Yugoslav Journal of Operations Research Vol 19 (2009), Number 1, 63-73 DOI: 10.2298/YUJOR0901063S

DUALITY FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS INVOLVING *d* -TYPE-I -SET *n* - FUNCTIONS

I.M.STANCU-MINASIAN

The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics Romania

Gheorghe DOGARU

"Mircea cel Bătrân", Naval Academy Romania

Andreea Mădălina STANCU

The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics Romania

Received: December 2007 / Accepted: May 2009

Abstract: We establish duality results under generalized convexity assumptions for a multiobjective nonlinear fractional programming problem involving d-type-I n-set functions. Our results generalize the results obtained by Preda and Stancu-Minasian [24], [25].

Keywords: d-type-I set functions, multiobjective programming, duality results.

1. INTRODUCTION

Consider the multiobjective nonlinear fractional programming problem involving n-set functions

I. M. Stancu-Minasian, G., Dogaru, A., M., Stancu, / Duality for Multiobjective

minimize
$$F(S) = \left(\frac{F_1(S)}{G_1(S)}, \dots, \frac{F_p(S)}{G_p(S)}\right)$$
 (P)

subject to

64

 $H_i(S) \leq 0, j \in M, S = (S_1, \dots, S_n) \in \Gamma^n$

where Γ^n is the *n*-fold product of a σ - algebra Γ of subsets of a given set *X*, $M = \{1, 2, ..., m\}$, F_i, G_i , $i \in P = \{1, 2, ..., p\}$, and $H_j, j \in M$ are differentiable real-valued functions defined on Γ^n with

$$F_i(S) \ge 0 \text{ and } G_i(S) > 0, \text{ for all } i \in P.$$
 (1)

Let $S_0 = \{S | S \in \Gamma^n, H(S) \le 0\}$ be the set of all feasible solutions to (P), where $H = (H_1, ..., H_m)$.

The term "minimize" being used in Problem (P) is for finding efficient, weakly and properly efficient solutions.

A feasible solution S^0 to (P) is said to be an *efficient solution* to (P) if there exists no other feasible solution S to (P) so that $F_i(S) \leq F_i(S^0)$, for all $i \in P$, with strict inequality for at least one $i \in P$.

A feasible solution S^0 to (P) is said to be a *weakly efficient solution* to (P) if there exists no other feasible solution S to (P) so that $F_i(S) < F_i(S^0)$, for all $i \in P$.

The analysis of optimization problems with set or n-set functions i.e. selection of measurable subsets from a given space, has been the subject of several papers. For a historical survey of optimality conditions and duality for programming problems involving set and n-set functions the reader is referred to Stancu-Minasian and Preda's review paper [28]. These problems arise in various applications including fluid flow [3], electrical insulator design [8], regional design (districting, facility location, warehouse layout, urban planning etc.) [10], statistics [11], [21] and optimal plasma confinement [30]. The general theory for optimizing set functions was first developed by Morris [20]. Many results of Morris [20] are only confined to functions of a single set. Corley [9] started to give the concepts of partial derivatives and derivatives of real-valued n-set functions.

Starting from the methods used by Jeyakumar and Mond [12] and Ye [31], Suneja and Srivastava [29] defined some new classes of scalar or vector functions called d-type-I, d-pseudo-type-I, d-quasi-type-I etc. for a multiobjective nondifferentiable programming problem and obtained necessary and sufficient optimality criteria. Also, they established duality between this problem and its Wolfe-type and Mond-Weir-type duals and obtained some duality results considering the concept of a weak minimum.

In particular, multiobjective fractional subset programming problems have been the focus of intense interest in the past few years, and resulted in many papers [1], [2], [4]-[7], [13]-[17], [22], [23], [28], [33]-[35].

In this paper we establish duality results under generalized convexity assumptions for a multiobjective nonlinear fractional programming problem involving generalized d-type-I n-set functions. Our results generalize the results obtained by Preda and Stancu-Minasian [24], [25].

2. DEFINITIONS AND PRELIMINARIES

In this section we introduce the notation and definitions which will be used throughout the paper.

