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1. INTRODUCTION  

Consider the multiobjective nonlinear fractional programming problem 
involving -set functions  n
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1

1

( )( )
minimize ( ) ,...,

( ) ( )
p

p

F SF S
F S

G S G S
⎛ ⎞

= ⎜⎜
⎝ ⎠

⎟⎟  (P) 

subject to  
( )jH S ≤ 10, , ( ,..., ) n

nj M S S S∈ = ∈Γ  
where  is the -fold product of a nΓ n σ - algebra Γ  of subsets of a given set X , 

{ }1,2,...,M m= , ,i iF G , { }1,2,...,i P p∈ = , and ,jH j M∈  are differentiable real-

valued functions defined on  with  nΓ

( )iF S ≥ 0 and , for all i( ) 0iG S > P∈ . (1) 

Let 0S { , ( )nS S H S= ∈Γ ≤ 0}  be the set of all feasible solutions to (P), where 

1( ,..., )mH H H= .  
The term “minimize” being used in Problem (P) is for finding efficient, weakly 

and properly efficient solutions. 
A feasible solution  to (P) is said to be an efficient solution to (P) if there 

exists no other feasible solution  to (P) so that 

0S
S ( )iF S ≤ 0( )iF S , for all , with 

strict inequality for at least one 
i P∈

i P∈ .  
A feasible solution  to (P) is said to be a weakly efficient solution to (P) if 

there exists no other feasible solution  to (P) so that 

0S
S 0( ) ( )i iF S F S< , for all i .  P∈

The analysis of optimization problems with set or -set functions i.e. selection 
of measurable subsets from a given space, has been the subject of several papers. For a 
historical survey of optimality conditions and duality for programming problems 
involving set and n-set functions the reader is referred to Stancu-Minasian and Preda’s 
review paper [28]. These problems arise in various applications including fluid flow [3], 
electrical insulator design [8], regional design (districting, facility location, warehouse 
layout, urban planning etc.) [10], statistics [11], [21] and optimal plasma confinement 
[30]. The general theory for optimizing set functions was first developed by Morris [20]. 
Many results of Morris [20] are only confined to functions of a single set. Corley [9] 
started to give the concepts of partial derivatives and derivatives of real-valued n -set 
functions.  

n

Starting from the methods used by Jeyakumar and Mond [12] and Ye [31], 
Suneja and Srivastava [29] defined some new classes of scalar or vector functions called 

-type-I, -pseudo-type-I, -quasi-type-I etc. for a multiobjective nondifferentiable 
programming problem and obtained necessary and sufficient optimality criteria. Also, 
they established duality between this problem and its Wolfe-type and Mond-Weir-type 
duals and obtained some duality results considering the concept of a weak minimum.  

d d d

In particular, multiobjective fractional subset programming problems have been 
the focus of intense interest in the past few years, and resulted in many papers [1], [2], 
[4]-[7], [13]-[17], [22], [23], [28], [33]-[35]. 

In this paper we establish duality results under generalized convexity 
assumptions for a multiobjective nonlinear fractional programming problem involving 
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generalized -type-I -set functions. Our results generalize the results obtained by 
Preda and Stancu-Minasian [24], [25].  

d n

 
2. DEFINITIONS AND PRELIMINARIES  

In this section we introduce the notation and definitions which will be used 
throughout the paper.  

Let  be the n - dimensional Euclidian space and nR n
+R  its positive orthant, i.e.  

{ ( ) ,n n
jx x+ = = ∈R R jx ≥ 0 , 1,..., }j n= .  

For  we put 1 1( ,..., ), ( ,..., ) m
m mx x x y y y= = R∈ x ≤ y  iff ix ≤ iy  for each 

; i M∈ x y≤  iff ix ≤ iy  each i M∈ , with x y≠ ; x y<  iff i ix y<  for each i M  

while 

∈

x y  is the negation of x y< . We write nx +∈R  iff x ≥ 0 .  
Let ( , , )X μΓ  be a finite non-atomic measure space with 1( , , )L X μΓ  separable, 

and let  be the pseudometric on d nΓ  defined by:  
1/ 2

2

1
( , ) ( )

n

k k
k

d S T S Tμ
=

⎡ ⎤= Δ⎢ ⎥
⎣ ⎦
∑  

for , , where 1( ,..., )nS S S= 1( ,..., ) n
nT T T= ∈Γ Δ  denotes the symmetric difference. Thus 

 is a pseudometric space, which will serve as the domain for most of the functions 
that will be used in this paper.  
( , )n dΓ

