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Abstract: A stock is an asset if it can react to economic and seasonal influences in the 
management of the current assets. The financial manager must calculate the input of 
funds to the stock intelligently and the amount of money cycled through stocks, taking 
into account the time factors in the future. The purpose of this paper is to propose an 
inventory model considering issues of crash cost and current value. The sensitivity 
analysis of each parameter, in this research, differs from the traditional approach. We 
utilize a course of deduction with sound mathematics to develop several lemmas and one 
theorem to estimate optimal solutions. This study first tries to find the optimal order 
quantity at all lengths of lead time with components crashed at their minimum duration. 
Second, a simple method to locate the optimal solution unlike traditional sensitivity 
analysis is developed. Finally, some numerical examples are given to illustrate all 
lemmas and the theorem in the solution algorithm. 
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1. INTRODUCTION 

From the perspective of financial management, stocks often comprise a very 
large proportion of a balance sheet. Funds invested in stock cannot be used elsewhere 
because they are not liquid assets. They become liquid only when the stocks are sold. 
Considering capital running factors, stocks must be turned over fast, so enterprises must 
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determine appropriate inventory policies in order to reduce idleness of the stocks, and 
dead and scrap stocks in order to sell and produce effectively.  

Studying inventory models and considering time and value, Moon and Yun [13] 
employed the discounted cash flow approach to fully recognize the time value of money 
and constructed a finite planning horizon EOQ model in which the planning horizon is a 
random variable. Jaggi and Aggarwal [8], in order to discuss an optimal replenishment 
policy with an infinite planning horizon, reported that a deteriorating product under the 
impact of a credit period did not allow shortages. Bose et al. [2] and Hariga [6] 
developed two inventory models, which incorporated the effects of inflation and time 
value of money with a constant rate of deterioration and time proportional demand. 
Moon and Lee [12] investigated the effect of inflation and time-value of money in an 
inventory model with a random product life cycle. Wee and Law [20] employed the 
concepts of inflation and the time value of money in a model where demand is price-
dependent and shortages allowed. Chung and Tsai [3] derived an inventory model for 
deteriorating items with the demand of linear trends and shortages during the finite 
planning horizon, considering the time value of money. Sun and Queyranne [19] 
investigated general multi-product, multi-stage production and an inventory model using 
the net time value of money with its total cost as the objective function. Balkhi [1] 
considered a production lot size inventory model with deteriorated and imperfect 
products, taking into account inflation and the time value of money. Moon et al. [9] 
developed inventory models for ameliorating and deteriorating items with a time-variant 
demand pattern over a finite planning horizon, taking into account the effects of inflation 
and the time value of money. Shah [17] derived an inventory model by assuming a 
constant rate of deterioration of units in an inventory and the time value of money under 
the conditions of permissible delay in payments. Wee et al. [21] developed an optimal 
replenishment inventory strategy to consider both ameliorating and deteriorating effects, 
taking into account the time value of money and a finite planning horizon. Both the 
amelioration and deterioration rate were assumed to follow Weibull distribution. Dey et 
al. [5] considered an inventory model for a deteriorating item with time dependent 
demand and interval-valued lead-time over a finite time horizon. The inflation rate and 
time value of money are taken into account. 

In addition, Ji [9] constructed a general framework of an inventory system for 
non-instantaneous deteriorating items with shortages, the time value of money, and 
inflation. Das et al. [4] developed a two-warehouse production-inventory model for 
deteriorating items considered under inflation and the time value of money over a 
random time horizon. Hou et al. [7] presented an inventory model for deteriorating items 
with a stock-dependent selling rate under inflation and the time value of money over a 
finite planning horizon. However, Kumar Maiti [10] also has developed an inventory 
model incorporating customers’ credit-period dependent dynamic demand, inflation, and 
the time value of money, where the lifetime of the product is imprecise in nature. 

In the recent studies, decomposing the lead time into several crashing periods is 
a controllable approach to lead time reduction. Ouyang et al. [15] constructed a variable 
lead time from a mixed inventory model with backorders and lost sales. In this article, we 
extend the inventory model of Ouyang et al. [15]. When the distribution of lead time 
demand is normal, we consider the time value of a continuous review inventory model 
with a mixture of backorders and lost sales.  
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This paper is organized as follows. In the next section, we define the notation of 
the inventory model and its assumptions. In section 3, first we construct the inventory 
model, taking into account the time value. Then we prove that the total expected annual 
cost is piece-wisely concave down with respect to lead time, and convex in order 
quantities. We apply a simple method to develop four lemmas and one theorem, and 
locate the optimal solution for constructing the procedure of solving a replenishment 
policy in section 4. This approach differs from the traditional methods. In section 5, 
numerical examples are offered to illustrate our algorithm. Section 6 summarizes the 
article and presents some conclusions. 