Let \mathbf{R}^n be the *n* - dimensional Euclidian space and \mathbf{R}^n_+ its positive orthant, i.e.

$$\mathbf{R}_{+}^{n} = \{ x = (x_{j}) \in \mathbf{R}^{n}, \ x_{j} \ge 0, \ j = 1, ..., n \}.$$

For $x = (x_1, ..., x_m), y = (y_1, ..., y_m) \in \mathbf{R}^m$ we put $x \leq y$ iff $x_i \leq y_i$ for each $i \in M$; $x \leq y$ iff $x_i \leq y_i$ each $i \in M$, with $x \neq y$; x < y iff $x_i < y_i$ for each $i \in M$ while $x \not < y$ is the negation of x < y. We write $x \in \mathbf{R}^n_+$ iff $x \geq 0$.

Let (X, Γ, μ) be a finite non-atomic measure space with $L_1(X, \Gamma, \mu)$ separable, and let *d* be the pseudometric on Γ^n defined by:

$$d(S,T) = \left[\sum_{k=1}^{n} \mu^2(S_k \Delta T_k)\right]$$

for $S = (S_1, ..., S_n)$, $T = (T_1, ..., T_n) \in \Gamma^n$, where Δ denotes the symmetric difference. Thus (Γ^n, d) is a pseudometric space, which will serve as the domain for most of the functions that will be used in this paper.

For $h \in L_1(X, \Gamma, \mu)$, the integral $\int_S h \, d\mu$ will be denoted by $\langle h, I_S \rangle$, where I_S is the indicator (characteristic) function of $S \in \Gamma$.

We next introduce the notion of differentiability for n-set functions. This was originally introduced by Morris [20] for set functions and subsequently extended by Corley [9] to n-set functions.

A function $\varphi: \Gamma \to \mathbf{R}$ is said to be differentiable at $S^0 \in \Gamma$ if there exist $D\varphi(S^0) \in L_1(X, \Gamma, \mu)$, called the derivative of φ at S^0 , and $\psi: \Gamma \times \Gamma \to \mathbf{R}$ such that for each $S \in \Gamma$,

$$\varphi(S) = \varphi(S^0) + \left\langle D\varphi(S^0), I_S - I_{S^0} \right\rangle + \psi(S, S^0),$$

where $\psi(S, S^0)$ is $o(d(S, S^0))$, that is, $\lim_{d(S, S^0) \to 0} \frac{\psi(S, S^0)}{d(S, S^0)} = 0$.

A function $F: \Gamma^n \to \mathbf{R}$ is said to have a partial derivative at $S^0 = (S_1^0, ..., S_n^0)$ with respect to its k-th argument if the function

 $\varphi(S_k) = F(S_1^0, \dots, S_{k-1}^0, S_k, S_{k+1}^0, \dots, S_n^0)$

has derivative $D\varphi(S_k^0)$ and we define $D_k F(S^0) = D\varphi(S_k^0)$. If $D_k F(S^0)$, $1 \le k \le n$, all exist, then we put $DF(S^0) = (D_1 F(S^0), ..., D_n F(S^0))$.

A function $F: \Gamma^n \to \mathbf{R}$ is said to be differentiable at S^0 if there exist $DF(S^0)$ and $\psi: \Gamma^n \times \Gamma^n \to \mathbf{R}$ such that

$$F(S) = F(S^{0}) + \sum_{k=1}^{n} \left\langle D_{k}F(S^{0}), I_{S_{k}} - I_{S_{k}^{0}} \right\rangle + \psi(S, S^{0}),$$

where $\psi(S, S^0)$ is $o(d(S, S^0))$, for all $S \in \Gamma^n$.

Along the lines of Jeyakumar and Mond [12] and Suneja and Srivastava [29], Preda and Stancu-Minasian [24] defined new classes of *n*-set functions, called *d*-type-I, *d*-quasi type-I, *d*-pseudo type-I, *d*-pseudo type-I.

In [18] Mishra extended the generalized d-type-I vector-valued functions of Preda and Stancu-Minasian [24] to new generalized d-type-I n-set functions and establish optimality and Mond-Weir type duality results.