For 1( , , )h L X μ∈ Γ , the integral 
S

h∫ dμ will be denoted by , Sh I , where SI  is 

the indicator (characteristic) function of S ∈Γ .  
We next introduce the notion of differentiability for -set functions. This was 

originally introduced by Morris [20] for set functions and subsequently extended by 
Corley [9] to -set functions.  

n

n
A function :ϕ Γ→ R  is said to be differentiable at 0S ∈Γ  if there exist 

0
1( ) ( , , )D S L Xϕ μ∈ Γ , called the derivative of ϕ  at , and 0S :ψ Γ×Γ→ R  such that for 

each ,  S ∈Γ

0
0 0( ) ( ) ( ), ( , )S S

S S D S I I S Sϕ ϕ ϕ ψ= + − + 0 , 

where  is , that is, 0( , )S Sψ 0( ( , ))o d S S
( )0

0

0, 0

( , )lim 0
( , )d S S

S S
d S S
ψ

→
= . 

A function  is said to have a partial derivative at  
with respect to its -th argument if the function  

: nF Γ → R 0 0 0
1( ,..., )nS S S=

k
0 0 0 0
1 1 1( ) ( ,..., , , ,..., )k k k kS F S S S S Sϕ − += n  

has derivative  and we define . If , 10( )kD Sϕ 0 0( ) ( )k kD F S D Sϕ= 0( )kD F S k n , all 
exist, then we put .  0 0

1( ) ( ( ),..., ( ))nDF S D F S D F S= 0
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A function  is said to be differentiable at  if there exist  
and  such that  

: nF Γ → R 0S 0( )DF S
: n nψ Γ ×Γ → R

0
0 0

1
( ) ( ) ( ), ( , )

k k

n

k S S
k

0F S F S D F S I I S Sψ
=

= + − +∑ , 

where  is , for all 0( , )S Sψ 0( ( , ))o d S S nS ∈Γ .  
Along the lines of Jeyakumar and Mond [12] and Suneja and Srivastava [29], 

Preda and Stancu-Minasian [24] defined new classes of -set functions, called d-type-I, 
d-quasi type-I, d-pseudo type-I, d-quasi-pseudo type-I, d-pseudo-quasi type-I. 

n

In [18] Mishra extended the generalized d -type-I vector-valued functions of 
Preda and Stancu-Minasian [24] to new generalized -type-I -set functions and 
establish optimality and Mond-Weir type duality results. 

d n

Definition 1. [24] We say that ( , )F G  is of -type-I at d 0 nS ∈Γ  if there exist functions 
, , such that for all { }, : \ 0n n

i jα β +Γ ×Γ → R ,i P j M∈ ∈ 0S S∈ , we have  

0( ) ( )i iF S F S− ≥ 0
0 0

1

( , ) ( ),
k k

n

i k i S S
k

S S D F S I Iα
=

−∑ , i P∈  (2) 

and 

0( )jH S− ≥ 0
0 0

1

( , ) ( ),
k k

n

j k j S S
k

S S D H S I Iβ
=

−∑ , j M∈ . (3) 

We say that ( ),F H  is of d-semistrictly type-I at  if in the above definition 

we have  and (2) is a strict inequality.  

0S
0S S≠

Now, we introduce 
Definition 2. [32] A feasible solution  to (P) is said to be a regular feasible solution if 
there exists 

0S
ˆ nS ∈Γ  such that  

0
0 0

ˆ
1

( ) ( ), 0
k k

n

j k j S S
k

H S D H S I I
=

+ − <∑ j M, ∈ . 

