
Yugoslav Journal of Operations Research
21 (2011), Number 2, 225-238
DOI: 10.2298/YJOR1102225K

A NEW GENETIC REPRESENTATION FOR QUADRATIC
ASSIGNMENT PROBLEM1

Jozef KRATICA
Mathematical Institute, Serbian Academy of Sciences and Arts,

Belgrade, Serbia
jkratica@mi.sanu.ac.rs

Dušan TOŠIĆ, Vladimir FILIPOVIĆ, Đorđe DUGOŠIJA
Faculty of Mathematics, University of Belgrade,

Belgrade, Serbia
{dtosic | vladaf | dugosija}@matf.bg.ac.rs

Received: October 2009 / Accepted: November 2011

Abstract: In this paper, we propose a new genetic encoding for well known Quadratic
Assignment Problem (QAP). The new encoding schemes are implemented with
appropriate objective function and modified genetic operators. The numerical
experiments were carried out on the standard QAPLIB data sets known from the
literature. The presented results show that in all cases proposed genetic algorithm reached
known optimal solutions in reasonable time.

Keywords: Genetic algorithm, evolutionary computation, combinatorial optimization, quadratic
assignment problem.

MSC: 90C59, 68T20, 90e20.

1 This research was partially supported by Serbian Ministry of Education and Science under the
grant no. 174010

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 226

1. INTRODUCTION

1.1. Quadratic assignment problem

The Quadratic Assignment Problem (QAP) is firstly proposed in [16] as a
mathematical model related to economic activities. Since then, it has appeared in many
practical applications as can be seen from [22]. We mention only several recent
applications:

• facility layout design problem in order to minimize work-in-process [29];
• website structure improvement [27];
• placement of electronic components [9];
• index assignment problem related to error control in communications [3];
• memory layout optimization in signal processors [34].

Several NP-hard combinatorial optimization problems, such as the traveling

salesman problem, the bin-packing problem and the max clique problem, also can be
modeled as QAPs.

Since its first formulation, the QAP has been drawing researchers’ attention
worldwide, not only because of its practical and theoretical importance, but also because
of its complexity. The QAP is one of the most difficult combinatorial optimization
problems. In [28] was shown that QAP is NP-hard and that, unless P = NP, it is not
possible to find an 1+ε - approximation algorithm, for a constant ε. Such results are valid
even when flows and distances appear as symmetric coefficient matrices.

In general, the QAP instances of size greater than 30 cannot be solved exactly in a
reasonable time. Although heuristic methods do not offer a guarantee for reaching the
optimum, they give satisfactory results to a large range of various problems in a
reasonable amount of time. Recently, so-called metaheuristics, or general frameworks for
building heuristics, became popular for solving difficult combinatorial optimization
problems. Metaheuristic approaches use different techniques in order to avoid
entrapments in pour local minima and are based mainly on two principles: local search
with globalization mechanisms and population search.

In local search methods, an intensive search of the solution space is performed by
moving, at each step, from the current solution to another promising solution in its
neighborhood. Globalization mechanisms are designed so to ensure diversification of the
search. The population search consists of maintaining a pool of good solutions and
combining them in order to produce hopefully better solutions.

Thus, a large number of metaheuristic methods have been used to solve the QAP and
presentation of all such contributions is out of this paper's scope. We mention only
several recent metaheuristic applications for QAP:

• genetic algorithms [6, 10, 33];
• tabu search [7, 14, 24];
• simulated annealing [23];
• ant colony optimization [27];
• particle swarm optimization [20];

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 227

• iterated local search [30]
• self-organizing migrating algorithm [4].

As it can be seen from the literature ([22]), hybrid approaches for solving QAP have
some advantages compared to single metaheuristic approaches. Some of the recent hybrid
approaches are:

• hybrid of genetic algorithm and several variants of tabu search [8];
• variable neighborhood particle swarm optimization [21];
• ant colony optimization approach coupled with a guided local search [12];
• ant colony optimization hybridized with the genetic algorithm and a local search

method [32];
• GRASP with path-relinking [26].