Definition 1. [24] We say that (F,G) is of d-type-I at $S^0 \in \Gamma^n$ if there exist functions $\alpha_i, \beta_j : \Gamma^n \times \Gamma^n \to \mathbf{R}_+ \setminus \{0\}$, $i \in P, j \in M$, such that for all $S \in S_0$, we have

$$F_{i}(S) - F_{i}(S^{0}) \ge \alpha_{i}(S, S^{0}) \sum_{k=1}^{n} \left\langle D_{k}F_{i}(S^{0}), I_{S_{k}} - I_{S_{k}^{0}} \right\rangle, \ i \in P$$
(2)

and

$$-H_{j}(S^{0}) \ge \beta_{j}(S, S^{0}) \sum_{k=1}^{n} \left\langle D_{k}H_{j}(S^{0}), I_{S_{k}} - I_{S_{k}^{0}} \right\rangle, \ j \in M .$$
(3)

We say that (F,H) is of *d*-semistrictly type-I at S^0 if in the above definition we have $S \neq S^0$ and (2) is a strict inequality.

Now, we introduce

Definition 2. [32] A feasible solution S^0 to (P) is said to be a regular feasible solution if there exists $\hat{S} \in \Gamma^n$ such that

$$H_{j}(S^{0}) + \sum_{k=1}^{n} \left\langle D_{k}H_{j}(S^{0}), I_{\hat{S}_{k}} - I_{S_{k}^{0}} \right\rangle < 0 , \ j \in M$$

Now, for each $\lambda = (\lambda_1, ..., \lambda_p) \in \mathbf{R}_+^p$ we consider the parametric problem

$$\operatorname{minimize}(\mathbf{F}_{1}(S) - \lambda_{1}G_{1}(S), \dots, \mathbf{F}_{p}(S) - \lambda_{p}G_{p}(S)) \tag{P}_{\lambda}$$

subject to

$$H_{i}(S) \leq 0, j \in M, S = (S_{1}, ..., S_{n}) \in \Gamma^{n}$$

The problem (P_{λ}) is equivalent to the problem (P) in the sense that for particular choices of λ_i , $i \in P$, the two problems have the same set of efficient solutions. This equivalence is stated in the following lemma which is well known in fractional programming [27].

Lemma 3. An S^0 is an efficient solution to (P) if and only if is an efficient solution to (P_{λ^0}) with $\lambda_i^0 = \frac{F_i(S^0)}{G_i(S^0)}$, i = 1, ..., p.

In this paper the proofs of the duality results for Problem (P) will invoke the following necessary efficiency result for (P_{λ}) (see Zalmai [32], Theorem 3.2).

Theorem 4. [32] Let S^0 be a regular efficient (or weakly efficient) solution to (P) and assume that F_i, G_i , $i \in P$ and H_j , $j \in M$, are differentiable at S^0 . Then there exist

$$u^{0} \in \mathbf{R}^{p}_{+}, \sum_{i=1}^{r} u^{0}_{i} = 1, v^{0} \in \mathbf{R}^{m}_{+}, and \ \lambda^{0} \in \mathbf{R}^{p}_{+} such that$$

$$\sum_{k=1}^{n} \left\langle \sum_{i=1}^{p} u^{0}_{i} \left(D_{k} F_{i}(S^{0}) - \lambda^{0}_{i} D_{k} G_{i}(S^{0}) + \sum_{i=1}^{m} v^{0}_{j} D_{k} H_{j}(S^{0}), I_{S_{k}} - I_{S_{k}^{0}} \right) \right\rangle \geq 0, for all,$$

$$S \in \Gamma^{n}$$
(4)

$$u_{i}^{0}(F_{i}(S^{0}) - \lambda_{i}^{0}G_{i}(S^{0})) \geq 0, \ i \in P$$
(5)

$$v_j^0 H_j(S^0) = 0, \ j \in M$$
 (6)

3. DUALITY

In this section, in the differentiable case, based on the equivalence of (P) and (P_{λ}) a dual for (P_{λ}) is defined and some duality results in *d*-type-I assumptions are stated. With (P_{λ}) we associate a dual stated as

maximize
$$(\lambda_1, ..., \lambda_p)$$
 (D)

subject to

$$\sum_{i=1}^{p} \sum_{k=1}^{n} u_{i} \left\langle D_{k} F_{i}(T) - \lambda_{i} D_{k} G_{i}(T), I_{S_{k}} - I_{T_{k}} \right\rangle + \sum_{j=1}^{m} \sum_{k=1}^{n} v_{j} \left\langle D_{k} H_{j}(T), I_{S_{k}} - I_{T_{k}} \right\rangle \ge 0,$$

$$S \in \Gamma^{n}$$
(7)

$$u_i \left(F_i(T) - \lambda_i \, G_i(T) \right) \ge 0 \,, \, i \in P \,, \tag{8}$$

$$v_j H_j(T) \ge 0, \ j \in M , \tag{9}$$

$$u \in \mathbf{R}_{+}^{p}, \sum_{i=1}^{p} u_{i} = 1, v \in \mathbf{R}_{+}^{m}, \lambda \in \mathbf{R}_{+}^{p}.$$
 (10)

