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Abstract: Nonlinear programs (P) can be solved by embedding problem P into one 
parametric problem P(t), where P(1) and P are equivalent and P(0), has an evident 
solution. Some embeddings fulfill that the solutions of the corresponding problem P(t) 
can be interpreted as the points computed by the Augmented Lagrange Method on P. In 
this paper we study the Augmented Lagrangian embedding proposed in [6]. Roughly 
speaking, we investigated the properties of the solutions of P(t) for generic nonlinear 
programs P with equality constraints and the characterization of P(t) for almost every 
quadratic perturbation on the objective function of P and linear on the functions defining 
the equality constraints. 

Keywords: Augmented Lagrangian Method, JJT-regular, generalized critical points, generic set. 
 
AMS Subject Classification: 90C31, 49M30. 
 

1. INTRODUCTION 

We consider the well known nonlinear optimization problem: 

MxtsxfP ∈,.),(min)(  (1) 
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Problem P can be solved by algorithms such as the barrier, the penalty and the 
Augmented Lagrangian method. However, the convergence can be guaranteed under 
strong assumptions. 

Since 1980, embedding methods have been proposed for solving nonlinear 
programming problems. This approach embeds P into one-parametric problem P(t) and 
applies a path-following on the set of solutions of P(t) for obtaining a solution of P. In 
order to have at least a local characterization of this curve, Jongen et al. have defined 5 
types of points, see [15]-[16]. A parametric problem, such that all its solutions are of 
some of these types, is considered JJT-regular. 

Of course we need to check if this regularity is a strong assumption or not. In 
the case of the embedding approach, the regularity is a mild hypothesis if the set of 
problems P such that the embedding defines a JJT-regular problem, is large. Nonlinear 

problem can be identified by [ ] smnk
sm RRCgghhf

++
∈

1
11 ),(,...,,,...,, . So, a large set of 

problems will be understood as a generic set of [ ] smnk RRC
++1

),(  endowed with the 
strong topology, that is, a set equals to the countable intersection open and dense sets. 

The Augmented Lagrangian Method, also known as Multipliers approach, 
combines the penalty and the Lagrange method. In particular, this method solves 
optimization problem cP̂ , for increasing values of parameter c. By their parametric 
character, it is natural to relate Multiplier and embedding methods. 

In this work we study in detail an embedding for the Augmented Lagrangian 
method proposed in [6] which calculates saddle points as in the multiplier's method. The 
two main results of the paper are the perturbation and the genericity theorems for 
problem with equality constraints (s=0). These results prove that for almost every 
perturbations quadratic of f and linear of mhh ,...,1  the embedding constructs a JJT-
regular problem and that for a generic problem mhhf ,...,, 1 , the parametric problem 
obtained via the embedding, is generic. 

The paper has been organized as follows. In the next section we present the 
main definitions and results of one-parametric optimization and multiplier's method. In 
Section 3 we introduce the embedding and its relations with the classical Augmented 
Lagrange Method. After that, we present two numerical examples to illustrate the 
numerical behavior of the embedding under regularity. Finally, in the last section we 
prove the genericity and the perturbation theorems. 
 

2. PRELIMINARY ASPECTS AND NOTATIONS 

We will consider the optimization problem: 

Mxtsxf ∈..),(min  (2) 

and the parametric problem P(t) where, for all RTt ⊂∈  we solve the problem: 
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Here 3),,(,...,,,...,, 1 ≥×∈ kRRRCgghhf nkt
s

t
j

t
m

tt  are the functions defining the 
objective function and the constraints of P(t). For simplicity 

)),(),...,,((),( 1 txhtxhtxh t
m

t=•  and )),(),...,,((),( txgtxgtxg t
s

t
j=• . 

First we introduce the following notations.  