1.2 Genetic algorithms

Genetic algorithms (GAs) represent a problem-solving metaheuristic method
rooted in the mechanisms of evolution and natural genetics. The main idea was
introduced by Holland [13]. In the last three decades GAs have emerged as effective,
robust optimization and search methods.

GAs solve problems by creating a population of individuals (usually 10 - 200),
represented by chromosomes, which are encoded solutions of the problem. The
representation is the genetic code of an individual, and it is often a binary string, although
other alphabets of higher cardinality can be used. A chromosome is composed of basic
units named genes, which control the features of an individual. To each chromosome, a
fitness value measuring its success is assigned. The initial population (the first generation
of individuals) is usually randomly initialized. The individuals in the population then
pass through a procedure of simulated "evolution" by means of randomized processes of
selection, crossover, and mutation.

The selection operator favors individuals more capable to survive through the
generations. The probability that a chromosome will be chosen depends on its fitness.
The higher fitness value of a chromosome provides higher chances for its survival and
reproduction. There are different ways of selecting the best-fitted individuals. One of the
most often used is tournament selection (for more details see [1, 11, 25]). Crossover and
mutation operators are also used during reproduction. The crossover operator provides a
recombination of genetic material by exchanging portions between the parents with the
chance that good solutions can generate even better ones.

Mutation causes sporadic and random changes by modifying individual's genetic
material with some small probability. Its role is to regenerate the lost or unexplored
genetic material into the population. Mutation has a direct analogy with nature, and it
should prevent premature convergence of the GA to suboptimal solutions.

There are many different policies for generation replacement. Certain numbers
of individuals (elite individuals) may skip selection (or even all genetic operators) going
directly into the next generation. This approach is named the steady-state generation
replacement policy with elitist strategy. It provides a smaller gradient in the genetic
search, but preserves fitted individuals from the past generations.

There can be many modifications of the GA, but implementing the GA usually
involves the following steps:

• evaluating the fitness of all individuals in a population;

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 228

• selecting the best-fitted individuals;
• creating a new population by performing crossover and mutation operators.

The process of reproduction and population replacement is repeated until a

stopping criterion (fixed number of generations or satisfied quality of solutions obtained)
is met. Detailed description of GAs is out of this paper's scope, and it can be found in
[1,25].

GAs have a wide range of applications, growing rapidly, for example, from
strong metric dimensions of graphs [19], through maximally balanced connected partition
[5], spanning sets coverage [15], generalized Euclidean distances [2] to hub location [18]
and modeling of chemical processes [31]. As it can be seen in previous section, GAs are
frequently used for solving QAP in stand-alone or hybrid approaches ([6, 8, 10, 32]).

2. MATHEMATICAL FORMULATION OF THE QAP

The QAP can be described as the problem of assigning n facilities to n locations
with given distances between the locations and given flows between the facilities. The
goal is to place the facilities on locations in such a way that the sum of the product
between flows and distances is minimized.

The QAP can be formulated in different ways. One of the most popular
formulations is a permutation based formulation. Let Sn be the set of all permutations
with n elements and π ∈ Sn. Consider fij the flows between facilities i and j and dkl the
distances between locations k and l. If each permutation π represents an allocation of
facilities to locations, the problem expression becomes:

() ()∑∑
= =

∈
⋅

n

i

n

j
jiijS

df
n 1 1

min πππ
 (1)

Another equivalent formulation is quadratic integer programming formulation.

If we define binary variables
1, ()
0, ()ik

k i
x

k i
π
π

=⎧
= ⎨ ≠⎩

 QAP can be formulated as:

1 1 1 1
min

n n n n

ij kl ik jl
i j k l

f d x x
= = = =

⋅ ⋅ ⋅∑∑∑∑ (2)

s.t.

1
1 1,2,...,

n

ij
i

x j n
=

= =∑ (3)

1
1 1,2,...,

n

ij
j

x j n
=

= =∑ (4)

{ }0,1 , 1, 2,...,ijx i j n∈ = (5)

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 229

In the literature there exist numerous formulations and presentation of the QAP
but all of them are out of this paper's scope. Interested reader can seek for more
information about different formulations of the QAP including the linear formulations in
[22].