Let D_0 be the set of feasible solutions to (D). Let us prove the duality theorems. **Theorem 5.** (Weak duality) Let S and (T, u, v, λ) be feasible solutions to problem (P) and (D), respectively such that (i_1) for each $i \in P$ and $j \in M$, $(F_i(\cdot) - \lambda_i G_i(\cdot), H_j(\cdot))$ is of d-type-I at T; (i₂) $u_i > 0$ for any $i \in P$, and for some $i \in P$ and $j \in M$, $(F_i(\cdot) - \lambda_i G_i(\cdot), H_i(\cdot))$ is of d-semistrictly type-I at T.

Then for any $S \in S_0$ one cannot have

$$\frac{F_i(S)}{G_i(S)} \le \lambda_i \text{ for any } i \in P,$$
(11)

$$\frac{F_j(S)}{G_j(S)} < \lambda_j \text{ for some } j \in P.$$
(12)

Proof: Let us suppose the contrary that (11) and (12) hold. Then there exists S, a feasible solution for (P_{λ}), such that (11) and (12) hold.

If hypothesis (i₂) holds, then $u_i > 0$ for any i = 1, ..., p. From (1), (11) and (12) we get

$$\sum_{i=1}^{p} u_i \left(F_i(S) - \lambda_i \, G_i(S) \right) < 0 \,. \tag{13}$$

Using the feasibility of S, and the relations (9) and (10), we have

$$v_j H_j(S) \leq 0 \leq v_j H_j(T) \ \forall \ j = 1, \dots, m \ .$$

$$(14)$$

Since $\alpha_i(S,T) > 0, i \in P$, and $\beta_j(S,T) > 0, j \in M$, combining (8), (13) and (14) we obtain

$$\sum_{i=1}^{p} \frac{u_{i}}{\alpha_{i}(S,T)} (F_{i}(S) - \lambda_{i} G_{i}(S)) < \sum_{i=1}^{p} \frac{u_{i}}{\alpha_{i}(S,T)} (F_{i}(T) - \lambda_{i} G_{i}(T)) + \sum_{i=1}^{m} \frac{v_{j} H_{j}(T)}{\beta_{j}(S,T)} .$$
(15)

We claim that $S \neq T$ for if it is not true, then, from $u_i > 0$, $i \in P$, the feasibility of *S* and (8) we obtain a contradiction with (11) and (12).

One the other hand, from $S \neq T$, (i₁) and (i₂), it follows that

$$(F_{i}(S) - \lambda_{i}G_{i}(S)) - (F_{i}(T) - \lambda_{i}G_{i}(T)) \geq \alpha_{i}(S,T)\sum_{k=1}^{n} \left\langle D_{k}F_{i}(T) - \lambda_{i}D_{k}G_{i}(T), I_{S_{k}} - I_{T_{k}} \right\rangle$$

$$(16)$$

for any $i \in P$, with strict inequality for some i, and

$$-H_{j}(T) \ge \beta_{j}(S,T) \sum_{k=1}^{n} \left\langle D_{k}H_{j}(T), I_{S_{k}} - I_{T_{k}} \right\rangle, j \in M .$$
(17)

By dividing by $\alpha_i(S,T) > 0$ and $\beta_j(S,T) > 0$, respectively, the above inequalities reduce to the following

I. M. Stancu-Minasian, G., Dogaru, A., M., Stancu, / Duality for Multiobjective

$$\frac{F_i(S) - \lambda_i G_i(S)}{\alpha_i(S,T)} - \frac{F_i(T) - \lambda_i G_i(T)}{\alpha_i(S,T)} \ge \sum_{k=1}^n \left\langle D_k F_i(T) - \lambda_i D_k G_i(T), I_{S_k} - I_{T_k} \right\rangle$$
(18)

for any $i \in P$, with strict inequality for some i, and

$$-\frac{H_j(T)}{\beta_j(S,T)} \ge \sum_{k=1}^n \left\langle D_k H_j(T), I_{S_k} - I_{T_k} \right\rangle, \ j \in M$$
(19)