The indicator function of set A is 
⎩
⎨
⎧ ∈

=
otherwise

Axif
xA ,0

,,1
)(1   

xyxRR x
nmn

x =Π×Π + ),(,:  is the projecting function onto nR . { }0: ≥∈=+ xRxR nn , 

mI  denotes the identity matrix of dimension m and the space of symmetric nxn-matrices 

is identified by 2/)1( +nnR .  
Classical definitions and results for nonlinear programs can be easily extended 

to parametric optimization, for more details, see [10] and [11]. Following their notations, 
the set of active index of ),( tx  is { }0),(:),(0 == txgjtxJ t

j  and the Lagrangian of P(t) is 

denoted by ∑ ∑−−= ∈= ),(11 0
),(),(),(),,( txЈј

t
jj

t
j

m
i

t txgtxhtxfxL μλμλ , where, 

),(,,,... 01 txJjm ∈μλλ  are the associated Lagrange multipliers. 
Analogously, a Fritz John necessary condition can be formulated. That is, if x* is 

a local minimizer of )( ∗tP , then ),( ∗∗ tx  is a FJ point, i.e. there is a non zero vector  
),(

0
0),,( txJm RRR ++ ××∈μλμ  such that 

∑ =∑ ∇−∇−∇ = ∈
•••••• m

i txЈј
t
jxj

t
ixi

t
x txgtxhtxf 1 ),(0 0),(),(),(

0
μλμ  (6) 

Note that if LICQ holds at ),( ∗∗ tx  FJ point, i.e.  

),(0),,(),,(),...,,(1 txJjtxt
jgxtxt

mhxtxthx ∈∇∇∇ ••••••   

are linearly independent, then, in system (6), 00 ≠μ . Without losing of 
generality (wlog), under LICQ, we take 10 =μ . 

Let us consider the feasible points ),( tx  such that 00 ),( JtxJ = . Then ),( tx  
solves the following system:  

0,0),(

,,...,1,0),(

Jjtxg

mitxh
t
j

t
i

∈=

==
 (7) 
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In particular, FJ points with 00 ),( JtxJ =  can be computed by solving system 

(6-7) and checking if 0,0),( Jjtxgt
j ∉≥  and 0),( 0 ≥μμ . If ),,,,( 0 μλμtx  fulfils (6-7), 

but )0,( 0 ≥μμ then ),( tx  is a generalized critical (g.c.) point. Those g.c. points where 
LICQ holds are called critical points. The set of critical points is denoted by ∑ crit  and 
the set of g.c. points, by ∑ gc . 

Around ∑∈ gctx ),( 00 , the set 0J  can change or )),,(,,,( 000 JktxgJj kj ∈∈μμ  may 
become strictly negative. This means that, locally, even the feasibility may be lost. In 
order to determine which possibilities may appear, JJT-regularity defines 5 types of g.c. 
points, which allow the local characterization of ∑ gc . Let us begin with the definition of 
g.c. points of Type 1, also called non-degenerate critical point: 
Type 1 ∑∈ 1),( gctx , if 

(1a) LICQ holds.  
(1b) 0≠jμ , for all ),(0 txJj∈ .  

(1c) ),)((
2 ),,,( txtMTџ x

txL μλ∇  is non-singular, where ),)(( txtMTx  is the tangent 

space of xattM )( . 

A matrix A over a subspace T is denoted by TA . It is non singular AVV T  is 
regular for some (and hence all) matrix V, whose columns form a basis of T. As the LICQ 
holds at )(tMx∈  the tangent subspace is 

{ }),(,0),(,,...,1,0),(:),)(( 0 txJjtxgmitxhRtxtMT t
jx

t
ix

n
x ∈=∇==∇∈= •••• ξξξ

 
Locally around a point of type 1, ),(0 txJ  is constant as well as the number of 

positive multipliers μ  and positive eigenvalues ),)((
2 ),,,( txtMTx x

txL μλ∇ . If 
1),( gctx Σ∉ , then it is a singular(or a degenerated) g.c. point. The points of the types 2-5 

are singular points representing the four basic singularities (for the detailed definition, we 
refer to [10], [11], [14] and [15]). Here we only present the points of type 2 and 3, 
because the other two types, corresponding with the violation of LICQ, will not appear in 
our case. 
Type 2: violation of (1b). 
Type 3: violation of (1c). 