3. NEW GENETIC REPRESENTATION FOR THE QAP

3.1. Representation and objective function

Since the QAP is a minimization problem, it is obvious that, in the optimal
permutation (solution) pairs of facilities with large flow usually corresponds to the pairs
of locations with small distance between them. We introduce a new encoding scheme
which forces frequent occurrence of this behavior, i.e. there are very small chances that
the pair of facilities with the large flow corresponds to the pairs of locations with large
distance. On that way, this encoding scheme push GA search towards promising search
regions.

In this encoding scheme every individual consists of n-1 genes. Length of the
individual is n-1 because it is not necessary to remember the last element in permutation
when all other elements are set. Each gene is represented by an integer that corresponds
to one element in permutation. In contrast to previous representations, that particular
integer, let us say the i-th integer in permutation, which represents the gene, is not the
index of a location assigned to facility i. Instead, it represents a “distance” of the
corresponding partial assignment of locations to facilities 1,2, …, i-1 from a locally
optimal solution of QAP restricted to these facilities. Therefore, the value of i-th gene
belongs to {0,1,…, n-i}.

For a given coded individual the corresponding permutation of locations
assigned to facilities is obtained by an iterative procedure expressed by a pseudo-code in
Figure 1. In each iteration of the procedure, for every non-assigned location its weight is
calculated as the partial sum of the products between flows and distances from this
location to all previously assigned locations. Then non-assigned locations are sorted in a
sequence according to non-decreasing weights. The location from the sequence for which
"distance" from its first member is equal to the value of the corresponding gene, is
chosen as the next location in the permutation. In this way locations with lower weights
are associated to facilities with smaller gene values.

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 230

 S = []; gv := Take_Gene(1); Pi[1]:=gv+1;
 for i:=2 to n-1 do begin
 gv := Take_Gene(i);
 for j:=1 to n do
 if not (j in S) then begin
 w[j] = F(i,i) * D(j,j);
 for k:=1 to i-1 do begin
 w[j] := w[j] + F(k,i) * D(Pi[k],j);
 w[j] := w[j] + F(i,k) * D(j,Pi[k]);
 endfor
 endif
 endfor
 Quick_Sort(n-i+1, w, w_index);
 Pi[i] := w_index[gv+1];
 S := S ∪ {Pi[i]};
 endfor
 Pi[n] := {1,2,..,n} \ S;

Figure 1: Pseudo-code for objective function.

Set S represents a set of currently assigned locations, Pi is the corresponding

permutation of locations, array w stores calculated current weights, while w_index
denotes indices of w arranged according to non-decreasing weights by function
Quick_Sort(). Function Take_Gene(i) returns the value of i-th gene.

Note that the previous procedure for calculating objective function gives the
permutation so that the individuals are always feasible. In other words, if the initial order
of locations 1,2,…,n is respected whenever weights of some locations in sorted sequence
are equal, the new encoding scheme is unique and complete, i.e. for each permutation of
locations there exists a unique corresponding code and there are no two permutations
with the same code.

Example 1. Suppose that GA is solving QAP with n=4 and with following flow and
distance matrix:

0 3 0 2 0 1 2 3
2 0 0 7 1 0 1 2
3 4 0 0 2 1 0 1
5 2 5 0 3 2 1 0

F D

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

In this case, each individual in the population has genetic representation with

length 3. Suppose that the individual has following representation:
2 0 1

Algorithm for calculating permutation represented by this individual is:
• At the beginning, Pi[1]=gv+1=3, i.e. location 3 is assigned to facility 1.

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 231

• In the next step, where i=2, non-assigned locations are {1,2,4}. For each of these
locations, we are calculated their weights w[1]=10, w[2]=w[4]=5, so the sorted
array w_index is 2,4,1. Since gen value gv=0 then Pi[2]= w_index[1] = 2.

• The same procedure is applied in the third step, so Pi[3]= w_index[2]=1.
• In the last step Pi[4]=4, which is only remaining location.

