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Abstract: In this paper we consider interior-point methods (IPM) for the nonlinear, 
convex optimization problem where the objective function is a weighted sum of 
reciprocals of variables subject to linear constraints (SOR). This problem appears often in 
various applications such as statistical stratified sampling and entropy problems, to 
mention just few examples. The SOR is solved using two IPMs.  First, a homogeneous 
IPM is used to solve the Karush-Kuhn-Tucker conditions of the problem which is a 
standard approach.  Second, a homogeneous conic quadratic IPM is used to solve the 
SOR as a reformulated conic quadratic problem. As far as we are aware of it, this is a 
novel approach not yet considered in the literature. The two approaches are then 
numerically tested on a set of randomly generated problems using optimization software 
MOSEK. They are compared by CPU time and the number of iterations, showing that the 
second approach works better for problems with higher dimensions. The main reason is 
that although the first approach increases the number of variables, the IPM exploits the 
structure of the conic quadratic reformulation much better than the structure of the 
original problem.  

Keywords: SOR problem, convex optimization problems, conic quadratic optimization problem, 
interior-point methods. 
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1. INTRODUCTION 

In this paper we consider the problem 
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where , ,  and .i i ic l u R+∈  
The above problem is a nonlinear, optimization problem with convex objective 

function and simple linear constraints.  The abbreviation SOR comes from Sum of 
Reciprocals   because the objective function is a weighted sum of reciprocals of 
variables. The SOR appears often in various applications, such as in statistical stratified 
sampling [5] and entropy problems [3], to mention just a few. 

 The interior - point methods (IPMs) are best suited to solve many convex 
optimization problems especially with linear constraints. Thus, the SOR is solved using 
IPMs.  In the past two decades the development of IPMs has had a profound impact on 
the optimization theory and practice. The renewed interest in IPMs originated with 
Karmarkar’s paper [7] in 1984, and has been a very active area of research ever since.  
The list of references on the subject is extensive. We refer the interested reader to the 
classical monograph of Nesterov and Nemirovski [8] and the references therein.  

First, the SOR is solved in a standard manner by applying a homogeneous IPM 
to the Karush-Kuhn-Tucker conditions of the original problem  (which can be stated as 
monotone complementarity problem). Second, a homogeneous conic quadratic IPM is 
used to solve the SOR as a reformulated conic quadratic problem.  

The two approaches are then numerically tested on a set of randomly generated 
problems. The code of choice is optimization solver MOSEK [1] which has very good 
subroutines that solve both approaches. The results are compared by CPU time and the 
number of iterations, showing that the first approach works better for problems with 
higher dimensions. The result confirms the experience from numerous numerical tests of 
variety of different optimization problems: The interior-point methods seem to work 
better whenever a problem can be reformulated as one with a “nice” structure such as 
linear, conic quadratic or semi definite optimization problem. 

The outline of the paper is as follows. In Section 2 we discuss the conic 
quadratic reformulation of SOR. In Section 3 the IPMs used to solve the SOR are 
discussed.  Numerical results are presented in Section 4 and the conclusions are stated in 
Section 5. 

 
2.  CONIC QUADRATIC REFORMULATION OF SOR 

The SOR (1.1) can be transformed into a conic quadratic optimization problem. 
In general a conic optimization problem can be expressed in the form 
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where , , , andmxn n mA R c x R b R∈ ∈ ∈ . Set K is assumed to be a pointed closed convex 
cone. The types of cones most often considered are: the cone of nonnegative n-tuples, the 
quadratic cone, and the cone of semi definite symmetric matrices. Without loss of 
generality, it can be assumed that 1 kK K K= × ×… , that is, the cone K is a direct 
product of several individual cones where each one of them is of one of the three 
mentioned types. All these cones are self-dual which makes working with the dual 
problem much easier. Moreover, it makes problem (2.1) well suited to be solved with 
Primal – Dual IPMs, which are considered to be the most effective of all types of IPMs. 