 
2. NOTATION AND ASSUNPTIONS 

We use the following notation and assumptions to develop inventory models 
with crashing component lead time and the time value of money. 

A : Fixed ordering cost per order. 
D : Average demand per year. 
h : Inventory holding cost per item per year. 
L : Lead time that has n mutually independent components. The i th component 

has a minimum duration ia  and normal duration ib  with a crashing cost ic  per unit 

time under the assumption nccc ≤≤≤ 21 . The components of L  are crashed one at 

a time, starting from the component of the least ic  and so forth.  Hence, the range for L  

is from 
1

n

j
j

a
=
∑  to 

1

n

j
j

b
=
∑ . 

jL : The length of lead time with components 1, 2,…, j  are crashed to their 
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i

L b
=

= ∑ and 
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=

= ∑  and 
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j n t t
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L L b a
= +

= + −∑ , for 

,..., 1j j n= − . Since jj ab > , it follows that jj LL >−1 , for 1,...,j n= . 

( )R L : The lead time crashing cost per cycle for a given [ ]1,i iL L L −∈  is given 
by 

1

1
1

( ) ( ) ( )
i

i i t t t
t

R L c L L c b a
−

−
=

= − + −∑ . 

Q : Order quantity. 

jQ : The optimal order quantity when lead time is jL . 
X : Lead time demand that follows a normal distribution with mean Lμ  and 

standard derivation Lσ . 
r : Reorder point. Since r = expected demand during lead time + safety stock, 

r L k Lμ σ= + . Inventory is continuously reviewed. Replenishments are made 
whenever the inventory level falls to the reorder point r . 

q : Allowable stockout probability during L . 



 K.C. Hung / Continious Review Inventory Models 296 

k : Safety factor that satisfies ( ) ( )P X r P Z k q> = > = , Z representing the 
standard normal random variable. 

( )B r : Expected shortage at the end of the cycle. We quote the results of 

Ouyang et al. [15], ( ) ( )B r L kσ= Ψ  where [ ]( ) ( ) 1 ( )k k k kϕΨ = − −Φ  as ,φ  where Φ  
denotes the standard normal probability density function and cumulative distribution. 

β : The fraction of the demand during the stockout period that will be 
backordered. 

π : Fixed penalty cost per unit short. 

0π : Marginal profit per unit. 
θ : The interest rate per year. 

 
3. MATHEMATICAL FORMULATION 

First, we study the total expected annual cost of the inventory model with 
backorders and lost sales for variable lead time. We quote the Equation (2) of Ouyang et 
al. [15], for [ ]0,nL L L∈ , who derived the total expected annual cost, ( , )EAC Q L , 
without considering the time value of money as follows: 

( , ) ( , )jEAC Q L EAC Q L=  (1) 

for 1,j jL L L −⎡ ⎤∈ ⎣ ⎦ , with 1,2,...,j n= . We rewrite the total expected annual cost 
as  

( , ) ( ) ( ) ( )
2j j
h D DEAC Q L Q R L p L L

Q Q
= + + +Ω  (2) 

Where 

[ ]( ) (1 ) ( )L h k k Lσ βΩ = + − Ψ ,  

[ ]0( ) (1 ) ( )p L k L Aσ π β π= + − Ψ +  

and  
1

1
1

( ) ( ) ( )
j

j j j t t t
t

R L c L L c b a
−

−
=

= − + −∑  

for  

1,j jL L L −⎡ ⎤∈ ⎣ ⎦ . 

Secondly, we consider the inventory model, taking into account the time value. 
The expected net inventory level, just before the order arrives, is (1 ) ( )k L B rσ β+ − , 
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and the expected net inventory at the beginning of the cycle is (1 ) ( )Q k L B rσ β+ + − . 

Therefore, the expected average inventory level is (1 ) ( )Q k L B r Dtσ β+ + − −  for 

0, Qt
D

⎡ ⎤∈ ⎢ ⎥⎣ ⎦
. Hence, the inventory carrying cost for the first cycle equals 

0

2
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∫
 (3) 

We adopt the discounted cash flow approach following Moon and Yun [14]. At 
the beginning of each cycle will be cash outflows for the ordering cost, stockout cost and 
lead time crashing cost. Therefore, the total relevant cost for the first cycle is 

0
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Referring to Silver and Peterson [18], we get that the time value of money of the 
expected total relevant cost over an infinite time horizon, ( , )C Q L , is given by 
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We can rewrite ( ),C Q L  as follows: 

2
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for 0 Q< < ∞  and 0 L≤ < ∞ , 
where 
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and  

[ ]( ) (1 ) ( )L h k k Lσ βΩ = + − Ψ . 