3.2. Improving heuristic

In order to improve individuals, we performed a local search on proposed
genetic algorithms. The best results are obtained by applying best-known 2-opt heuristic
with first improvement. This procedure is repeated until we are sure that swapping of
each pair of the elements in permutation will not improve the quality of the permutation.
The other strategy is to make only one local search for improving quality of obtained
permutation. That approach is faster, but quality of obtained results is not as good as it is
in the first case.

Local search procedure like 2-opt usually significantly decreases diversity of the
GA population. In case when the solution is improved by heuristic corresponding GA
code is not changed, so the diversity of the GA population is preserved. Therefore, 2-opt
heuristic deals directly with permutations of locations and not with the new encoding,
which imply that the algorithm for obtaining the genetic code from the improved solution
is not needed at all.

3.3. Population initialization

The initial population of 150popN = individuals is randomly generated,
allowing maximal diversity of genetic material, but initialization of the genetic code of
all individuals in first generation should not be a pure random procedure. Natural model
for this behavior is finite decreasing geometric progression with common ratio q.

Probability pk that the i-th gene has value { }(0,1,...,)k k n i∈ − , decreases with
increasing of k according to the geometric progression with a given ratio q∈(0,1), i.e.

0 kk p
p p= . As

1

0
0

1 1
1

n in i

k
k

qp p
q

− +−

=

−
= =

−∑ , then 0 1

1
1 n i

qp
q − +

−
=

−
.

From the fixed value q, it is easy to calculate all probabilities pk, k=0,1,...,n-i

and to generate i-th gene randomly with these probabilities. In algorithms that we
propose, the value of q is equal to 0.5.

4. GENETIC OPERATORS AND OTHER GA ASPECTS

4.1. Fitness function and generation replacement policy

The number of elitist individuals passed directly to the next generation is
100eliteN = . Non-elitist individuals Nnonel (the rest of the population) go through genetic

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 232

operators. This means that a lot of time is saved since the objective value is calculated
only once for each elite individual.

To prevent undeserved domination of elite individuals over the population, their
fitness is decreased by the next formula:

1

, 1, 1 ,
0,

popN
i inew

i elite i
ipopi

Ft Ft Ft Ft
Ft i N Ft Ft

NFt Ft =

⎧ − >⎪= ≤ ≤ =⎨
≤⎪⎩

∑ (6)

In this way, even non-elite individuals preserve their chance to survive to the

next generation.
As non-elitist individuals go through genetic operators, appearance of duplicated

individuals is possible. Such individuals with the same genetic code are discarded -
simply by setting fitness value of the duplicate to zero, so that selection operator allows
them not to continue to the next generation. Furthermore, too many individuals with the
same objective function, but different genetic codes, may predominate in population.
This is why limiting the number of such individuals in population to some constant has
been shown useful in [19, 5, 18]. Therefore, proposed algorithms prohibit an existence of
more than 40 elite individuals with different genetic code and the same objection value,
which prevent premature convergence of algorithms and increase diversity of genetic
material.

4.2. Selection and crossover

A fine-grained tournament selection (FGTS) scheme has been used in the
proposed GAs for deciding which individuals will produce the next generation. The
average size of tournament, Ftour, is a real number, and is considered to be a constant in
practice. We used the value of Ftour=5.4, because it gave good results in solving similar
problems (for example, see [5,18,19]). Detailed information on FGTS scheme can be
found in [11].

For recombination of individuals, we used the classical one-point crossover. The
crossover rate is pcross=0.85. This means that about 85% individuals participate in
recombination of their genes.

4.3. Mutation

Finally, modified simple mutation operator changes randomly selected genes.
During the GA execution, it is possible that all individuals in the population have the
same gene in a certain position. These genes are called frozen. If the number of frozen
genes is significant, the search space becomes much smaller, and the possibility of
premature convergence rapidly increases. For that reason, the basic mutation rates are
increased, but only for the frozen genes. The basic mutation rates are:

• 0.1/n for the bit on the first position.
• 0.05/n for the bit on the second position. Next bits in the gene have repeatedly

two times smaller mutation rate (0.025/n, 0.0125/n...).