Now, for each 1( ,..., ) p
pλ λ λ += ∈R  we consider the parametric problem 

1 1 1 pminimize(F ( ) ( ),..., F ( ) ( ))p pS G S S G Sλ λ− −  ( ) λP

subject to  

( )jH S ≤  . 10, , ( ,..., ) n
nj M S S S∈ = ∈Γ

The problem ( ) is equivalent to the problem (P) in the sense that for particular 
choices of 

λP

iλ , , the two problems have the same set of efficient solutions. This 
equivalence is stated in the following lemma which is well known in fractional 
programming [27]. 

i P∈
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Lemma 3. An  is an efficient solution to (P) if and only if is an efficient solution to 

( ) with 

0S

0λ
P

0
0

0

( )
( )

i
i

i

F S
G S

λ = , . 1,...,i p=

In this paper the proofs of the duality results for Problem (P) will invoke the 
following necessary efficiency result for ( ) (see Zalmai [32], Theorem 3.2).  λP
Theorem 4. [32] Let  be a regular efficient (or weakly efficient) solution to (P) and 
assume that 

0S
,i iF G ,  and i P∈ jH , j M∈ , are differentiable at . Then there exist 0S

0 pu +∈R , 0

1
1

p

i
i

u
=

=∑ , , and 0 mv +∈R 0 pλ +∈R  such that  

0
0 0 0 0 0 0

1 1 1
( ) ( ) ( ),

k k

pn m

i k i i k i j k j S S
k i i

u D F S D G S v D H S I Iλ
= = =

⎛ ⎞− + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ≥ 0, for all , 

 (4) nS ∈Γ
0 0 0 0( ( ) ( ))i i i iu F S G Sλ− ≥ 0 , i P∈  (5) 

0 0( ) 0j jv H S = , . (6) j M∈

 
3. DUALITY  

In this section, in the differentiable case, based on the equivalence of (P) and 
( ) a dual for ( ) is defined and some duality results in d-type-I assumptions are 
stated. With ( ) we associate a dual stated as  

λP λP

λP

1maximize ( ,..., )pλ λ  (D) 

subject to  

( )
1 1 1 1

( ) ( ), ,
k k k k

p n m n

i k i i k i S T j k j S T
i k j k

u D F T D G T I I v D H T I Iλ
= = = =

− − + −∑∑ ∑∑ 0 ,

 (7) nS ∈Γ

( ( ) ( ))i i i iu F T G Tλ− 0 , i P∈ , (8) 

( )j jv H T 0 , , (9) j M∈

1
, 1

p
p

i
i

u u+
=

∈ =∑R , mv +∈R , pλ +∈R . (10) 

Let  be the set of feasible solutions to (D). Let us prove the duality theorems.  0D
Theorem 5. (Weak duality) Let  and S ( , , , )T u v λ  be feasible solutions to problem (P) 
and (D), respectively such that (i1) for each i P∈  and j M∈ , ( ( ) ( ), ( ))i i i jF G Hλ⋅ − ⋅ ⋅  is 
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of d-type-I at T ; (i2)  for any 0iu > i P∈ , and for some i P∈  and , 
 is of d-semistrictly type-I at T . 

j M∈

( ( ) ( ), ( ))i i i jF G Hλ⋅ − ⋅ ⋅

Then for any  one cannot have  0SS ∈

( )
( )

i

i

F S
G S

≤ iλ  for any , (11) i P∈

( )
( )

j

j

F S
G S

< jλ  for some j P∈ . (12) 

Proof: Let us suppose the contrary that (11) and (12) hold. Then there exists S , a 
feasible solution for ( ), such that (11) and (12) hold.  λP

If hypothesis (i2) holds, then  for any 0iu > 1,...,i p= . From (1), (11) and (12) 
we get  

1
( ( ) ( )) 0

p

i i i i
i

u F S G Sλ
=

−∑ < . (13) 

Using the feasibility of , and the relations (9) and (10), we have S

( )j jv H S ≤ 0≤ ( )j jv H T 1,...,j m∀ = . (14) 

Since ( , ) 0,i S T i Pα > ∈ , and , combining (8), (13) and (14) 
we obtain  

( , ) 0,>j S T j Mβ ∈

1 1

1

( ( ) ( )) ( ( ) ( ))
( , ) ( , )

( )
( , )

p p
i i

i i i i i i
i ii i

m
j j

i j

u u
F S G S F T G T

S T S T
v H T

S T

λ λ
α α

β

= =

=

− < −

+

∑ ∑

∑
. (15) 

We claim that  for if it is not true, then, from , S T≠ 0iu > i P∈ , the feasibility 
of  and (8) we obtain a contradiction with (11) and (12).  S

