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Abstract: The aim of this paper is to present a new simplex type algorithm for the Linear 
Programming Problem. The Primal - Dual method is a Simplex - type pivoting algorithm 
that generates two paths in order to converge to the optimal solution. The first path is 
primal feasible while the second one is dual feasible for the original problem. 
Specifically, we use a three-phase-implementation. The first two phases construct the 
required primal and dual feasible solutions, using the Primal Simplex algorithm. Finally, 
in the third phase the Primal - Dual algorithm is applied. Moreover, a computational 
study has been carried out, using randomly generated sparse optimal linear problems, to 
compare its computational efficiency with the Primal Simplex algorithm and also with 
MATLAB’s Interior Point Method implementation. The algorithm appears to be very 
promising since it clearly shows its superiority to the Primal Simplex algorithm as well as 
its robustness over the IPM algorithm.  

Keywords: Linear optimization, simplex-type algorithms, primal-dual exterior point algorithm, 
computational study. 

1. INTRODUCTION 

Linear Programming (LP) is perhaps the most important and best-studied 
optimization problem. A lot of real world problems can be formulated as linear problems 
[1], [2] and [4]. The simplex algorithm developed by Dantzig, starts with a primal 
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feasible basis and uses pivot operations in order to preserve the feasibility of the basis 
and guarantee monotonicity of the objective value. 

Many pivot rules are known for simplex type algorithms. Much recent research 
around linear programming algorithms aims to efficiently combine both primal and dual 
paths thus reducing the duality gap and converging to the optimal solution faster. It is 
well known that simplex type algorithms behavior can be improved by modifying: (i) the 
initial solution and (ii) the pivoting rule. A relative new idea is to combine interior point 
methods and pivoting algorithms for solving linear programming problems [5]. This 
paper takes advantage of the new primal potential – dual exterior point algorithm [6], [8], 
[9] and [10], by employing a totally new-in-way constructive implementation. Primal-
Dual exterior point algorithm traverses across the interior of the feasible region in an 
attempt to avoid the combinatorial complexities of vertex-following algorithms. In this 
paper, we will examine in detail the construction of an initial primal and dual basis, 
required to initialize the algorithm, along with a computational study to examine its 
practical effectiveness versus some well known linear programming algorithms.  

The paper is organized as follows. In Section 2 we have presented a new method 
for acquiring the pair of primal and dual solutions; both of which need to start with the 
algorithm. In Section 3 we have described the primal-dual algorithm. In Sections 4 and 5 
we have presented the  implementation techniques and the computational results and 
finally, in Section 6 we have given our conclusions. 

 
2. ALGORITHM INITIALIZATION 

The proposed algorithm is directly applied to the primal problem. However, the 
first step is to obtain a set of primal and dual solutions for this primal problem. The linear 
optimization problem, in standard form, is as follows: 

min             
subject to   
                  0.
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Ax b
x

=
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The corresponding problem to the primal dual one is shown below: 
 

max             

subject to   
                  0.
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We will use a two-phase-technique to acquire the required set of solutions, and 

we will apply the algorithm in the third, final phase. The first two phases will use Primal 
Simplex algorithm in order to solve the modified problems. 
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2.1 Constructing a primal feasible solution  

Primal means that this solution refers to the primal problem and not the dual 
one. Such a requirement is easy to implement using a modified problem with one 
artificial variable. This problem is capable of providing an initial primal feasible partition 
by giving priority to the artificial variable to leave the basis. Meanwhile this problem has 
always an initial feasible algorithm solution applicable by its own unique and strictly 
constructive format. 

As so, by applying primal Simplex algorithm to this modified problem, due to 
the fact that this algorithm constructs finite sequences of feasible basic partitions, this 
solution will remain feasible after the artificial variable leaves the basis. There is also the 
case that the artificial variable has not yet left the basis but the problem has already been 
solved. A careful pivot should then be able to remove the artificial variable. The modified 
problem of Phase I is constructed following the procedure below:  

We insert the artificial variable 1nx +  to our initial linear problem as an extra 
column in matrix A which is: 

Bd A e= −  
where e is a column vector of ones, having as many rows as matrix A does. The problem 
which is solved in Phase I is as follows: 

1
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min                
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                   , 0.
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 (LP. 2) 

A pivot must now be done in order to enter the artificial variable to the basis. 
The leaving variable is selected by the following minimum ratio test: 

( ) ( )min{ : 1, 2,..., }k B r B ix x x i m= = =  

The new basic partition is: 

{ } { 1}
{ 1} { }

B B k n
N N n k
← ∼ ∪ +
← ∼ + ∪

 

The pivoting column which corresponds to the artificial variable is: 
1

1 .( 1)n nh B A−
+ +=  

The above selections of entering and leaving variables, assures the feasibility of 
the first partition in order to apply the primal Simplex algorithm to (LP. 2). This 
procedure provides us the initial feasible point y for PDTPSA. We can also detect 
infeasibility through the criterion 1 0.nx + >  

 
2.2 Constructing a dual feasible solution 

The dual feasible solution is also constructed using a similar procedure. Let us 
now assume that the initial linear problem we aim to solve is the following one:  
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min             
subject to   
                  , 0.