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 233

When compared with the basic mutation rates, frozen bits are mutated by 2.5
times higher rate:

• 0.25/n instead of 0.1/n if they are at the first position of the gene.
• 0.125/n for the bit on the second position. Next bits in the gene have repeatedly

two times smaller mutation rate (0.0625/n, 0.03125/n...).

4.4. Caching GA

Caching optimizes run-time of a genetic algorithm. The evaluated objective
values are stored in a hash-queue structure using the Least Recently Used caching
technique (LRU). Otherwise it would be necessary to calculate the same objective value
each time genetic operators produce another individual with the same genetic code. With
caching technique, when such individual appears, its objective value is taken from the
caching table, and this saves a significant amount of time. Cashing of GAs has no impact
on results that are obtained by GAs - it only reduces execution time.

In proposed GA implementations, we limited the number of individuals stored
in a caching table to Nlcache=5000. Detailed information about caching GA can be found
in [17].

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 234

Table 1: GA results on QAP instances

Instance
name Opt t

(sec) gen agap
(%)

σ
(%) eval cache

(%)
bur26a 5426670 77.422 2014 0.000 0.000 61114 60.6
bur26b 3817852 92.447 2020 0.000 0.000 63242 62.5
bur26c 5426795 81.654 2001 0.000 0.000 60001 59.9
bur26d 3821225 111.720 2299 0.000 0.000 71577 62.0
bur26e 5386879 108.612 2457 0.000 0.002 77288 62.5
bur26f 3782044 113.981 2001 0.000 0.000 58122 58.0
bur26g 10117172 84.253 2092 0.000 0.000 67248 64.2
bur26h 7098658 95.664 2178 0.000 0.000 67481 62.0
chr12a 9552 2.071 2001 0.000 0.000 73872 73.7
chr12b 9742 3.154 2001 0.000 0.000 68129 68.0
chr12c 11156 1.730 2014 0.000 0.000 77339 76.7
chr15a 9896 4.780 2262 0.061 0.148 86105 75.9
chr15b 7990 4.645 2001 0.000 0.000 73500 73.4
chr15c 9504 3.745 2274 1.306 2.229 88766 77.9
chr18a 11098 8.678 2261 0.299 1.026 84592 74.6
chr18b 1534 7.461 2001 0.000 0.000 67921 67.8
chr20a 2192 12.140 2265 0.771 1.377 82531 72.5
chr20b 2298 9.828 2777 5.013 1.725 102941 74.3
chr20c 14142 25.052 2356 0.472 1.454 82246 69.7
chr22a 6156 18.720 2465 0.369 0.291 93180 75.3
chr22b 6194 15.258 2914 1.088 0.481 110681 75.6
chr25a 3796 48.375 2946 2.903 1.719 107506 73.0
els19 17212548 25.806 2194 0.177 0.364 74309 67.4

esc16a 68 3.353 2001 0.000 0.000 62204 62.1
esc16b 292 0.063 25 0.000 0.000 397 17.1
esc16c 160 4.802 2001 0.000 0.000 58745 58.6
esc16d 16 3.679 2001 0.000 0.000 59255 59.1
esc16e 28 2.729 2001 0.000 0.000 60625 60.5
esc16f 0 0.002 1 0.000 0.000 0 0.0
esc16g 26 2.994 2001 0.000 0.000 59974 59.9
esc16h 996 0.008 1 0.000 0.000 0 0.0
esc16i 14 0.492 315 0.000 0.000 8038 43.3
esc16j 8 2.716 2001 0.000 0.000 60994 60.9
esc32e 2 0.050 1 0.000 0.000 0 0.0
esc32f 2 0.050 1 0.000 0.000 0 0.0
had12 1652 2.493 2001 0.000 0.000 77814 77.7
had14 2724 7.797 2001 0.000 0.000 67434 67.3
had16 3720 16.534 2001 0.000 0.000 61102 61.0
had18 5358 22.627 2001 0.000 0.000 57944 57.8
had20 6922 38.445 2001 0.000 0.000 57925 57.8

5. COMPUTATIONAL RESULTS

The tests were made on an Intel 2.5 GHz with 1GB memory, under Windows
XP operating system. The algorithm was coded in C programming language. We tested
our algorithm on QAPLIB instances (http://www.seas.upenn.edu/qaplib/) with known
optimal solutions. The stopping criterion of GA was the maximum number of generations
equal to 5000 or at most 2000 generations without the improvement of the objective
value.

