltonian cycle, construct instance nK  of 

MIN TSP as described;   
• run A on nK  and if A returns a tour of value at most rn , answer  to 

Hamiltonian cycle, othe
 

yes
rwise answer no.  

c gSin e everythin in the transformation of G  into nK  is olynomial and, 
 Algorithm A is assumed to be polyno

 p
furthermore, mial, the whole algorithm for 
Hamilto th hatnian cycle is also polynomial, contradicting so e fact t  this latter problem is 
NP-complete. 

Inapproximability result of Example 12 can be importantly strengthened. 
Indeed, observe that the only case where transformation of G  into nK  is not polynomial, 
is when parameter r  (the approximation ratio of the polynomial algorithm assumed for 
MIN TSP) is doubly exponential. Otherwise, even if r  is ponen l, say of the form 

( )2
ex tia

p n  for any polynomial p  of n , the described transformation remains polynomial since 
any number k  can be represented using (log )O k  bi . So, the following result finally 

s and concludes the sect n. 
Theorem 9. Unless =P NP , MIN TSP c e approximately solved within 

standard-approximation ratios better than ( )

ts
hold io

annot b
p n  fo lynomial p .2 r any po   

N” NESS IN 

are 
problems  such t

 
7. A QUICK “TOUR D'HORIZO  ABOUT COMPLETE

APPROXIMABILITY CLASSES 

Given a set C of problems and a reduction R, it is natural to ask if there 
hat any problem C′Π ∈ , R-reduces to ΠCΠ∈ . Such “maximal” 

problems are called in complexity theory complete problems. Let C be a class of 
problems and R be a reduction. A problem CΠ∈  is said to be C-complete (under R-
reduction) if for any C′Π ∈ , R′Π ≤ Π . A C-complete problem (under reduction R) is 
then (in the sens of this reduction) a comput lly hardest problem for class C. For 
instance, in the case of NP-completeness, NP-complete problems (under Karp-reduction 
([35])) are the hardest problems of NP since if one could polynomially solve just one of 
them, then one would be able to solve in polynomial time any other problem in NP. Let C 

ationa
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be a class of problems and R a reduction. A problem Π  is said to be C-hard (under R-
reduction) if for any C′Π ∈ , R′Π ≤ Π . In other words, a problem Π  is C-complete if 
and only if CΠ∈  and Π  is C-hard. 

The general definitions given above can be immediately applied to 
approximability classe on 3 in order to produce stron inaprroximability 
results but n ord r to create 

s defined in Secti g 
also i e a struct classes. In fact, even if 

approxim
ure for these 

ability preserving reductions mainly concern the transfer of results among pairs 
of problems, we can use them as mentioned, in order to complete the structure of 
approximability classes. 

Consider some approximability preserving reduction R and suppose that it 
preserves membership in, say, PTAS, in other words, if a problem Π  R-reduces to ′Π  
and if PTAS′Π ∈ , then PTASΠ∈ . Consider now an approximati ass that cont
PTAS

on cl ains 
, say APX and assume that the existence of a problem Π  that is APX-complete 

under R-reduction has been proved. If Π  admits a polynomial me approximatio
scheme e R-red eserves membership in PTAS, one can deduce the 
existence of polynomial time approximation schemata for any problem that is R-
reducible to Π , hence, in particular, for any problem in APX. In other words, by the 
assumptions just made, we have:  

=PTAS APX PTASΠ∈ ⇒  

Since, under the hypothe

ti n 
 then, sinc uction pr

sis P ≠ NP, PTAS APX⊄ , one can conclude that, 
under the same hypothesis, 

The above scheme of reasoni n be generalized for any approximation class. 
Let C be ion R preserve

nd

PTASΠ∈/ . 
ng ca

 a class of problems. We say that a reduct s membership in C, if for 
every pair of problems Π  a  ′Π :  

Π  ∈ C and R′Π ≤ Π  ⇒ ′Π ∈ C 
We then have the following proposition. 
Proposition 1.  C Let C and ′ be t o problem-classes with C′ ⊄ C. If a problem 

s C-com r some r tio serving membership in C′, then ∉ C′.  
asses is subject to some complexity 

hypothe

w
plete unde educ n preΠ  i  Π  

Obviously, if the strict inclusion of cl
sis, the conclusion ′Π∈/ C  is subject to the same hypothesis. 
The analogy with NP-completeness is immediate. The fundamental property of 

Karp- (
etenes complete problems 

can neve

tion problems in order to study their approximability 
propertie

 these results, or are they due to some structural similarity between the 
problem

structure preserving reduction is introduced and for the first time the completeness of 

or Turing-) reduction is that it preserves membership in P. Application of 
Proposition 1 to NP-compl s framework simply says that NP-

r be in P, unless P = NP. 
When the problem of characterizing approximation algorithms for hard 

optimization problems was tackled, soon the need arose for a suitable notion of reduction 
that could be applied to optimiza

s.  
What is it that makes algorithms for different problems behave in the same way? 