Multiplying the inequality (18) by $u_i > 0$, $\forall i \in P$, and (19) by $v_j \ge 0$, $\forall j \in M$, and summing after all *i* and *j*, respectively, yields

$$\sum_{i=1}^{p} \frac{u_{i}}{\alpha_{i}(S,T)} (F_{i}(S) - \lambda_{i}G_{i}(S)) - \sum_{i=1}^{p} \frac{u_{i}}{\alpha_{i}(S,T)} (F_{i}(T) - \lambda_{i}G_{i}(T)) - \sum_{i=1}^{p} \frac{v_{j}H_{j}(T)}{\beta_{j}(S,T)} >$$

$$> \sum_{i=1}^{p} \sum_{k=1}^{n} u_{i} \left\langle D_{k}F_{i}(T) - \lambda_{i}D_{k}G_{i}(T), I_{S_{k}} - I_{T_{k}} \right\rangle + \sum_{j=1}^{m} \sum_{k=1}^{n} v_{j} \left\langle D_{k}H_{j}(T), I_{S_{k}} - I_{T_{k}} \right\rangle.$$
(20)

Now, by (15) it follows

$$\sum_{i=1}^{p} \sum_{k=1}^{n} u_i \left\langle D_k F_i(T) - \lambda_i D_k G_i(T), I_{S_k} - I_{T_k} \right\rangle + \sum_{j=1}^{m} \sum_{k=1}^{n} v_j \left\langle D_k H_j(T), I_{S_k} - I_{T_k} \right\rangle < 0.$$

This inequality contradicts (7). Thus the theorem is proved.

Corollary 6. Let S^0 and $(S^0, u^0, v^0, \lambda^0)$ be feasible solutions to (P_{λ^0}) and (D), respectively. If the hypotheses of Theorem 5 are satisfied, then S^0 is an efficient solution to (P_{λ^0}) and $(S^0, u^0, v^0, \lambda^0)$ is an efficient solution to (D).

Proof: We proceed by contradiction. If S^0 is not an efficient solution to (P_{λ^0}) then there exists a feasible solution S' to (P_{λ^0}) such that

$$F_i(S') \leq \lambda_i^0 G_i(S') , \ \forall i \in P ,$$

and (21)

 $F_i(S') < \lambda_i^0 G_i(S')$, for some $j \in P$.

Since $(S^0, u^0, v^0, \lambda^0)$ is a feasible solution to (D) by (21), and Theorem 5 we obtain a contradiction. Hence S^0 is an efficient solution to (P_{λ^0}) . In the same way we obtain that $(S^0, u^0, v^0, \lambda^0)$ is an efficient solution to (D).

Theorem 7. (Strong duality) Let S^0 be a regular efficient solution to (P). Then there exist $u^0 \in \mathbf{R}^p_+$, $\sum_{i=1}^p u^0_i = 1$, $v^0 \in \mathbf{R}^m_+$, and $\lambda^0 \in \mathbf{R}^p_+$, such that $(S^0, u^0, v^0, \lambda^0)$ is a feasible solution to (D). Further, if the conditions of Weak Duality Theorem 5 also hold, then

69

 $(S^0, u^0, v^0, \lambda^0)$ is an efficient solution to (D) and the values of the objective functions of (P) and (D) are equal at S^0 and $(S^0, u^0, v^0, \lambda^0)$ respectively.

Proof: Using Theorem 4 we obtain that there exist $u^0 \in \mathbf{R}^p_+$, $\sum_{i=1}^p u_i^0 = 1$, $v^0 \in \mathbf{R}^m_+$, and (4) and (5) hold. Thus, $(S^0, u^0, v^0, \lambda^0)$ satisfies (7) – (10). Hence, $(S^0, u^0, v^0, \lambda^0)$ is a feasible solution to (D). Further, if Theorem 5 holds then, by Corollary 6 we obtain that this solution $(S^0, u^0, v^0, \lambda^0)$ is also an efficient solution to (D), and the values of the objective functions of (P) and (D) are equal at S^0 and $(S^0, u^0, v^0, \lambda^0)$ respectively.