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 235

The GA was run 20 times for each instance, and the results are summarized in
Table 1 and Table 2. For all the instances the algorithm reached the optimal solution. The
tables are organized as follows:

• the first column contains the test instance’s name;
• the second column contains the optimal solution for the particular instance;
• the average total running time (t) and the average number of generations for

finishing GA (gen) are given in the third and the fourth columns;

the fifth and the sixth column (agap and σ) contain information on the average

solution quality: agap is a percentage gap defined as
20

1

1
20 i

i
agap gap

=

= ∑ , where

100 i
i

GA opt
gap

opt
−

= ⋅ and iGA represents the GA solution obtained in the i-th

run, while σ is the standard deviation of gapi, i=1,2,...,20, obtained by formula
20

2

1

1 ()
20 i

i
gap agapσ

=

= −∑ ;

• in the last two columns eval represents the average number of the objective
function evaluations, while the cache displays savings (in percent) achieved by
using the caching technique.

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 236

Table 2: GA results on QAP instances

Instance
name Opt t

(sec) gen agap
(%)

σ
(%) eval cache

(%)
kra30a 88900 117.353 2078 0.067 0.302 69757 67.0
kra30b 91420 132.594 2269 0.009 0.029 77643 68.3
lipa20a 3683 11.044 2011 0.000 0.000 70296 69.8
lipa20b 27076 18.240 2001 0.000 0.000 55735 55.6
lipa30a 13178 57.660 2173 0.000 0.000 76183 70.0
lipa30b 151426 70.761 2001 0.000 0.000 62397 62.3
nug12 578 1.589 2001 0.000 0.000 79805 79.6
nug14 1014 3.341 2001 0.000 0.000 74519 74.4
nug15 1150 5.779 2001 0.000 0.000 68544 68.4
nug16a 1610 6.454 2013 0.000 0.000 71358 70.8
nug16b 1240 9.817 2001 0.000 0.000 61327 61.2
nug17 1732 9.315 2266 0.046 0.058 80968 71.2
nug18 1930 10.218 2001 0.000 0.000 71870 71.7
nug20 2570 20.740 2005 0.000 0.000 66932 66.6
nug21 2438 27.497 2064 0.000 0.000 69749 67.3
nug22 3596 35.819 2006 0.000 0.000 70199 69.9
nug24 3488 48.132 2011 0.000 0.000 68349 67.8
nug25 3744 65.388 2043 0.003 0.012 71173 69.5
nug27 5234 57.737 2186 0.002 0.009 76857 70.0
nug28 5166 71.577 2677 0.083 0.128 95321 71.1
nug30 6124 160.993 2525 0.090 0.080 88657 69.9
rou12 235528 1.376 2004 0.000 0.000 77921 77.6
rou15 354210 3.582 2010 0.000 0.000 74054 73.6
rou20 725522 12.864 2512 0.069 0.087 91333 72.6
scr12 31410 1.573 2001 0.000 0.000 70681 70.5
scr15 51140 4.467 2001 0.000 0.000 68398 68.3
scr20 110030 11.825 2187 0.000 0.000 79151 72.3
ste36a 9526 484.717 2943 0.477 0.291 97933 66.3
ste36b 15852 418.567 2206 0.038 0.092 72428 65.4
ste36c 8239110 509.277 2941 0.181 0.122 99200 67.3
tai10a 135028 0.917 2001 0.000 0.000 76443 76.3
tai10b 1183760 1.103 2001 0.000 0.000 71168 71.0
tai12a 224416 1.871 2001 0.000 0.000 72101 72.0
tai12b 39464925 2.713 2002 0.000 0.000 73265 73.1
tai15a 388214 3.178 2001 0.000 0.000 75096 74.9
tai15b 51765268 7.523 2001 0.000 0.000 67744 67.6
tai17a 491812 6.716 2453 0.215 0.203 89057 72.5
tai20a 703482 10.470 2307 0.371 0.221 83099 71.9
tai20b 122455319 43.257 2001 0.000 0.000 65802 65.7
tai25b 344355646 84.672 2081 0.000 0.000 72678 69.6
tho30 149936 171.737 2763 0.099 0.135 97441 70.1