Is there some stronger kind of reducibility than the simple polynomial reducibility that 
will explain

s as we define them? ([46]).  
The first answer to the above questions was given by [6, 7] where the notion of 
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MAX VARIABLE-WSAT (a weighted version of MAX SAT) in the class of NPO problems is 
proved. Still it took a few more years until suitable kinds of reductions among 
optimiza

mental paper by [24] where the first PTAS preserving reductions 
(the PTA

n P by [33]. Completeness in the class Max-SNP has been 
defined i

e can be interpreted 
as an AP

ions among optimization problems have been 
introduc

tructural development analogous to the one that has been 
carried on for the standard paradigm has been elaborated also for the differential 

tion problems were introduced by [58]. In particular, this paper presented the so-
called strict reduction and provided the first examples of complete problems (MIN 
VARIABLE-WSAT, MIN 0-1 LINEAR PROGRAMMING and MIN TSP) under approximation 
preserving reductions. 

After [58] a large variety of approximation preserving reductions have appeared 
in the literature. The introduction of powerful approximation preserving reductions and 
the beginning of the structural theory of approximability of optimization problems can be 
traced back to the funda

S-reduction) is introduced and the first complete problems in APX under such 
types of reductions are presented. Unfortunately the problem which is proved APX-
complete in this paper is quite artificial, MAX VARIABLE-WSAT- B , a version of MAX 
VARIABLE-WSAT in which, given a constant B , the sum of weights of variables is 
contained between B  and 2B . 

Along a different line of research, during the same years, the study of logical 
properties of optimization problems has led to the syntactic characterization of an 
important class of approximable problems, the class Max-SNP (see [62]) strongly based 
upon characterizatio  of N

n terms of L-reductions and natural complete problems (e.g., MAX 3SAT, MAX 
2SAT, MIN VERTEX COVER etc.) have been found. The relevance of such an approach is 
related to the fact that it is possible to prove that Max-SNP-complete problems do not 
allow polynomial time approximation schemata, unless P = NP ([2]). 

The two approaches have been reconciled by [49], where the closure of 
syntactically defined classes with respect to an approximation preserving reduction were 
proved equal to the more familiar computationally defined classes. As a consequence of 
this result any Max-SNP-completeness result appeared in the literatur

X-completeness result. In this paper a new type of reduction is introduced, the 
E-reduction. This reduction is fairly powerful since it allows proving that MAX 3SAT is 
APX-complete. On the other side, it remains somewhat restricted because it does not 
allow the transformation of PTAS problems (such as KNAPSACK) into problems 
belonging to APX-PB (the class of problems in APX whose solution-values are bounded 
by a polynomial in the size of the instance) such as MAX 3SAT. In [49], completeness in 
approximability classes beyond APX, as Log-APX and Poly-APX has been also tackled 
and completeness results for subclasses of them (Log-APX-PB and Poly-APX-PB, 
respectively, where problems have solution-values bounded by a polynomial in the size 
of the instance) have been proved. The existence of natural complete problems for the 
whole classes Log-APX and Poly-APX has been proved in [31, 11], respectively, under 
FT-reduction and MPTAS-reduction. 

The final answer to the problem of finding the suitable kind of reduction 
(powerful enough to establish completeness results both in NPO and APX) is the AP-
reduction, introduced by [23]. 

A large number of other reduct
ed throughout the years. Overviews of the world of approximation preserving 

reductions and completeness is approximability classes can be found in [8, 9, 22, 23]. 
On the other hand, a s
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paradigm

ete 
problem

his tour d'horizon, with a synthesis of the several completeness 
results b

veral versions of variable-weighted SAT ([6, 7, 58]);  

MAX INDE ENT 

 COVE , ANAR INDEPENDENT 

r 
E

• Exp-

•  SET, MIN VERTEX COVER, MIN 

 COLORING ([11]);  

R

ly
fields the ma  optimization and theoretical computer 
science. or more than thirty years, it constitutes a very active research programme that 
has rallied numerous researc ore, it has inspired several 
new approaches in both operational research and computer science. 

e solution computed 
during instance's revealing divided by the value of the optimal solution of the whole 

 that is much younger than the former since it has been defined at the beginning 
of the 90's by [27]. In [4] and in [11] the approximability classes DAPX and DPTAS are 
introduced, suitable approximation preserving reductions are defined and compl

s in NPO, 0-DAPX, DAPX, DPTAS and Poly-DAPX, under such kind of 
reductions, are shown. 

