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Abstract: This paper considers the two dimensional rectangular packing problem. The 
mathematical formulation is based on the optimization of a non-linear function with 
piecewise linear constraints with a small number of real variables. The presented method 
of m-M calculus finds all optimal solutions on small instances. Computational 
performance is good on smaller instances. 
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1. INTRODUCTION 

Packing problem and the closely related problem of cutting, encompass a wide 
range of industry originated problems. A successful optimal solution, or even finding an 
approximately good solution, significantly facilitate in both saving money and raw 
materials. 

Most of the contributions in literature are devoted to the case where the items to 
be packed have a fixed orientation with respect to the stock unit(s), i.e., it is not allowed 
to rotate them. This case, which is the object of the present article, reflects a number of 
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practical contexts, such as the cutting of corrugated or decorated material (wood, glass, 
clothing stripes), or the newspapers paging. 

For variants allowing rotations (usually by 90º) and/or constraints on the items 
placement (such as the ‘‘guillotine cuts’’) the reader is referred to [1, 8], where a three-
field classification of the area is also introduced. General surveys on cutting and packing 
problems can be found in [10, 11, 12]. Results of the probabilistic analysis of packing 
algorithms can be found in [6] and [7].  

Let us introduce the problems in a more formal way. We are given a set of n 
rectangular items {1, , }j J n∈ = K  each defined by a width, wj, and a height, hj: 

(i) in the Two-Dimensional Bin Packing Problem (2BP), we are further given an 
unlimited number of identical rectangular bins of width W and height H, and the 
objective is to allocate all the items to the minimum number of bins; 

(ii) in the Two-Dimensional Strip Packing Problem (2SP), we are further given 
a bin of width W and infinite height (hereafter called strip), and the objective is to 
allocate all the items to the strip by minimizing the height to which the strip is used. 

In both cases, the items have to be packed with their w-edges parallel to the W-
edge of the bins (or strip). We will assume, without loss of generality, that all input data 
are positive integers, and that wj ≤ W and hj ≤ H (j = 1, . . . , n). 

Both problems are strongly NP-hard, as is easily seen by transformation from 
the strongly NP-hard (one-dimensional) Bin Packing Problem (1BP), where n items, each 
having an associated size hj, have to be partitioned into the minimum number of subsets, 
so that the sum of the sizes in each subset does not exceed a given capacity H [20]. 

A special case of the aforementioned problems is packing a set of rectangles 
into a bounding rectangle. 

The problem of determining whether a set of rectangles can be packed into a 
bounding rectangle can be related to some practical applications in floor planning, 
placement, or job scheduling problems [9]. The rectangle packing problem belongs to a 
subset of classical cutting and packing problems and has been shown to be NP-complete 
[17, 19]. 

Cutting and packing problems [1, 2, 4, 8, 15, 25] have a wide range of 
applicability that has been studied for more than 40 years. The two-dimensional cutting 
stock problems with rectangle shapes are closely related to our problem. In [5], the basic 
formulation issues and solution procedures of linear programming, sequential heuristic 
and hybrid solution procedures are addressed. Based on the usage of guillotine or non-
guillotine cuts, the problems can be roughly divided into two styles of cutting. 
Constrained cutting refers to the employment of orthogonal and guillotine cuts under 
certain copy constraints of the rectangles [13]. Optimal algorithms for orthogonal two-
dimension cutting were proposed in [2, 15]. However, they might not be practical for 
large problems. In the orthogonal packing problem, a set of rectangles are to be packed 
into a rectangle board with rectangle edges parallel to the x- and y-axes of the board, 
respectively, and the height is to be minimized. In order to reduce the number of possible 
orthogonal packing patterns, a so-called BL-condition was introduced, and a combination 
algorithm using genetic and deterministic methods was proposed [3, 14, 18]. In [22], a 
new and improved algorithm with level heuristics was suggested. In [16, 21, 25], a 
various range of metaheuristics was suggested for solving the two dimensional rectangle 
packing problem. A very effective quasi-human heuristic was presented in [26] 
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This work presents an application of m-M calculus [23] on the mathematical 
model given in [24]. The proposed method of solving will allow finding all optimal 
solutions for the problem, which can contribute to the quality of the solution, because 
some different optimal solutions can be more or less preferable by some other criterion.  

2. MODEL 

The problem expounded is the two dimensional packing of a big rectangle with 
a given number of small rectangles. It is important to consider that the sides of small 
rectangles must be parallel with the sides of a big rectangle. Two cases are possible: in 
the first case, a 90° degree rotation for smaller rectangles is not allowed, while the second 
case allows rotation. Smaller rectangles must be placed completely inside the big 
rectangle and they must not overlap. Let the dimensions of the big rectangle be 
respectively A and B. There are n small rectangles. Let their dimensions be respectively ai 
and bi i = 1,. . . ., n. It is allowed for the small rectangles to have the same dimensions. 