One the other hand, from S T≠ , (i1) and (i2), it follows that  

( ( ) ( )) ( ( ) ( ))i i i i i iF S G S F T G Tλ λ− − − ≥  

1

( , ) ( ) ( ),
k k

n

i k i i k i S
k

S T D F T D G T I Iα λ
=

−∑ T−  (16) 

for any i , with strict inequality for some i , and  P∈

( )jH T− ≥
1

( , ) ( ),
k k

n

j k j S T
k

S T D H T I Iβ
=

−∑ , j M∈ . (17) 

By dividing by ( , ) 0i S Tα >  and , respectively, the above 
inequalities reduce to the following 

( , ) 0j S Tβ >
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( ) ( ) ( ) ( )
( , ) ( , )

i i i i i i

i i

F S G S F T G T
S T S T
λ λ

α α
− −

− ≥
1

( ) ( ),
k k

n

k i i k i S T
k

D F T D G T I Iλ
=

−∑ −  (18) 

for any i , with strict inequality for some i , and  P∈

( )
( , )
j

j

H T
S Tβ

− ≥
1

( ),
k k

n

k j S T
k

D H T I I
=

−∑ , j M∈  (19) 

Multiplying the inequality (18) by , 0iu > i P∀ ∈ , and (19) by jv ≥ 0, , 
and summing after all  and , respectively, yields 

j M∀ ∈
i j

1 1

1 1 1 1

( )
( ( ) ( )) ( ( ) ( ))

( , ) ( , ) ( , )

( ) ( ), ( ), .
k k k k

p p
j ji i

i i i i i i
i ii i

p n m n

i k i i k i S T j k j S T
i k j k

v H Tu u
F S G S F T G T

S T S T S T

u D F T D G T I I v D H T I I

λ λ
α α

λ

= =

= = = =

− − − −

> − − +

∑ ∑

∑∑ ∑∑

1

p

i jβ=

>

−

∑
 (20) 

Now, by (15) it follows  

1 1 1 1
( ) ( ), ( ), 0

k k k k

p n m n

i k i i k i S T j k j S T
i k j k

u D F T D G T I I v D H T I Iλ
= = = =

− − + −∑∑ ∑∑ < . 

This inequality contradicts (7). Thus the theorem is proved. 
Corollary 6. Let and 0S 0 0 0 0( , , , )S u v λ be feasible solutions to ( 0P

λ
) and (D), 

respectively. If the hypotheses of Theorem 5 are satisfied, then  is an efficient solution 
to (

0S
0P

λ
) and 0 0 0 0( , , , )S u v λ  is an efficient solution to (D).  

Proof: We proceed by contradiction. If  is not an efficient solution to (0S 0P
λ

) then there 

exists a feasible solution  to ( ) such that S ′ 0λ
P

( )iF S ′ ≤ 0 ( )i iG Sλ ′ , ,  i P∀ ∈

and (21) 

( )jF S ′ < 0 ( )j jG Sλ ′ , for some j P∈ . 

Since 0 0 0 0( , , , )S u v λ  is a feasible solution to (D) by (21), and Theorem 5 we 
obtain a contradiction. Hence  is an efficient solution to . In the same way we 

obtain that 

0S 0λ
(P )

0 0 0 0( , , , )S u v λ  is an efficient solution to (D). 
Theorem 7. (Strong duality) Let be a regular efficient solution to (P). Then there exist 0S

0 pu +∈R , 0

1
1

p

i
i

u
=

=∑ , , and 0 mv +∈R 0 pλ +∈R , such that 0 0 0 0( , , , )S u v λ  is a feasible 

solution to (D). Further, if the conditions of Weak Duality Theorem 5 also hold, then 
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0 0 0 0( , , , )S u v λ is an efficient solution to (D) and the values of the objective functions of 
(P) and (D) are equal at  and 0S 0 0 0 0( , , , )S u v λ  respectively. 

Proof: Using Theorem 4 we obtain that there exist 0 pu +∈R , 0

1
1

p

i
i

u
=

=∑ , , and (4) 

and (5) hold. Thus, 

0 mv +∈R

0 0 0 0( , , , )S u v λ satisfies (7) – (10). Hence, 0 0 0 0( , , , )S u v λ is a feasible 
solution to (D). Further, if Theorem 5 holds then, by Corollary 6 we obtain that this 
solution 0 0 0 0( , , , )S u v λ  is also an efficient solution to (D), and the values of the objective 
functions of (P) and (D) are equal at  and 0S 0 0 0 0( , , , )S u v λ  respectively. 