Tc x
Ax s b
x s

+ =
≥

 (LP. 3) 

We will now formulate a second modified problem which differs from the 
original as shown below: 
 

min             
subject to   0
                  , 0.

Tc x
Ax s
x s

+ =
≥

 (LP. 4) 

It can be observed that the right hand side is zero. This gives us the ability to 
apply the Simplex algorithm from the beginning because the initial partition will be 
feasible:  

1 0 0Bx B b−= = ≥  

This problem has the same solution type as the original one. If the original is 
optimal, or unbounded this one is also optimal or unbounded correspondingly. This is 
because the existence or non-existence of optimal points in functions, is not affected by 
the existence of constant terms. This problem is also not infeasible because the trivial 
solution x = 0 always exists. Regardless, we must construct this modified problem only if 
Phase I has proved that our original problem is not infeasible. In any case (LP. 4) is either 
optimal or unbounded. If it is optimal, its optimal partition is also dual feasible to (LP. 3) 
because the right hand side does not participate in the computation of the dual slack 
variables, and so remains the same for the pair of problems. On the other hand in case the 
problem is unbounded, then (LP. 3) is unbounded also, because such a system remains so 
regardless of its right hand side. 

 
3. ALGORITHM DESCRIPTION 

The algorithm geometrically moves from an exterior dual feasible point towards 
the interior of the feasible region using either a boundary or an interior starting point. If 
an interior point is used then the direction drawn crosses the polyhedron at a boundary 
point. By making then a dual feasible pivot using this point we acquire a new basis and 
the process continues iteratively until we reach optimality conditions, implying primal 
feasibility since we use a dual in nature algorithm. A detailed description of the primal-
dual exterior point algorithm can be found in [7]. Translating the above geometry into 
algebra the algorithm takes the following form: 

 
Step 0 (initialization): Start with a primal feasible solution y and a dual feasible basic 
partition (B, N) to problem (LP. 1). Set: 

1 1( ) ,    ( ) ( ) ,   ( ) ( ) ,   T T T T T
B B B B N N Nx A b w c A s c w A d y x− −= = = − = −  
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Step 1 (general step):  

while ( )(  {1, 2,..., } : 0)B ii m x∃ ∈ <  
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4. IMPLEMENTATION ISSUES 

In this Section, we will briefly discuss some important characteristics of this 
implementation. Programming a linear optimization algorithm differs much more from 
its simple pseudo-code description. Linear problems of small sizes can be easily solved 
without emphasizing the implementation. But this is not feasible for large scale linear 
programming. One of the main characteristics of the benchmark problems, for example, 
is that most of them are degenerated. During our implementations we have given priority 
to the variables having the minimum index value at the basic list [3], excluding phase I, 
where the artificial variable must leave as soon as possible so we have given priority to 
the maximum value at this point. 

In order to increase numerical stability we use the equilibration scaling 
technique. In this method, all the elements of the coefficient matrix A have values 
between -1 and 1. One of the common reasons personal computers fail to solve linear 
problems is the existence of pivoting elements of absolute value being very close to zero. 
This is usually encountered because of the problem’s size and of the class difference of 
the numerical values. Linear problems including well-scaled matrices and vectors reduce 
the computational effort needed to solve them because the numerical accuracy problems 
are avoided. 

An algorithm which usually converges after some thousands of iterations is hard 
to avoid numerical accuracy errors. To handle numerical errors, several tolerances are 
used. The usual value for these cases is 1.0E-08. This value can vary from 1.0E-10 to 
8.0E-05 according to the difficulties each problem shows. 

One of the most time consuming steps of these algorithms is to compute the 
inverse of the current basis matrix. If we think that this matrix has usually some 
thousands of rows and columns it is clear that using determinants is prohibited. Therefore 
the procedure we followed is as follows: We initially compute the inverse matrix using 
the built - in function inv of MATLAB. In every other iteration and for a specific 
number, we make use of the eta-matrices. When we reach this specific arbitrary number 
we use again inv and the process repeats itself. In order to guarantee the accuracy, 
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periodically we compute the inverse of the basis from scratch. A good choice is usually 
to apply inversion every 80 iterations. 