Around points of type 2, ),(0 txJ  changes, however the two possible sets and 
the corresponding g.c. points are easy to compute. The changes on the signs of μ  and of 

the eigenvalues of ),)((
2 ),,,( txtMTx x

txL μλ∇  are also known. For points of type 3, 

),(0 txJ  and the sign of  remain unchanged, however there is an eigenvalue of 

),)((
2 ),,,( txtMTx x

txL μλ∇  whose sign changes. 
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Figure 1, see [11], shows the local structure of gcΣ  around each of these 3 types. 
The dotted line represents a change in the sign of the associated multipliers 0≥μ . Here 

),( txz = . 

 

Figure 1: Local structure of gcΣ  

Let us now define the JJT-regularity. 
Definition 1: Let 5,...,1, =Σ vv

gc , be the set of g.c. points of  type v . The class F  is defined 

by { }v
gcvgc

smnt RRRCghfF Σ⊂Σ×∈= =
++•• 5

1
13 ),(,, U  and its elements are called 

regular in the sense of Jongen-Jonker-Twilt, or JJT-regular 
In [10] it is shown that the set F  is open and dense with respect to the strong 

topology on smn RRRC ++× 13 ),( , see [12] for more details on these topological aspects. 
On the other hand, the following perturbation result holds. 
Given smnt RRRCghf ++•• ×∈ 13 ),(,, , for almost every ),,,,,( FeDcAbQ =  

snsmnmnnnRQ ++++++∈ 2/)1(  we have 

FFetxgDctxhAxxxbtxf xx
Ttt ∈++++++ •• )),(,),(,),((   

"Almost every" means: the Lebesgue-measure of each measurable subset of Q 
such that 

FFetxgDctxhAxxxbtxf xx
Ttt ∉++++++ •• )),(,),(,),(( , is zero. 

The main tool used in these proofs is the following lemma: 
Lemma 1: (Parametric Sard's Lemma), (cf. [10]) Let us consider γϕ RRR pn →×:  be 
a Ck-function with k> max{0,n-r}. If 0 is a regular value of ϕ , (i.e. 

rank 0),(),()),(( , ==∇ zxthatsuchzxallforrzxzx ϕϕ , then, for almost every pRz∈ , 0 
is  a regular value of ),()( zxxz ϕϕ = . 
 

Now we present the main ideas of the embedding approach. 
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Embedding approach 

An embedding can be seen as an application Φ  such that for each nonlinear 
problem P, )())(( ttP =Φ  fulfils  

• )1(P  and P are equivalent 
• There is a solution point of )(tP  for all [ ]1,0∈t .  
• )0(P  has an evident solution 
Starting with )0),0((x  where )0(x  is an evident solution of )0(P , we try to 

follow a path )),(( ttx  where )(tx  is a solution of )(tP  for all [ ]1,0∈t . 
The main difficulty of this approach is that we need to trace the path )),(( ttx  

where )(tx  solves )(tP . From a numerical viewpoint, the solution is understood as a g.c. 
point. If )(tP  is JJT-regular, the types of g.c. points that may appear are known. That is 
why it is important to investigate if this hypothesis holds for generic problem P. 
Examples of genericity analysis of embeddings can be found in [9] and [19]. 

As we are going to deal with an embedding for the multipliers method, we need 
to establish the links between this embedding and the method. So, we will present the 
properties of the Augmented Lagrangian method. 

 
Augmented Lagrangian Method 

This algorithm, also known as the Multiplier's Method, appears in [3]. It 
constructs an optimization problem, whose objective function includes the Lagrange 
function and a quadratic penalty term. Roughly speaking, for problem P described in (2), 
the Lagrange method considers the parametric problem: 

),,,(min),( cxFP Lxc μλμλ  
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Problem ),( μλcP  is solved for fixed ),,( cμλ  Given ),( μλcx  its solution, the 
multipliers ),( μλ  and the penalty parameter c are updated in order to fulfill that c is 
large enough and 0≥μ . Then the process is repeated for the new values of the 
parameters. This approach computes saddle points of the Lagrange function minimum in 
x  and maximum in the multipliers ),( μλ , (for more details see [2] and [18] 

This class of algorithms was applied to the solution of variational inequality 
problems in [13] and solves quadratic programming problems in [7]. Improvements of it 
via convexifications are discussed in [16]. New ways of updates can also be found in [1]. 