The first step of transforming the stratified sampling SOR problem (1.1) into a 
conic quadratic programming problem is to transform the objective function in (1.1) by 
letting  
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Then, we introduce a new variable ir  in the following way 
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It is easy to see that ( , , ) ,i i i ix t r K∈  where iK  is a rotated quadratic cone.  The rotated 
quadratic cone is defined as  

{ }2
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whereas the quadratic cone is given by 
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with the terms : ; 2,3i nx i =  corresponding to 2 3( , ,......, )nx x x  and 3 4( , ,......, )nx x x  

respectively. The cone qK  is also referred to as an “ice-cream cone” because of its 
unique shape that in 3R  it resembles an ice-cream cone. It can be shown that the rotated 
cone can be reduced to the quadratic cone [4]. 

The next step is to transform the constraint of problem (1.1) by adding a slack 
variable, 1 0ns + ≥  to the constraint, which results in  
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The final step is to transform the box constraints, , 1,...,i i il x u i n≤ ≤ =  by 
introducing slack variable, iw  and surplus variable, iv  for each 1,...,i n=  

0,
0.

i i i i i i i

i i i i i i i

w u x x w u w
v x l x v l v

= − ⇒ + = ⇒ ≥
= − ⇒ − = ⇒ ≥

 

With these transformations the SOR (1.1) can be written in the conic quadratic 
form.  
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 (2.2) 

This reformulation first appeared in the second author’s master thesis [9] in 
2004 (under guidance of the first author) on which this paper is based. As far as we 
know, this is the first time this reformulation has been used in the literature and it is the 
main result of the thesis and the paper.  Subsequently, related problem and its reduction 
to conic quadratic form was discussed in [6]. However, the problem in [6] is different 
because the objective function is weighted sum of reciprocals of linear functions while 
the objective function in our paper is the weighted sum of reciprocals of each variable 
separately. In addition, the IPM used to solve the problem is different than the ones used 
in our paper.  

Throughout the rest of the paper the above formulation of the SOR-CQ will be 
used with 1.ic =  

 
3. ALGORITHMS FOR SOLVING SOR 

There are a number of nonlinear optimization methods that can be used to solve 
SOR, such as various feasible direction methods (Frank-Wolfe, or reduced gradient 
method, etc), penalty methods or IPMs. It is known that for many convex optimization 
problems and especially with linear constraints, the IPMs are the most efficient methods. 
Therefore, in this paper we focus on solving SOR with two different IPMs and finding 
the more efficient one.  

The first (standard) approach is to use IPM on the original formulation of the 
problem, or more precisely, on the KKT conditions of the problem which lead to the 
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monotone nonlinear complementarity problem.  Specifically, the KKT conditions for 
SOR described in (1.1) are given below.  
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The Lagrange multipliers 0η ≥  and 0, 0, 1,...,i i i nν λ≥ ≥ =  correspond to the 
linear constraint and lower and upper part of the box constraints respectively. 

We use the homogeneous IPM for nonlinear complementarity problems 
proposed by Andersen and Ye in [2]. Implementation version of that method is described 
in Andersen and Ye [3].  

The second approach is to use a suitable version of IPM on the conic-quadratic 
reformulation of the SOR described in (2.2). We use the homogeneous IPM for conic 
quadratic problems proposed by Andersen et al. in [4].  

It is not our intention to describe these algorithms in detail in this paper.  We 
refer the interested reader to the cited papers and the references therein. We only mention 
briefly the main ideas on which they are based. The idea of the homogeneous model is to 
embed the original optimization problem into a slightly larger problem which always has 
a solution.  Furthermore, an appropriate solution to the embedded problem either 
provides a certificate of the infeasibility or a scaled solution to the original problem.  
Consequently, instead of solving the original problem, the embedded problem is solved 
using an appropriate version of the IPM.   

The theory behind the IPMs is based on the concept of the central path. Central 
path is a trajectory that is obtained by perturbing the complementarity equation of the 
KKT conditions for the given optimization problem using a positive parameter usually 
denoted by μ . For many important optimization problems, including the ones stated in 
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this paper, it has been shown that the central path is well defined and it converges to the 
optimal solution when 0μ → . The main idea is to trace the central path using Newton’s 
method while gradually reducing the parameter μ  to zero. In general, it is not possible to 
compute a point on the central path, called μ -center, efficiently.  The main achievement 
of the theory of IPMs was to show that it suffices to trace the central path approximately, 
that is, the global convergence of IPMs  with a very good polynomial complexity  can 
still be proved as long as the iterates are in the appropriate neighborhood of the central 
path.  

A simplified diagram of the IPM is given in Figure 3.1. 
 