Finally, in [31], together with the existence of complete problems for Log-APX 
and Poly-APX, completeness in class Exp-APX is also proved and tools for proving 
completeness in classes Log-DAPX and Exp-DAPX, where no natural problems are still 
proved to belong to, are given. 

We conclude t
riefly presented just above for the combinatorially defined approximability 

classes seen given in Section 3 (excluding so the synatctically defined class Max-SNP). 
For the standard-approximation paradigm:  
• NPO-complete: se
• Exp-APX-complete: MIN TSP ([31]);  
• Poly-APX-complete: MAX INDEPENDENT SET ([11]);  
• Log-APX-complete: MIN SET COVER ([31]);  
• APX-complete: MAX 3-SAT, MIN VERTEX COVER- PEND

SET- B , MIN TSP WITH EDGE-WEIGHTS 1 AND 2, ... ([24, 23, 49], etc.);  
B , 

• PTAS-complete: MIN PLANAR VERTEX R MAX PL
SET ([11]).  

Fo the differential-approximation paradigm:  
• 0-DAPX-complete: MIN INDEPENDENT DOMINATING S T, ... ([4]);  

Exp-DAPX-complete: no natural problem is still known to be in 
DAPX;  
Poly-DAPX- complete: MAX INDEPENDENT
SET COVER, MAX CLIQUE, ... ([31]);  

• Log-DAPX-complete: the same as for class Exp-DAPX holds;  
• DAPX-complete: MIN VERTEX COVER- B , MAX INDEPENDENT SET- B , ... 

([4]), MIN
• DPTAS-complete: MIN PLANAR VERTEX COVER, MAX PLANAR INDEPENDENT 

SET ([11]), BIN PACKING, ... ([11]).  
 

8. FURTHER REMA KS 

Po nomial approximation is a research area in the boundaries several research 
in among them being combinatorial

F
hers all over the world. Furtherm

One of these new approaches is a dynamic computation model, called online 
approximation, where the basic hypotheses are that instance to be solved is revealed step-
by-step and the algorithm supposed to solve it has to maintain a feasible solution for the 
part of the instance already revealed. The quality of such an algorithm is measured by 
means of its competitive ratio defined as the ratio of the value of th
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instance

proximation are also used in a relatively 
new rese

 are not yet fully studied in this paradigm. Also, optimal 
satisfiab

tch polynomial 
approxim

 complexity have been recently devised for 
numerou

th

 2-11. 
[2] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M., “Proof verification and 

intractability of approximation problems”, J. Assoc. Comput. Mach., 45 (3) 1998, 501-555. 
[3] Aspvall, B., and Stone, R., E., “K ramming algorithm”, J. Algorithms, 1 

(1980), 1980, 1-13. 

[6] , A., and Protasi, M., “Structure preserving reductions among convex 
optimization problems”, J. Comput. System Sci., 21 (1980) 136-153. 

 (called offline solution). Extensions of online computation can deal not only 
with data arrival but also with data elimination. 

Another approach is the so-called reoptimization. Here we suppose that we have 
an optimal solution for an instance (no matter how this solution is produced) and some 
new data arrive. Can we operate a fast transformation of the solution at hand in order to 
fit the augmented instance? Is the new solution optimal or not? If not, does it achieve a 
good approximation ratio? 

Notions and tools from polynomial ap
arch field that is actually in full expansion: the algorithmic game theory. The so-

called price of anarchy is fully inspired from polynomial approximation. 
What are the mid- and long-term perspectives of this area? Certainly, producing 

new operational and structural results are such perspectives. For instance, syntactic 
classes, as class Max-SNP

ility problems, central problems in the standard paradigm, deserve further 
research in differential approximation. 

But, to our opinion, major long-term perspective is to ma
ation with exact computation. Indeed, another very active area of combinatorial 

optimization is the development of exact algorithms for NP-hard problems with non-
trivial worst-case running times. For example, it is obvious that an exhaustive method for 
MAX INDEPENDENT SET will run in time at most 2n . But can we go faster? Such faster 
algorithms with improved worst-case

s NPO problems. Polynomial approximation and exact computation (with worst 
case upper time-bounds) can be brought together in several ways. For instance, are we 
able to produce approximation ratios ``forbidden'' for polynomial algorithms (e.g., 
constant ratios for MAX INDEPENDENT SET, or ratios smaller than 2 for MIN VERTEX 
COVER) by exponential or super-polynomial algori ms running in times much lower than 
those for the exact computation for the corresponding problems? And, in a second time, 
can we adapt the concept of approximability preserving reductions to fit this new issue? 
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