Based on these properties, given a nonlinear program P, the multipliers 
embedding shall define a parametric problem ))(( tPΦ  such that the objective function 
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includes the Lagrangian function of P and a quadratic penalty term. On the other hand, as 
the multipliers method generates a sequence of saddle points of the Lagrange function of 
P, saddle points of the objective function of ))(( tPΦ  shall be easy to compute at least 
locally around 0=t . In the next section we are going to present the embedding which 
fulfills these properties. 

 
3. EMBEDDINGS FOR THE MULTIPLIERS METHOD 

As already sketched, given problem P, the parametric program ))(( tPΦ , 
defined by the multipliers embedding shall satisfy: 

• There is ),,( 000 μλx , an evident saddle point of the objective function of 

)0)((PΦ , minimum in x and maximum in ),( μλ . 

• ))(),(),(( tttx μλ , is a λμmaxmin −x  point of the objective function of ))(( tPΦ  

and coincides with the set of g.c. points around )0,,,( 000 μλx . 

• The objective function includes the Augmented Lagrangian function of the 
original problem P. 
The second condition can be guaranteed if )0,,,( 000 μλx , is a point of type 1.  
So, at least locally around, )0,,,( 000 μλx  the set gcΣ  is a curve of saddle points 

of the objective function of ))(( tPΦ , λμmaxmin −x .  
Let us present the multiplier embedding. Proposed in [6], the embedding 

defines, for each problem P (2), the parametric problem ))(( tPΦ : 
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⎤

⎢⎣
⎡ −−−−−−

−+= ≥

2
0

2
000

0

)()(

)1(),,,(min)(

μμλλ

μλλμ

xxAxx

ttxtFtP

T

Lx

 (9) 

{ }[ ] ))(,0min)(()
1

(

)()()(),,,(

2
1

2
1

2

11

xgxh
t

t
xgxhxfcxF

j
s
ii

m
i

ii
s
iii

m
iL

==

==

Σ+Σ
−

+Σ−Σ−= μλμλ
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where A is a positive definite matrix. 
Note that the objective function is not in 3C  if 0>s . As this differentiability 

condition is needed for our analysis, from now on we will assume that s=0. As the 
problem (9) is not defined at t=1, the study of gcΣ  is done in the closed subintervals of 

I=[0,1) such as ∞→⎥⎦
⎤

⎢⎣
⎡ − n

n
,11,0 . The solutions for t=1 are understood as limits points 

of −→Σ∈ 1,),( ttx gc . 
Note that this embedding is a multiplier embedding. Evidently the objective 

function of (9), contains the Augmented Lagrangian of P. On the other hand, ),,( 000 μλx  
is a saddle point of the objective function at t=0 of type 1. 
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Another important question is what may happen under JJT-regularity. As there 
are no constraints in problem (9), recall s=0, the following result is satisfied. 
Proposition 3.1 If FtP ∈Φ ))((  then the g.c. points of ))(( tPΦ  are of type 1 or 3.  

If all g.c. points of the parametric problem ))(( tPΦ  are of type 1, it can be seen 
that there is a curve of g.c. points starting at ),( 00 λx  parameterized by 

)),(),(),(( ttttx μλ , [ )1,0∈t . Moreover, ))(),(( ttx λ , are saddle points of the objective 
function of ))(( tPΦ , but, this good situation is not always possible. On the other hand, 
can we expect to find the solution if there are singular g.c. points. In the next section we 
will illustrate these two cases with two numerical examples.   
 

4. TWO ILLUSTRATIVE EXAMPLES 

In this section, we solve the two non-convex optimization problems P1, P2 by 
the multiplier embedding (9) with parameters A=In and 0),( 00 =λx . The parametric 
problem is solved by the path-following routine PAFO, see [8]. 