Now we give a strict converse duality theorem of Mangasarian type [19] for 
 and (D).  λ(P )

Theorem 8. (Strict converse duality) Let  and *S 0 0 0 0( , , , )S u v λ  be efficient solutions to 
 and (D), respectively. Assume that  0λ

(P )

(j1)
0

* 0 *
* 0

1

( ( ) ( ))
( , )

p
i

i i i
i i

u
F S G S

S S
λ

α=

−∑  
0

0 0 0
* 0

1

( ( ) ( ))
( , )

p
i

i i i
i i

u
F S G S

S S
λ

α=

−∑ ; 

(j2) for any i P∈  and , j M∈ 0( ( ) ( ), ( ))i i i jF G Hλ⋅ − ⋅ ⋅  is of -semistrictly type-I at 

.Then, . 

d
*S 0 *S S=

Proof: We assume that  and exhibit a contradiction. Using (j0S S≠ *
2) we obtain 

* 0

* 0 * 0 0 0

* 0 0 0 0

1

( ( ) ( )) ( ( ) ( ))

( , ) ( ) ( ),
k k

i i i i i i
n

i k i i k i S S
k

F S G S F S G S

S S D F S D G S I I

λ λ

α λ
=

− − − >

> −∑ −
 

for any i , and  P∈

0( )jH S− ≥ * 0
* 0

1

( , ) ( ),
k k

n

j k j S S
k

S S D H T I Iβ
=

−∑ , j M∈ .  

By dividing by  and , respectively, the above 
inequalities reduce to the following 

* 0( , ) 0i S Sα > * 0( , ) 0j S Sβ >

0 *

* 0 * 0 0 0

* 0 * 0

0 0 0

1

( ) ( ) ( ) ( )
( , ) ( , )

( ) ( ),
k k

i i i i i i

i i
n

k i i k i S S
k

F S G S F S G S
S S S S

D F S D G S I I

λ λ
α α

λ
=

− −
− >

− −∑
 (22)  

for any i , and  P∈

0

* 0

( )
( , )

j

j

H S
S Sβ

− * 0
0

1

( ),
k k

n

k j S S
k

D H S I I
=

−∑ , j M∈  (23) 
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Multiplying the inequality (22) by 0u ≥ 0, 0

1

1
p

i
i

u
=

=∑ , i P∀ ∈ , and (23) by 0v ≥ 0, 

, and summing after all  and , respectively , yields j M∀ ∈ i j

* *

* 0

0 0
* 0 * 0 0 0

* 0 * 0
1 1

0
0 0 0 0 0

* 0
1 1 1

0 0

1 1

( ( ) ( )) ( ( ) ( ))
( , ) ( , )

( )
( ) ( ),

( , )

( ), .

k k

k k

p p
i i

i i i i i i
i ii i

pm n
j

i k i i k i S S
j i kj

m n

j k j S S
j k

u u
F S G S F S G S

S S S S

v H S
u D F S D G S I I

S S

v D H S I I

λ λ
α α

λ
β

= =

= = =

= =

− − −

− > − −

+ −

∑ ∑

∑ ∑∑

∑∑

 (24) 

Now, because 0 0 0 0( , , , )S u v λ  is a feasible solution to (D) by (7) we get 

0 0
* 0 * 0 0 0

* 0 * 0
1 1

0 0

* 0
1

( ( ) ( )) ( ( ) ( ))
( , ) ( , )

( )
0.

( , )

p p
i i

i i i i i i
i ii i

m
j

i i

u u
F S G S F S G S

S S S S

v H S
S S

λ λ
α α

β

= =

=

− − −

− >

∑ ∑

∑

−

( )j jv H S

 (25) 

Since 0 0 0 for any j M∈ , by (25) we obtain  

0 0
* 0 * 0 0 0

* 0 * 0
1 1

( ( ) ( )) ( ( ) ( ))
( , ) ( , )

p p
i i

i i i i i i
i ii i

u u
F S G S F S G S

S S S S
λ λ

α α= =

− > −∑ ∑  

which contradicts the assumption (j1). Thus the theorem is proved. 
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