Now we give a strict converse duality theorem of Mangasarian type [19] for (P_{λ}) and (D).

Theorem 8. (Strict converse duality) Let S^* and $(S^0, u^0, v^0, \lambda^0)$ be efficient solutions to $(P_{1,0})$ and (D), respectively. Assume that

$$(j_l) \sum_{i=1}^p \frac{u_i^0}{\alpha_i(S^*, S^0)} (F_i(S^*) - \lambda_i^0 G_i(S^*)) \leq \sum_{i=1}^p \frac{u_i^0}{\alpha_i(S^*, S^0)} (F_i(S^0) - \lambda_i^0 G_i(S^0));$$

(*j*₂) for any $i \in P$ and $j \in M$, $(F_i(\cdot) - \lambda_i^0 G_i(\cdot), H_j(\cdot))$ is of *d*-semistrictly type-I at S^* . Then, $S^0 = S^*$.

Proof: We assume that $S^0 \neq S^*$ and exhibit a contradiction. Using (j₂) we obtain

$$(F_{i}(S^{*}) - \lambda_{i}^{0}G_{i}(S^{*})) - (F_{i}(S^{0}) - \lambda_{i}^{0}G_{i}(S^{0})) >$$

> $\alpha_{i}(S^{*}, S^{0})\sum_{k=1}^{n} \langle D_{k}F_{i}(S^{0}) - \lambda_{i}^{0}D_{k}G_{i}(S^{0}), I_{S_{k}^{*}} - I_{S_{k}^{0}} \rangle$

for any $i \in P$, and

$$-H_{j}(S^{0}) \geq \beta_{j}(S^{*}, S^{0}) \sum_{k=1}^{n} \left\langle D_{k}H_{j}(T), I_{S^{*}_{k}} - I_{S^{0}_{k}} \right\rangle, \ j \in M.$$

By dividing by $\alpha_i(S^*, S^0) > 0$ and $\beta_j(S^*, S^0) > 0$, respectively, the above inequalities reduce to the following

$$\frac{F_{i}(S^{*}) - \lambda_{i}^{0}G_{i}(S^{*})}{\alpha_{i}(S^{*}, S^{0})} - \frac{F_{i}(S^{0}) - \lambda_{i}^{0}G_{i}(S^{0})}{\alpha_{i}(S^{*}, S^{0})} > \sum_{k=1}^{n} \left\langle D_{k}F_{i}(S^{0}) - \lambda_{i}^{0}D_{k}G_{i}(S^{0}), I_{S_{k}^{0}} - I_{S_{k}^{*}} \right\rangle$$
(22)

for any $i \in P$, and

$$-\frac{H_j(S^0)}{\beta_j(S^*,S^0)} \ge \sum_{k=1}^n \left\langle D_k H_j(S^0), I_{S^*_k} - I_{S^0_k} \right\rangle, \ j \in M$$
(23)

Multiplying the inequality (22) by $u^0 \ge 0$, $\sum_{i=1}^p u_i^0 = 1$, $\forall i \in P$, and (23) by $v^0 \ge 0$, $\forall j \in M$, and summing after all *i* and *j*, respectively, yields

$$\sum_{i=1}^{p} \frac{u_{i}^{0}}{\alpha_{i}(S^{*}, S^{0})} (F_{i}(S^{*}) - \lambda_{i}^{0}G_{i}(S^{*})) - \sum_{i=1}^{p} \frac{u_{i}^{0}}{\alpha_{i}(S^{*}, S^{0})} (F_{i}(S^{0}) - \lambda_{i}^{0}G_{i}(S^{0}))$$

$$-\sum_{j=1}^{m} \frac{v_{j}^{0}H(S_{0})}{\beta_{j}(S^{*}, S^{0})} > \sum_{i=1}^{p} \sum_{k=1}^{n} u_{i}^{0} \left\langle D_{k}F_{i}(S^{0}) - \lambda_{i}^{0}D_{k}G_{i}(S^{0}), I_{S_{k}^{*}} - I_{S_{k}^{*}} \right\rangle$$

$$+\sum_{j=1}^{m} \sum_{k=1}^{n} v_{j}^{0} \left\langle D_{k}H_{j}(S^{0}), I_{S_{k}^{*}} - I_{S_{k}^{0}} \right\rangle.$$
(24)