Path-following methods are widely used, for example in nonlinear optimization 
problems ([17], [20], [22] and [21]) and in variational inequality's problems ( [5]). 
PAFO is a path-following and jumps routine for solving JJT-regular parametric 
problems. Locally around U5

1),( = Σ∈ v
v
gctx , the set of g.c. points can be described as the 

solutions of (finitely many) well known nonlinear systems. So, given a starting solution 
and under JJT regularity, PAFO solves those systems by a predictor-corrector scheme 
and hence computes the g.c. points around ),( tx . Although it is possible to jump to 
another connected component (see ch.5, [11]), in this paper we will only use the path-
following strategy.  

For this embedding, we created a sub-routine whose inputs are the objective 
function and the equality constraints of P. The resulting parametric functions define the 
parametric problem ))(( tPΦ , which will be solved by PAFO. To guarantee the existence 

of a solution of ))(( tPΦ  for all [ )1,0∈t , we add the restriction px ≤+ 22 λ . Here 
p=500. 
Let us begin with the first example. The problem is 

)01(1..min)( 2
11121 =+−+ xxxtsxP  (11) 

So, the parametric problem is 
 
 

[ ] [ ]
[ ] 500..)1,1()1(

)1(1)
1

()1(1min

22
2

2
1

22

22
111

2
2

2
1112

≤++−−−+

+−+
−

+−+−++

λλ

λ

xxtsxt

xxx
t

txxxxx
 (12) 

The point )0,5754.00,3040.0(),,( 21 −=••• λxx  was the computed solution. As can 
be seen in Figure 2 only appeared points of type 1. In fact, we obtained the ideal situation 
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of computing saddle points of the objective function for [ )1,0∈t . So, it shows that the 
computation of saddle points for all t is possible for non-convex problems. 
In the second example, we changed one coefficient of )(xh  and applied the embedding 
to the problem 

0)1(1..min)( 2
2

1122 =−−+ xxxtsxP  (13) 

 
The resulting parametric problem is 

[ ] [ ]
[ ] 500..)1,1()1(

))1(1)
1

()1(1min

22
2

2
1

22

2
2

2
11

2
2

2
112

≤++−−−+

−−+
−

+−−++

λλ

λ

xxtsxt

xxx
t

txxxx
 (14) 

PAFO found three singular points (two of Type 3 and one of Type 2) while 
solving problem (14), see Figure 3. Here the computed solution was 

)0,249.22,229.2(),,( 21 −−=••• λxx , very close to the solution of problem (11) with the 

extra constraint 5002
2

2
1 ≤+ xx  computed by GAMS 22.2. 

The classical multipliers embedding, see [4] did not even find a feasible point. 
This example shows that, although singular points may appear, the embedding (9) may 
find the solution of the original problem. 
 

  

Figure 2: x1 vs. t Figure 3: x1 vs. t 

As we could observe, in both examples PAFO was able to solve the parametric 
problems. In particular, this means that )( 1PΦ  and )( 2PΦ , were JJT-regular. But, what 
can we say about this hypothesis. Is it too strong, i.e. is FP ∈Φ )(  for generic P? 
In the next section we will study this problem. 
 

5. MAIN RESULTS 

In this section we will analyze which critical points may appear in the generic 
case. We will prove that generically ))(( tPΦ  is JJT-regular. As s=0, ))(( tPΦ  will be: 
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[ ] 2
0000 )()()1(),,,(min)( λλμλλμ −−−−−+= ≥ xxAxxttxtFtP T

Lx  (15) 

))(()
1

)(()(),,,( 2
1

2
1 xh

t
txhxfcxF i

m
iii

m
iL == Σ

−
Σ−= λμλ  (16) 

We begin studying how to take the parameters in order to have JJT-regularity 
for problem (15) fixed functions )(),...,(),( 1 xhxhxf m . We begin with a more general 
result, which do not take into account the positive definiteness of A and the term -2x0

TAx 
is substituted by y0

T x. 
Theorem 1 Fix functions )(),...,(),( 1 xhxhxf m  and parameter 0λ . For almost every 
Q=(A,y0) the generalized critical points of 