Our approach reached optimal solutions within reasonable running time. If we

compare these running time with the running time of other existing GA for QAP
[6,10,33], applied to the same set of instances, we can see that our algorithm seems to
perform slower. However, our main goals here are to develop a GA approach with
completely new encoding and to generate high-quality solutions.

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 237

6. CONCLUSIONS

This paper is devoted to exploring the results of the new genetic encoding
scheme to the quadratic assignment problem. Arranging possible locations of every
facility in non-decreasing order of their weights directs GA to promising search regions.
The proposed encoding scheme is performed with adequate objective function and
appropriate modified genetic operators. The performance of the genetic algorithm is
improved with a local search, the mutation with frozen genes, a limited number of
different individuals with the same objective value and the caching GA technique. The
experimental results are encouraging and show effectiveness of the new encoding
scheme. The proposed GA obtains solutions that match all known optimal solutions from
the literature.

Further research should be directed to testing large-scale instances on more
powerful and/or parallel computers as well as to investigate the combination of presented
GA approach with some other metaheuristic.

REFERENCES

[1] Abraham, A., Nedjah, N., and Mourelle, L., “Evolutionary computation: From genetic
algorithms to genetic programming”, in: Nedjah et al. (eds.) Studies in Computational
Intelligence, Springer, (2006) 1-20.

[2] Aleret, R.M., Valls, J., and Fernandez, O., “Evolving generalized Euclidean distances for
training RBNN”, Computing and Informatics, 26 (1) (2007) 33-43.

[3] Ben-David, G., and Malah, D., “Bounds on the performance of vector-quantizers under
channel errors”, IEEE Transactions on Information Theory, 51 (6) (2005), 2227-2235.

[4] Davendra, D., and Zelinka, I., “Optimization of quadratic assignment problem using self
organising migrating algorithm”, Computing and Informatics, 28 (2) (2009), 169-180.

[5] Djurić, B., Kratica, J., Tošić, D., and Filipović, V., “Solving the maximally balanced
connected partition problem in graphs by using genetic algorithm”, Computing and
Informatics, 27 (3) (2008), 341-354.

[6] Drezner, Z., “Compounded genetic algorithms for the quadratic assignment problem”,
Operations Research Letters, 33 (5) (2005) 475-480.

[7] Drezner, Z., “The extended concentric tabu for the quadratic assignment problem”, European
Journal of Operational Research, 160 (2) (2005), 416-422.

[8] Drezner, Z., “Extensive experiments with hybrid genetic algorithms for the solution of the
quadratic assignment problem”, Computers and Operations Research, 35 (3) (2008) 717-736.

[9] Duman, E., and Or, I., “The quadratic assignment problem in the context of the printed circuit
board assembly process”, Computers and Operations Research, 34 (1) (2007) 163-179.

[10] El-Baz, M.A., “A genetic algorithm for facility layout problems of different manufacturing
environments”, Computers and Industrial Engineering, 47 (23) (2004) 233-246.

[11] Filipović, V., “Fine-grained tournament selection operator in genetic algorithms”, Computing
and Informatics, 22 (2) (2003) 143-161.

[12] Hani, Y., Amodeo, L., Yalaoui, F., and Chen, H., “Ant colony optimization for solving an
industrial layout problem”, European Journal of Operational Research, 183 (2007) 633-642.

[13] Holland, J., Adaptation in Natural and Artificial Systems, The University of Michigan Press,
Ann Arbor, 1975.