Now, because $(S^0, u^0, v^0, \lambda^0)$ is a feasible solution to (D) by (7) we get

$$\sum_{i=1}^{p} \frac{u_{i}^{0}}{\alpha_{i}(S^{*}, S^{0})} (F_{i}(S^{*}) - \lambda_{i}^{0}G_{i}(S^{*})) - \sum_{i=1}^{p} \frac{u_{i}^{0}}{\alpha_{i}(S^{*}, S^{0})} (F_{i}(S^{0}) - \lambda_{i}^{0}G_{i}(S^{0})) - \sum_{i=1}^{m} \frac{v_{i}^{0}H(S^{0})}{\beta_{i}(S^{*}, S^{0})} > 0.$$
(25)

Since $v_i^0 H_i(S^0) \ge 0$ for any $j \in M$, by (25) we obtain

$$\sum_{i=1}^{p} \frac{u_{i}^{0}}{\alpha_{i}(S^{*}, S^{0})} (F_{i}(S^{*}) - \lambda_{i}^{0}G_{i}(S^{*})) > \sum_{i=1}^{p} \frac{u_{i}^{0}}{\alpha_{i}(S^{*}, S^{0})} (F_{i}(S^{0}) - \lambda_{i}^{0}G_{i}(S^{0}))$$

which contradicts the assumption (j_1) . Thus the theorem is proved.

REFERENCES

- Bector, C.R., Bhatia, D., and Pandey, S., "Duality for multiobjective fractional programming involving *n*-set functions", *J. Math. Anal. Appl.* 186 (3) (1994) 747-768.
- [2] Bector, C.R., Bhatia, D., and Pandey, S.,"Duality in nondifferentiable generalized fractional programming involving n-set functions". Utilitas Math. 45 (1994) 91-96
- [3] Begis, D., and Glowinski, R., "Application de la méthode des éléments finis à l'approximation d'une probléme de domaine optimal: Méthodes de résolution de problémes approaches", *Appl. Math. Optim.*, 2 (2) (1975) 130-169.
- [4] Bhatia, D., and Kumar, P., "Pseudolinear vector optimization problems containing *n*-set functions", *Indian J.Pure Appl.Math.* 28 (4) (1997) 439-453.
- [5] Bhatia, D., and Mehra, A., "Lagrange duality in multiobjective fractional programming problems with *n*-set functions", *J.Math. Anal. Appl.* 236 (1999) 300-311.
- [6] Bhatia, D., and Mehra, A., "Theorem of alternative for a class of quasiconvex *n*-set functions and its applications to multiobjective fractional programming problems", *Indian J. Pure Appl. Math.* 32 (6) (2001) 949-960.
- [7] Bhatia, D., and Tewari, S., "Multiobjective fractional duality for *n*-set functions", *J.Inform. Optim. Sci.* 14 (3) (1993) 321-334.
- [8] Cea, J., Gioan, A., and Michel, J., "Quelques résultats sur l'identification de domaines", *Calcolo*, 10 (3-4) (1973) 207-232.