 

  A

  B

    a1

    b1

    b2

  bn

  an

    a2

 
 
M

 
Figure 1 Big rectangle and array of smaller rectangles 

Let us consider a strip of width A and infinite length. Rectangles will be packed 
on this strip, and let bounding rectangle be at the beginning of the strip, as shown on 
Figure 2. 

 

A

B

 
Figure 2 Infinite strip with big rectangle at its beginning packed with smaller 

rectangles 
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Let xi and yi, i = 1, . . . , n be coordinates of the centers of rectangles in the 
coordinate system, where strip starts from x-axis and is spreading in the direction of y-
axis. Bounding rectangle then has vertices in points with coordinates (0,0), (0,B), (A,B) 
and (A,0). Model is presented and proofed in [24]. Now the mathematical model for 
packing rectangles into bounding rectangle is as follows.  

1

max(0, )max
n

i
i i

i i

B y a b
B y=

−
−∑  (1) 
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i j i j i j i j
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2
i

i
by i n≥ = K  (5) 

The model is based on the fact that the rotation of rectangles is not allowed. 
Conditions (2) do not allow rectangles to overlap. Conditions (3) stipulate that a rectangle 
should be put either in bounding rectangle, or outside without overlapping the 
boundaries. Conditions (4) and (5) stipulate that rectangles stay inside the strip of width 
A and infinite length without overlapping the boundaries. Objective function (1) is such 
that only rectangles put in bounding rectangle are considered.  

It is easy to see that this is a non-linear mathematical model. All conditions are 
at the most piecewise linear functions of variables xi and yi. The number of variables is 
relatively small and is equal to 2n. The number of conditions equals 

2( 1) 13 ( 5 )
2 2

n n n n n−
+ = +  (6) 

The number of conditions is relatively large; however, this fact is not significant 
in proposing a method for solving the problem. 

3. m-M CALCULUS 

The method of m-M calculus is presented in [23]. This paper will briefly present 
its general ideas. Let the variables x1, x2, …, xn be from some segment 

1 1 2 2[ , ] [ , ] [ , ] n
n nD a b a b a b R= × × × ⊆K . Then let there a system of inequalities be given 

1 1 2 2 1 2 1 2( , , , ) 0, ( , , , ) 0, , ( , , , ) 0n n k nf x x x f x x x f x x x≥ ≥ ≥K K K K  (7) 

where functions : , 1,2, ,if D R i k→ = K . 
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Now, for any DΔ ⊆ , ( )( ), ( )( )i im f M fΔ Δ  can be determined. By definitions 
given in [23], segment ∆ is feasible if and only if  

( )( ( )( ) 0)ii M f∀ Δ ≥  (8) 

Also, segment ∆ is solutional if and only if 

( )( ( )( ) 0)ii m f∀ Δ ≥  (9) 

and finally, segment ∆ is indeterminate if and only if 

( )( ( )( ) 0), ( )( ( )( ) 0)i ii M f i m f∀ Δ ≥ ∃ Δ <  (10) 

Now, idea of solving with m-M calculus is that in a tree cell strategy starting set 
D is decomposed in segments. In every iteration, all infeasible segments are rejected, 
until either there are no more segments left, which means there is no solution; or there are 
no more indeterminate segments, which means all that is left are solely solutional 
segments. A union of solutional segments gives the solution set. As decomposition 
progresses, iteration includes a better approximation of solution set. Finally, the results of 
this procedure are all the solutions for the system of inequalities (7). 

This last fact determined using this method for solving problems (1)-(5).  
Based on the previously presented mathematical model for packing, we had to 

solve a problem of constrained optimization on an n-dimensional segment. 

For that purpose, first we had to write the appropriate m-M functions for 
inequality formulas. m-function for objective function and inequalities (2) and (3) are:  

( )
1
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and respectively M-functions are   
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where ayi and byi are lower-left and upper-right y-coordinate of ith  rectangular, 

respectively. Constraints (4) and (5) are simple inequalities, and their m and M functions 
are the same as constraints. 

Also, since we have been using dyadic tree cell-decomposition strategy, we had 

to establish some feasibility criteria for the n-dimensional segment. The Cartesian 

product of [X1,Y1] × [X2,Y2] × … × [Xn,Yn] n-cells is feasible if it satisfies two conditions: 

(1) 1 1 2 2( {1, , }) ( )([ , ] [ , ] [ , ] 0i n ni k m f X Y X Y X Y∀ ∈ × × × ≥K K  

(2) 1 1 2 2

1 1 2 2

( {1, , }) ( )([ , ] [ , ] [ , ] 0
( )([ , ] [ , ] [ , ] 0

i n n

i n n

i k m f X Y X Y X Y
M f X Y X Y X Y
∀ ∈ × × × < ⇒

× × × ≥
K K

K
 

Therefore, our algorithm is simple: we start from a reshaped bounding box and 
perform cell-decomposition until there are no more feasible cells, or some predefined 
level of accuracy is accomplished. 