[ ]2
0

2
000 2()1(),,,(min)( μμλλμλλμ −−−−−−+= ≥ xуAxttxtFtP x

T
Lx  (17) 

with 0<t< 1 are of type 1 or 3. Here ),,,( txFL μλ  is defined as in (16).} 
Proof: Using the same ideas described in [10], we write gcΣ  as solutions of one of the 
following systems of equations (one for each possible combination of (zB,zD,zC)): 

T
CDCB

x

Zzzz

zуAtxH
уAtxH

1
0

0

),,,,,(
0),,,,,(

−=

=∇
=

μλ
μλ

λ  (18) 

Here ),,,,,( 0уAtxH μλ  is the gradient of the objective function of (17) (with 

respect to ),( λx  z is an auxiliary variable, )(),,,,,( 0 D
C

C
BуAtxH Tx =∇ μλλ , D is a 

symmetric square matrix such that, knуAtxHrankDrank x −=∇= )),,,,,(()( 0μλλ . 
Precisely the last two blocks of equations represent this rank condition. 
As )(),,,,,( 0 mx IуAtxH ⊗=∇ μλλ , D can be chosen in such a way that Im is a sub-
matrix of it. So B is a symmetric sub-matrix of At)1(2 −+⊗ .  

Then writing the derivatives of the functions describing system (18) with respect 
to the variables and parameters, we obtain: 

 
 
 

 xD  λD zD
0уD АD  

0=H  ⊗  ⊗ ⊗ nIt)1( − ⊗  
 ⊗  mIt)1( − 0 0 0 

),,,,,( 0уAtxHx μλλ∇  ⊗  ⊗ •I 0 
0

)1( nIt−  
T
CDCB Zzzz 1−=  0 0 ⊗••I  0 0 

 (19) 
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Here 2/)1( +=∗∗ kk  

As B is a sub-matrix of ),,,,,( 0уAtxHx μλ∇  and 2/)1( +≤∗ nn , this matrix 
has row full rank. Using the parametric Sard's lemma 1, it follows that for almost every 
Q, the rows corresponding with the derivatives with respect to ),,( tx λ  of (18) has also 
full row rank. The rest of the proof uses the same arguments as in Theorem 6.18 [10]. 

Now we consider the case of the embedding where 0у  has a particular structure 
and A is positive definite. 
Corollary 5.2 For almost every Q=(A,x0), A definite positive, the generalized critical 
points of  the parametric problem (15) with 0<t< 1 are of type 1 or 3. 
Proof: The set of symmetric positive definite matrices M is an open subset of the 
symmetric matrix set. From Theorem 1, the problem (17) is JJT-regular almost 
everywhere respect to the Lebesgue measure restricted to MxRn. As A is a non singular 
matrix, using the linear isomorphism x0=2Ay0, the structure of the embedding (15) is 
recovered.  
Remark 1 This result shows that fixed problem P and parameter 0λ , for almost every of 

),( 0xA  problem FP ∈Φ )( . As a consequence for all open set U we can find parameters 
UxA ∈),( 0  such that the corresponding embedding defines a regular problem. 
Now we are going to prove a general genericity result for the embedding (9). As 

already remarked P can be identified by the functions defining its objective function f(x) 
and constraints ).(),...,(1 xhxh m  So, ),...,,( 1 mhhfΦ  represents the parametric problem 

)(PΦ . 

Theorem 2 The set { }FhhfhhfI mm ∈Φ= )1,0(11 ),...,,(:,...,,  is generic, i.e. is the 

intersection of a numerable collection of open and dense sets. 

Proof: Let us first note that Ux
n

nn
mm FhhfhhfI 1 )11,1(11 ),...,,(:,...,,−

− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈Φ= . If 

we prove that these sets are open and dense, the result will be obtained. 
First step: Density.  
Lemma 2[Perturbation Lemma]: Let r=n(n-1)/2+n+mn. Every measurable subset of  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∉Φ∈
−

FhhfRcbA
nn

m
r

)11,1(1 ),...,,(:),,(  has Lebesgue measure equal to zero. 

Proof of Lemma 2: For the proof, we are going to use the same technique of the 
Perturbation Theorem (cf [10]).  