Third, we use ( )R L  to denote the crashing cost. We have that 

( ) ( )jR L R L=  

where 
1

1
1

( ) ( ) ( )
j

j j j t t t
t

R L c L L c b a
−

−
=

= − + −∑  for 1,j jL L L −⎡ ⎤∈ ⎣ ⎦ , 

with  

1,2,...,j n= . 

Since ( )jR L  is a linear decreasing function on 1,j jL L −⎡ ⎤⎣ ⎦ , we get 

1j j j jL L b a− − = −  

and 
1

1 1
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j j

j j j j j t t t t t t j j
t t

R L c L L c b a c b a R L
−

− +
= =

= − + − = − =∑ ∑ ,  

it follows that ( )R L  is a piece-wise linear decreasing and continuous function 
on [ ]0,nL L . 

At the points { }: 1,2,..., 1jL j n= − , ( )R L  has different slopes jc  and 1jc +  of 

the tangent line from the right and left, respectively. Hence, ( )R L  is not differentiable at 
those points, so we must divide the domain of L  from [ ]0,nL L  into subintervals 

1,j jL L −⎡ ⎤⎣ ⎦ , with 1,2,...,j n= . 
According to Rachamadugu [16], in order to compare our results with the 

previous model of Ouyang et al. [15], we use ( , )  ( , )A Q L C Q Lθ= , an alternate but 
equivalent measure. ( , )A Q L  represents the equivalent uniform cash flow stream that 

generates the same ( , )C Q L . From 
2 20
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1
Q
D
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, we have  

0
lim ( , ) ( ) ( ) ( )

2 i
h D DA Q L Q R L p L L

Q Qθ→
= + + +Ω . 

That is equation (2) for the total expected annual cost of Ouyang et al. [15]. 
Hence, we extend their model. Now, we begin to find the minimum value of the total 
expected annual cost ( , )C Q L  for 0 Q< < ∞  and 0 L≤ < ∞ . Taking the first and second 
partial derivatives of ( , )C Q L  with respect to L  gives 
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Rachamadugu [10] derived that 2
2

x xe
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+
, for 0>x . Hence, we know that 

the second term of the second partial derivative is positive, so ( , )jC Q L  is convex in 
(0, )Q∈ ∞  with the minimum point at jQ  such that 
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Let ( ) 1
Q

DQ e Q
D

θ θφ = − −  for 0 Q≤ < ∞ . We know that ( )Qφ  is a strictly 

increasing function from (0) 0φ =  to lim ( )
Q

Qφ
→∞

= ∞ . Therefore, given an jL , there exists 

a unique point jQ  satisfying 
2

1 ( )jQ
D

j je Q f L
D Dh

θ θ θ
− − = . 

We have shown that ( , )C Q L  is concave down in 1,j jL L L −⎡ ⎤∈ ⎣ ⎦ . In addition, 

for jL L= , with 0,1,..., , ( , )j jj n C Q L=  is concave up in Q . So the minimum problem is 
to consider the points ( , )j jQ L  for 0,1,...,j n= .We construct an algorithm as follows. 
(i)  Find the local minimum points ( , )j jQ L  for 0,1,...,j n=  along the boundaries of 

each subinterval. 

(ii)  For each point ( , )j jQ L , evaluate the total expected annual cost ( , )j jC Q L for 

0,1,...,j n= . 

(iii) Solve the minimum of { }( , ) :  0,1, ,j jC Q L j n= . 
 

4. MONOTONIC PROPERTY AND PROPOSITIONS 

We determine a criterion to reduce the computation of finding the local 
minimum for the inventory model. In addition, we construct a new function as the 
difference of the total expected annual cost function evaluated at two adjacent local 
minimum points. Then we verify if it is an increasing function of the fraction of 
backorders. Therefore, we can reduce the calculation for locating the optimal solution. 
Our purpose in this section is to develop a procedure that eliminates the need to compute 
the exact values of { }: 0, ,jQ j n=  and { }( , ) :  0, ,j jC Q L j n= . We establish a 

criterion to compare jQ  and 1jQ −  implicitly. Moreover, we change the value of β  to 
investigate the sensitive analysis of backordered ratio per cycle. Our new method 
significantly reduces the amount of computation. First, we offer such a criterion that we 
can implicitly compare jQ  with 1jQ − . All the proofs for the Lemmas and the theorem 
are in the Appendix. 

 
Lemma 1: Given a backordered fraction ratioβ , then  

[ ]1 1 0( ) (1 ) ( )j j i i iQ Q c L L kσ π β π− −< ⇔ + < + − Ψ . 
 