 
4. EXPERIMENTAL RESULTS 

All experiments were performed on a PC with P4 2G CPU and 960Mb RAM. 
Experiments were performed on a small number of rectangles, to be more specific, 4 and 
5. The bounding rectangle in all tests had dimensions 5 by 7. 

In the first test we packed 4 rectangles with dimensions 3×4, 2×6, 3×2 and 5×1 
into the 5×7 rectangle. There are 8 possible solutions shown in Figure 3, and our 
proposed method was able to detect all of them. The results are presented in Table 1.   
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Figure 3 Packing 4 rectangles 

 
Table 1 Centers’ coordinates of 4 packed rectangles for all possible solutions 

rectangle 
number 

solution 
number 

1  
(yellow, 3×4)  

2  
(blue, 2×6) 

3 
(red, 3×2)  

4  
(green, 5×1) 

1 4.5, 2.0. 1.0, 3.0. 4.5, 5.0. 3.5, 6.5. 
2 1.5, 2.0. 4.0, 3.0. 1.5, 5.0. 3.5, 6.5. 
3 4.5, 4.0. 1.0, 3.0. 4.5, 1.0. 3.5, 6.5. 
4 1.5, 4.0. 4.0, 3.0. 1.5, 1.0. 3.5, 6.5. 
5 4.5, 3.0. 1.0, 4.0. 4.5, 6.0. 3.5, 0.5. 
6 1.5, 3.0. 4.0, 4.0. 1.5, 6.0. 3.5, 0.5. 
7 4.5, 5.0. 1.0, 4.0. 4.5, 2.0. 3.5, 0.5. 
8 1.5, 5.0. 4.0, 4.0. 1.5, 2.0. 3.5, 0.5. 

Total processing time was 61 second, while the memory cost was 398Mb.  
As shown in Figure 3, most solutions were obtained from one solution using 

symmetric properties. Because of this, it was necessary to make the method modification 
so that the stopping criterion would be finding the first optimal solution.  

Results of the method modified with this criterion performed on two sets of 
rectangles, first with 4 and second with 5 rectangles can be seen on Figure 4. The 
depicted solutions are the first found solutions in both cases.  

 
 

 
Figure 4 Left: first optimal solution for packing 4 rectangles; right: first optimal solution 

for packing 5 rectangles (the gap between orange and green rectangle is unoccupied 
space) 

Results obtained by finding the first optimal solution are presented in Table 2. 
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Table 2 Results of packing with modified stopping criterion 
 Test 1 Test 2 
Number of rectangles 4 5 
Dimensions of rectangles 2×6 

3×2 
3×4 
5×1 

 

1×7 
2×2 
2×2 
2×5 
4×2 

Time for detecting first optimal solution 
(s) 

2 69 

Memory cost (MB) 61 681 
Detected centers 1.0, 3.0. 

4.5, 5.0. 
4.5, 2.0. 
3.5, 6.5. 

4.5, 3.5. 
3.0, 4.5. 
3.0, 6.0. 
1.0, 4.5. 
2.0, 1.0. 

 
As shown in Table 2, memory requirements are greatly increasing with the 

number of small rectangles. Because of this, each cell was represented by only three 
pieces of information. Each cell consists of two pointers to the lower left and upper right 
end of the cell and id of the cell – indicator to efficiently determine whether the solution 
has been detected, and from which cell the decomposition solving process should 
continue. Endpoints of a cell were structured as two n-dimensional arrays of floats and id 
is the integer type. Although the process of cutting-off non-feasible cells is very fast, 
number of solutional segments grows exponentially, and so does the memory cost. Build-
up of the number of solutional segments is in one moment drastically cut-off, and after 
that point in process the number of feasible segments plummets. If procedure reaches this 
point, all optimal solutions are quickly found afterwards. Otherwise, memory 
requirements stopped the execution of the algorithm. 

5. CONCLUSION 

This paper presented a method for finding all optimal solutions for the two 
dimensional rectangle packing problem. The method applied m-M calculus and dyadic 
decomposition of starting bounding rectangle. Performance was relatively good for small 
instances, but for greater instances, the method needs much memory. The modification 
for finding the first optimal solution was presented as well. 

Based on the presented results, we can conclude that the method is applicable 
for finding all solutions, but has drawbacks. The most promising direction would be in 
the better optimization of the decomposition process, which can lead to improvement in 
method performance, especially for greater instances. 
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