 
 

Figure 3.1 

The code that successfully implements the above mentioned algorithms is 
MOSEK which has been created by E. Andersen [1].   The subroutine MOSEKOPT 
solves the conic quadratic problems, while the subroutine MSKSCOPT solves the 
nonlinear optimization problems directly (via KKT conditions).  For details on MOSEK 
visit the MOSEK website at www.mosek.com.  

 
4. NUMERICAL RESULTS 

For the numerical testing we used the PC platform with 3.2 GHz Pentium(R) 4 
processor and Window XP operating system.  

The two approaches to solving SOR are tested on the set of randomly generated 
problems.  The generator and the interface to MOSEK are written in MATLAB.  The 
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dimension of the problems varies from two to a hundred variables.  The version of the 
MOSEK used in this paper was the release 4.  In addition, we used the student version 
with a limit of three hundred variables. Since the conic quadratic reformulation of SOR 
triples the number of variables, the largest problems are limited to hundred variables.  

In addition to the problems created by the generator there are a few problems in 
lower dimensions that are created “by hand”. The problems are named by the dimension 
and if letter G is added it indicates that the problem was created by the generator. The 
problems are compared by the number of iterations and the CPU time (in seconds). The 
results are presented in four tables. First one contains the results for the problems with 
dimension up to twenty, the second one contains results of the problems whose 
dimension is between thirty and seventy, the third one contains the results of the 
problems with dimension between eighty and hundred and the fourth one contains the 
summary of the results expressed by average CPU and number of iterations. 

 

  CONIC 
 (MOSEKOPT)  NON-CONIC 

(MSKSCOPT) 

Problem Number of 
Variables 

CPU 
Time  

Number of 
Iterations  CPU 

Time  
Number of 
Iterations 

Two 1 2 0.17 7  0.29 5 
Two 2 2 0.27 8  0.10 6 

Two 3 G 2 0.34 9  0.41 7 
Three 1 3 0.28 9  0.20 11 

Three 2 G 3 0.23 8  0.17 12 
Four 1 G 4 0.23 9  0.12 8 
Four 2 4 0.21 10  0.11 9 
Five 1 5 0.19 8  0.15 12 
Five 2 5 0.16 9  0.17 14 
Ten 1 10 0.20 9  0.23 11 
Ten 2 10 0.21 13  0.09 11 
Ten 3 10 0.20 13  0.21 11 

Ten 4 G 10 0.31 10  0.15 11 
Ten 5  10 0.19 14  0.24 10 

Twenty 1 G  20 0.28 12  0.24 10 
Twenty 2 G 20 0.17 14  0.17 10 
Twenty 3 G 20 0.17 14  0.17 10 

 

Table 4.1 

As can be seen from the Table 4.1, the MSKSCOPT optimizer appears to work 
better than the MOSEKOPT on the majority of the problems, One may be tempted to 
conclude that the homogeneous nonlinear solver, MSKSCOPT, is more efficient than the 
conic solver, MOSEKOPT. However, the situation is completely different as the 
dimension of the problems increases, which can be seen in the next two tables. 
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 CONIC 
(MOSEKOPT) 

 NON-CONIC 
(MSKSCOPT) 

Problem Number of 
Variables 

CPU 
Time  

Number of 
Iterations 

 CPU 
Time  

Number of 
Iterations 

Thirty 1 G 30 0.15 14  0.98 108 
Thirty 2G 30 0.35 15  0.93 98 
Thirty 3G 30 0.24 14  0.77 89 
Forty 2G 40 0.19 13  0.88 83 
Forty 3G 40 0.28 14  0.57 66 
Fifty 1 G 50 0.26 14  1.02 84 
Fifty 2 G 50 0.29 16  0.54 57 
Fifty 3 G 50 0.24 15  0.71 68 
Fifty 4 G 50 0.23 14  0.73 90 

Seventy 1 G 70 0.21 13  0.65 75 
Seventy 2G 70 0.50 14  0.83 57 

 

Table 4.2 

This table shows that the conic quadratic solver, MOSEKOPT works better over 
the homogeneous nonlinear solver, MSKSCOPT on all problems.  The results are similar 
in the next table. 