[14] James, T., Rego, C., and Glover, F., “A cooperative parallel tabu search algorithm for the
quadratic assignment problem”, European Journal of Operational Research, 195 (3) (2009)
810-826.

 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP 238

[15] Khamis, A.M., Girgis, M.R., and Ghiduk, A.S., “Automatic software test data generation for
spanning sets coverage using genetic algorithms”, Computing and Informatics, 26 (4) (2007)
383-401.

[16] Koopmans, T. C., and Beckman, M. J., “Assignment problems and the location of economic
activities”, Econometrica, 25 (1957) 53-76.

[17] Kratica, J.: “Improving performances of the genetic algorithm by caching”, Computers and
Artificial Intelligence, 18, 3 (1999) 271-283.

[18] Kratica, J., Stanimirović, Z., Tošić, D., and Filipović, V., “Two genetic algorithms for solving
the uncapacitated single allocation p-hub median problem”, European Journal of Operational
Research, 182 (1) (2007) 15-28.

[19] Kratica, J., Kovačević-Vujičić, V., and Čangalović, M., “Computing strong metric dimension
of some special classes of graphs by genetic algorithms”, Yugoslav Journal of Operations
Research, 18 (2) (2008) 143-151.

[20] Liu, H., Abraham A., and Zhang, J., “A particle swarm approach to quadratic assignment
problems”, in: A. Saad et al. (ed.), Advances in Soft Computing , 39, Springer - Verlag, (2007)
213 - 222.

[21] Liu, H., and Abraham, A., “An hybrid fuzzy variable neighborhood particle swarm
optimization algorithm for solving quadratic assignment problems”, Journal of Universal
Computer Science, 13 (9) (2007) 1309-1331.

[22] Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., and Querido, T., “A
survey for the quadratic assignment problem”, European Journal of Operational Research,
176 (2) (2007) 657-690.

[23] Misevicius, A., “A modified simulated annealing algorithm for the quadratic assignment
problem”, Informatica, 14 (4) (2003) 497-514.

[24] Misevicius, A., “A tabu search algorithm for the quadratic assignment problem”,
Computational Optimization and Applications, 30 (1) (2005), 95-111.

[25] Mitchell, M., Introduction to Genetic Algorithms, MIT Press, Cambridge, Massachusetts,
1999.

[26] Oliveira, C.A.S., Pardalos, P.M., and Resende, M.G.G., “GRASP with path-relinking for the
quadratic assignment problem”, Lecture Notes in Computer Science, 3059 (2004) 356-368.

[27] Qahri Saremi, H., Abedin, B., and Meimand Kermani, A., “Website structure improvement:
Quadratic assignment problem approach and ant colony meta-heuristic technique”, Applied
Mathematics and Computation, 195 (1) (2008) 285-298.

[28] Sahni, S., and Gonzales, T., “P-complete approximation problems”, Journal of the Association
for Computing Machinery, 23 (1976) 555-565.

[29] Singh, S.P., and Sharma, R.R.K., “Two-level modified simulated annealing based approach
for solving facility layout problem”, International Journal of Production Research, 46 (13)
(2008) 3563-3582.

[30] Stutzle, T., “Iterated local search for the quadratic assignment problem”, European Journal of
Operational Research, 174 (3) (2006) 1519-1539.

[31] Tao J., Wang N., and Wang X., “Genetic algorithm based recurrent fuzzy neural network
modeling of chemical processes”, Journal of Universal Computer Science, 13 (9) (2007)
1332-1343.

[32] Tseng, L.-Yu., and Liang, S.-C., “A hybrid metaheuristic for the quadratic assignment
problem”, Computational Optimization and Applications, 34 (1) (2006) 85-113.

[33] Wang, R.L., and Okazaki, K., “Solving facility layout problem using an improved genetic
algorithm”, IEICE Transactions on Fundamentals of Electronics Communications and
Computer Sciences, E88a (2) (2005) 606-610.

[34] Wess, B., and Zeitlhofer, T., “On the phase coupling problem between data memory layout
generation and address pointer assignment”, Lecture Notes in Computer Science, 3199 (2004)
152-166.