 
5. COMPUTATIONAL STUDY 

To test the practical effectiveness of our implementations we performed a 
computational study using randomly generated sparse linear problems. We consider large 
scale instances where the coefficient matrix A will be large and sparse. It must be 
mentioned that, sparse linear problems arise in a plethora of applications. We compared 
the revised Primal Simplex Algorithm (rPSA) with the Primal-Dual Exterior Point 
Simplex Algorithm (PDEPSA), and the last one with LIPSOL built-in function of 
MATLAB’s optimization toolbox. This is a variant of Mehrotra’s predictor corrector 
Interior Point Method (IPM).  The algorithms have been coded in MATLAB. Matlab is 
an interactive environment that provides high performance computational routines. All 
the test problems were generated with the following properties. All technological 
constraints are tangent to a unit ball. None of the constraints is redundant. The computing 
environment had an Intel Core 2 Duo 1,73 GHz and 1 GB DDR2 RAM. The operating 
system was MS Windows Vista Business 64-bit edition. The reported CPU times were 
measured in seconds with MATLAB’s built-in function cputime. The figures shown 
below, are normalized graphs of the results on the ratio of total cpu-time needed and also 
of the total number of active iterations covered by each algorithm. We used 10 instances 
at each problem size category starting from 750 to 2,000 with step size equal to 250. The 
density varies from 5 to 20%. 

 

 

Figure 1: 5% Density, ratios of rPSA over PDEPSA 
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Figure 2: 10% Density, ratios of rPSA over PDEPSA 

 

Figure 3: 15% Density, ratios of rPSA over PDEPSA 

 

Figure 4: 20% Density, ratios of rPSA over PDEPSA 
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IPM /PDEPSA

  

Figure 5: 2.5% Density, ratios of LIPSOL over PDEPSA 

IPM /PDEPSA

 

Figure 6: 5% Density, ratios of LIPSOL over PDEPSA 

IPM /PDEPSA

RATIOS OF IPM/PDEPSA

 

Figure 7: 10% Density, ratios of LIPSOL over PDEPSA 
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Figure 8: 20% Density, ratios of LIPSOL over PDEPSA 

From the figures it is clear that the PDEPSA is far more superior compared to 
the rPSA for the range of the optimal randomly generated sparse problems. More 
specifically, the PDEPSA was found to be better in all of our measurements versus 
Simplex being in the worst case 4,39 times better in terms of cpu - time and 3,66 times 
better in terms of number of iterations at the size of 750x750, of 2.5% density, and in the 
best case 14,9 times better in cpu-time and 13,5 times better in number of iterations, at 
problems of size 2000x2000 and 20% density. This algorithm also showed remarkable 
stability and robustness versus the IPM algorithm, as densities became larger. That is 
because for the categories of 10% and 20% density the IPM method failed to solve all 
problems terminating either saying that the problem is unbounded or infeasible, while 
PDEPSA did not faced difficulties solving these instances to optimality correctly. 

 

6. CONCLUSION 

This paper presents a comparative computational study between the revised 
primal Simplex algorithm and PDEPSA as well as the built-in IPM algorithm of 
MATLAB in randomly generated sparse linear problems. All of our computational 
measurements and the programming of the algorithms were realized into the MATLAB 
programming environment. 

As the results show, PDEPSA is clearly superior to the revised Primal Simplex 
in all densities and sizes. We should also note here that these differences between these 
two algorithms would be much larger unless scaling techniques were used for the 
Simplex algorithm, meanwhile PDEPSA is characterized by the same behavior whether 
scaling is used or not.  

For the IPM algorithm, we should note that our measurements do not include 
iteration numbers. This is because such algorithms as the IPM, are known to converge 
after very few iterations, but with large computation cost for each one. As so, this could 
not be a reliable criterion to compare the competitive algorithms. Due to this reason, only 
the total cpu-time needed is used which is a robust criterion. Additionally in the levels of 
2.5% and 5% of density, IPM seems to outperform in general PDEPSA, in the rest two 
levels of 10% and 20% density the IPM method fails to solve all problems terminating 
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either the problem being unbounded or infeasible. This implies great stability for the 
PDEPSA which does not fail to solve the problems correctly and in most cases faster 
than the IPM algorithm. 
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