 
  CONIC 

(MOSEKOPT) 
NON-CONIC 
(MSKSCOPT) 

Problem Number of 
Variables 

CPU 
Time 

Number of 
Iterations 

CPU 
Time 

Number of 
Iterations 

Eighty 2 G 80 0.32 14 0.53 49 
Eighty 3 G 80 0.22 15 0.20 11 
Ninety 1 G 90 0.22 16 0.42 44 
Ninety 2 G 90 0.22 14 0.55 72 

Hundred 1 G 100 0.38 18 0.87 65 
Hundred 2 G 100 0.27 14 0.55 45 
Hundred 3 G 100 0.17 15 0.63 64 
Hundred 4 G 100 0.20 17 0.12 11 
Hundred 5 G 100 0.26 17 0.61 64 

 

Table 4.3 
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It can be seen from the Table 4.3 that with the exception of two problems the 
conic quadratic solver MOSEKOPT works better over the homogeneous nonlinear 
solver, MSKSCOPT. 

The results are summarized in the following table. 
 
 CONIC 

(MOSEKOPT) 
NON-CONIC 
(MSKSCOPT) 

Number 
of 

Variables 

Average 
CPU Time  

Average Number 
of Iterations 

Average 
CPU 
Time  

Average Number 
of Iterations 

2 - 20 0.2241 10 0.1894 10 
30 - 70 0.2662 14 0.7785 82 
80 - 100 0.2379 15 0.4614 47 

 
Table 4.4 

This summary table shows that as the dimension of the problems increases the 
conic quadratic optimizer, MOSEKOPT solves the problems on average at least twice as 
fast as the homogeneous nonlinear optimizer, MSKSCOPT. 

These results deserve further comment.  The first impression is that probably the 
conic quadratic reformulation is not a good idea because it triples the number of 
variables, thus, increasing the dimension of the problem threefold. However, the 
numerical results show otherwise. The reason is due to the fact that the nonlinearity that 
appears in the objective function of the original problem has been transferred to the 
quadratic cones. Furthermore, IPMs handle cones very well and therefore they are very 
efficient and fast in solving conic quadratic problem, making up for the increased number 
of variables over the original problem. The iterations in IPM for conic quadratic 
reformulation are costlier but there are much fewer of them as opposed to those in the 
IPM for the original problem where iterations are cheaper but there are much more of 
them.  Thus, the IPMs exploit the structure of the conic quadratic problem better than the 
structure of the original problem. 

The results in this paper and many other numerical tests confirm the common 
view that there are problems that are considered “easy” when solved by IPMs.  These are 
linear programming, semi-definite programming, and conic quadratic programming 
problems.  The IPMs generally tend to perform better on these types of problems 
compared to general nonlinear programming problems even if they are convex.   

 
5. CONCLUSION 

In this paper we consider a convex optimization problem SOR defined by (1.1) 
which often appears in various applications such as stratified sampling and/or entropy 
problems. 

The SOR is solved using two interior-point methods. First, a homogeneous 
interior point method of Andersen and Ye [2, 3] for monotone nonlinear complementarity 
problems was used to solve the KKT conditions of the original SOR listed in (3.1).  



 G., Lešaja, V., N., Slaughter / Interior-Point Algorithms 248

Second, a homogeneous conic quadratic IPM of Andersen et al [4] is used to solve the 
SOR as a reformulated conic quadratic problem stated in (2.2).  Both of these algorithms 
were successfully implemented in optimization solver MOSEK [1] created by E. 
Andersen. The subroutine MOSEKOPT solves the conic quadratic problems, while the 
subroutine MSKSCOPT solves the nonlinear optimization problems directly (via KKT 
conditions).  

The two approaches are then numerically tested using the above mentioned 
MOSEK subroutines on a set of randomly generated problems. They were compared by 
CPU time (in seconds) and the number of iterations showing that the second approach 
works better for problems with higher dimensions although the conic quadratic 
reformulation triples the number of variables. However, the IPM exploits the structure of 
the conic quadratic reformulation much better than the one of the original problem. The 
result confirms the experience from numerous numerical tests of variety of different 
optimization problems: The IPMs seem to work better whenever problem can be 
reformulated as a problem with the “nice” structure such as linear, conic quadratic or 
semi definite optimization problem. 

As far as we are aware of it the approach of solving SOR as a reformulated 
conic quadratic problem is a novel approach not yet considered in the literature. 
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