Considering the manifold in variables ),,,,( cbAx λ  described by: 

T
CDCB

x

Zzzz

zуAtxH
уAtxH

1
0

0

),,,,,(
0),,,,,(

−=

=∇
=

μλ
μλ

λ  

The derivatives with respect to the variables and parameters are: 
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 xD  λD zD bD АD  
      

0=H  ⊗  ⊗ ⊗ ntI ⊗  
      
 ⊗  mIt)1( − 0 0 0 

),,,,,( 0уAtxHx μλλ∇  ⊗  ⊗ •I 0 
0

)1( nIt−  
T
CDCB Zzzz 1−=  0 0 ⊗••I  0 0 

and it has obviously full row rank. So, the desired property follows as in Theorem 1.  
 
Second step: Openness  

Lemma 3 Let us assume that Fhhf
nn

m ∈Φ
)11,1(1 ),...,,( . Then for every ),,( tx λ   there are 

two neighborhoods U of ),,( tx λ  and V of ),...,,( 1 mhhf   such that: 
• If gctx Σ∈),,( λ , then the g.c. points of every element of )(VΦ  are of type 1 or 

3. 
• If gctx Σ∉),,( λ the elements of )(VΦ  have not g.c. points in U. 

Proof of Lemma 3: As Fhhf
nn

m ∈Φ
)11,1(1 ),...,,( , if gctx Σ∈),,( λ  then it is of type 1 or 

3, see Proposition 3.1. If the neighborhoods U and V do not exist, then we can find 
sequences ),...,,(),...,,( 11 mkm hhfhhf →  and ),,(),,( txtx k λλ → , such that 

[ ]U
31

1 /),...,,(),,( gcgckmgck hhftx ΣΣΦΣ∈λ   

If 1),,( gctx Σ∈λ  and 1),,( gcktx Σ∉λ , (1c) is violated. But 

),...,,(),...,,( 11 mkm hhfhhf →  So for n large enough ktx ),,( λ  are in a compact set K 
and  

)(
11 max),...,,(),...,,( x

KxKmkm hhfhhf ∈
∈<−  

This means that there is a uniform convergence in the compact K and 

3),,,(),,( ≤
∂
∂

→
∂
∂ rtx

x
ftx

x
f r

kkk
k

r
λλ , as well as for ),...,( 1 mhh . 

If the Hessian of the Lagrange function of kmhhf ),...,,( 1Φ  is denoted by D2Lk, 

by continuity, we have that ),,(),,( 22 txLDtxLD kkkk λλ → , the Hessian matrix 
corresponding to ),...,,( 1 mhhfΦ . 
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But ),,(2 txLD λ  is not singular, so for k large enough, ),,(2
kkkk txLD λ  must 

be regular. Then the sequence has only points of type 1 for k large enough. If 
3),,( gctx Σ∈λ , the result is analogous. In this case the sequence has points of type 1 or 3.  

Now, the rest of the proof of Theorem 2, follows as in Theorem 6.22 [10].  
The genericity results means that, given the parameters ),,,( 000 λxA , the 

embedding will define regular problems on a large set of nonlinear programs. Moreover, 
by Lemma 2, fixed P, there are perturbations as small as desired, such that the resulting 
parametric problem (15) is JJT-regular. As a consequence, we can say that JJT-regularity 
is not a strong hypothesis. 

6. CONCLUSIONS 

In this paper we have considered an embedding for the Lagrange multiplier's 
method, proposed in [6]. In order to guarantee differentiability, we have regarded the 
case in which P has no inequality constraints and the parametric problem was considered 
for [ )1,0∈t . For this case, we have proved that it is not too strong to assume that the 
defined problem is JJT regular. Indeed, fixed P problem (respectively the parameters 

),,,( 00 λxA  defining embedding ))(( tPΦ  there is a large set of parameters ),,,( 00 λxA  
(respectively problems P such that corresponding parametric problem ))(( tPΦ  is JJT-
regular. 

However this embedding is not suitable for nonlinear programs with inequality 
constraints. That is why future work will be devoted to the construction of an embedding 
without this drawback. 
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