- 72 I. M. Stancu-Minasian, G., Dogaru, A., M., Stancu, / Duality for Multiobjective
- [9] Corley, H.W., "Optimization theory for n-set functions", J. Math. Anal. Appl., 127 (1) (1987) 193-205
- [10] Corley, H.W., and Roberts, S.D., "A partitioning problem with applications in regional design", Oper. Res., 20(1982) 1010-1019.
- [11] Dantzig, G., and Wald, A., "On the fundamental lemma of Neyman and Pearson", Ann. Math. Statistics, 22 (1951) 87-93.
- [12] Jeyakumar, V., and Mond, B., "On generalised convex mathematical programming", J. Austral. Math. Soc., Ser. B, 34 (1) (1992) 43-53.
- [13] Jo, C.L., Kim, D.S., and Lee, G.M., "Duality for multiobjective fractional programming involving n-set functions", Optimization 29 (3) (1994) 205-213.
- [14] Kim, D.S., Lee, G.M., and Jo, C.L., "Duality theorems for multiobjective fractional minimization problems involving set functions", Southeast Asian Bull. Math. 20 (2) (1996) 65-72.
- [15] Kim, D.S., Jo, C.L., and Lee, G.M., "Optimality and duality for multiobjective fractional programming involving *n*-set functions", *J. Math. Anal. Appl.*, 224 (1) (1998) 1-13.
 [16] Kumar, N., Budharaja, R.K., and Mehra, A., "Approximated efficiency for *n*-set
- multiobjective fractional programming", Asia-Pacific J. Oper. Res. 21 (2) (2004) 197-206.
- [17] Mishra, S.K., "Duality for multiple objective fractional subset programming with generalized $(F, \rho, \sigma, \theta) - V$ -type-I functions", J. Global Optim. 36 (4) (2006) 499-516.
- [18] Mishra, S.K., Wang, S.Y., and Lai, K.K., "Optimality and duality for a multi-objective programming problem involving generalized d -type-I and related *n*-set functions". European J.Oper.Res., 173 (2) (2006) 405-418.
- [19] Mangasarian, O.L., Nonlinear Programming, McGraw-Hill, New York, 1969.
- [20] Morris, R.J.T., "Optimal constrained selection of a measurable subset", J. Math. Anal. Appl. 70 (2) (1979) 546-562.
- [21] Neymann, J., and Pearson, E.S., "On the problem of the most efficient tests of statistical hypotheses", Philos. Trans. Roy. Soc. London, Ser.A, 231(1933) 289-337.
- [22] Preda, V., "On duality of multiobjective fractional measurable subset selection problems", J. Math. Anal. Appl., 196 (1995) 514-525.
- [23] Preda, V., "Duality for multiobjective fractional programming problems involving n-set functions", in : C.Andreian Cazacu, O.Lehto and Th.M.Rassias (eds.), Analysis and Topology, World Scientific Publishing Company, 1998, 569-583.
- [24] Preda, V., and Stancu-Minasian, I.M., "Optimality and Wolfe duality for multiobjective programming problems involving n-set functions". in: N. Hadjisavvas, J. E., Martinez-Legaz, and J.-P., Penot, (eds.), Generalized Convexity and Generalized Monotonocity, Proceedings of the 6th International Symposium on Generalized Convexity/ Monotonocity, Karlovassi, Samos, Greece, 25 Aug.-3 Sep. 1999. Lecture Notes in Economics and Mathematical Systems 502, Springer-Verlag, Berlin, 2001, 349-361.
- [25] Preda, V., and Stancu-Minasian, I.M., "Mond-Weir duality for multiobjective programming problems involving d-type-I n-set functions". Rev. Roumaine Math. Pures Appl. 47 (4) (2002) 499-508.
- [26] Preda, V., Stancu-Minasian, I.M., and Koller, E., "On optimality and duality for multiobjective programming problems involving generalized d-type-I and related n-set functions", J. Math. Anal. Appl., 283 (1) (2003) 114-128.
- [27] Stancu-Minasian, I.M., Fractional Programming: Theory, Methods and Applications, Dordrecht, The Netherlands, Kluwer Academic Publishers, pages, 1997, viii + 418.
- [28] Stancu-Minasian, I.M., and Preda, V., "Optimality conditions and duality for programming problems involving set and n-set functions: a survey", J. Statist. Manag. Systems, 5 (1-3) (2002) 175-207.

- [29] Suneja, S.K. and Srivastava, M.K., "Optimality and duality in nondifferentiable multiobjective optimization involving d-type I and related functions", J. Math. Anal. Appl., 206 (2) (1997) 465-479.
- [30] Wang, P.K.C., "On a class of optimization problems involving domain variations", *Lecture Notes in Control and Information Sciences*, Vol.2., Springer-Verlag, Berlin, 1977, 49-60.
- [31] Ye, Y.L., "D-invexity and optimality conditions", J. Math. Anal. Appl., 162 (1991) 242-249.
- [32] Zalmai, G.J., "Optimality conditions and duality for multiobjective measurable subset selection problems", *Optimization*, 22 (2) (1991) 221-238.
- [33] Zalmai, G.J., "Semiparametric sufficient efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (F, ρ, θ) -convex functions", *Southeast Asian Bull.Math.*, 25 (2) (2001) 529-563.
- [34] Zalmai, G.J., "Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized $(F, \rho, \sigma, \theta) V$ -convex functions", *Computers and Math. Appl.*, 43 (2002) 1489-1520.
- [35] Zalmai, G.J., "Parametric sufficient efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (F, ρ, θ) -convex functions", *J.Stat.Manag.Syst*, 6 (2) (2003) 331-370.