Secondly, we state the monotone property between ( , )i iC Q L  and jQ . 
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Lemma 2: For a given β , if 1j jQ Q −< , then 1 1( , ) ( , )i i i iC Q L C Q L− −< . 
From the Table 2 of Ouyang et al. [15], if 1j jQ Q −> , we know that there is no 

regulation between ( , )j iC Q L  and 1 1( , )j iC Q L− − . However, if we treat ( )jQ β  and 

1( )jQ β−  as functions of β , then we can still measure the difference between 
( ( ), )j iC Q Lβ  and 1 1( ( ), )j iC Q Lβ− − . 

Lemma 3: For a given interval [ ]0 1,β β β∈ , if 1( ) ( )j jQ Qβ β−≥ , then for [ ]0 1,β β β∈ , 

( ( ), )j iC Q Lβ − 1 1( ( ), )i iC Q Lβ− −  is an increasing function ofβ . 

Here, we show the monotone property of 1( ) ( )j jQ Qβ β−≥  with respect toβ . 

Lemma 4: Given a fixed 0β , if 0 1 0( ) ( )j jQ Qβ β−≥ , then 1( ) ( )j jQ Qβ β−≥  for the 

interval [ ]0 ,1β β∈ . 
Finally, we derive a criterion to compare 1 1( ( ), )i iC Q Lβ− −  with ( ( ), )i iC Q Lβ . 

Theorem 1: If 0 1 0 1( ( ), ) ( ( ), )i i i iC Q L C Q Lβ β− −>  and 0 1 0( ) ( )i iQ Qβ β−≥  for a fixed 0β , 

then 1 1( ( ), ) ( ( ), )i i i iC Q L C Q Lβ β− −>  for the interval [ ]0 ,1β β∈ . 
 

5. NUMERICAL EXAMPLES 

The following numerical examples explain how the above Lemmas and the 
theorem simplify the solution procedure. Using the numerical example from Ouyang et 
al. [15], we have the following data: 600D = units/year, 0.845k = , $200A = /per order, 

$20h = /per item per year, $50π = /per unit short, 0 $150π = /per unit, 7σ =  units/per 
week, 0.2q =  (in this situation, from the normal distribution, we find 0.845k =  and 

( ) 0.110kψ = ), and the lead time has three components with data shown in Table 1. 
We assume that the interest rate 0.1θ = . Following the solution algorithm, we 

obtain Table 2. When 1β =  in Table 2, we slightly change the decimal expression of iQ , 
so apparently it implies 2 1(1) (1)Q Q< . 
Table 1: Lead time data 
Lead time 
component, i 0 1 2 3 

iL  8 6 4 3 
( )iR L  0 5.6 22.4 57.4 

Normal duration, ib  (days)  20 20 16 

Minimum duration, ia  (days)  6 6 9 

i ib a−    (weeks)  2 2 1 

Unit crashing cost, ic  ($/week)  2.8 8.4 35 
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Table 2: Summary of solutions ( jL  in weeks) 

  β = 0 β = 0.5 β = 0.8 β = 1 

j  jQ  ( , )j jC Q L  jQ  ( , )j jC Q L  jQ  ( , )j jC Q L  jQ  ( , )j jC Q L  

0 239 52579.28 191 42293.07 161 36160.27 142.02  32088.04 

1 223 48811.71 181 39921.80 156 34616.81 139.34  31092.47 

2 208 44979.04 174 37734.19 153 33406.93 139.19  30530.02 

3 206 44235.12 176 37960.58 158 34210.40 146.53  31716.41 

 
Considering the cases for β = 0, 0.5, 0.8 and 1, we use Table 3 to evaluate 

1( )i i ic L L− +  along with [ ]0(1 ) ( )kσ π β π+ − Ψ . 
 
Table 3: Data for comparison 

j 1( )j j jc L L −+  β  [ ]0(1 ) ( )kσ π β π+ − Ψ  

1 14.78 0 154.2 
2 37.38 0.5 96.38 
3 130.62 0.8 61.68 
  1 38.55 

 
When 0=β , we find [ ]1 0( ) (1 ) ( )i i ic L L kσ π β π− + < + − Ψ  for all 

1, 2,3i = . By Lemma 1, we get 1(0) (0)i iQ Q −<  for all 1, 2,3i =  For all 1,2,3i = , 
Lemma 2 implies 1 1( (0), ) ( (0), )i i i iC Q L C Q L− −< , so the optimal solution is 

3 3( (0), ) (206,3)Q L = . When 0.5,0.8β =  and 1, we find 

1( )i i ic L L− + [ ]0(1 ) ( )kσ π β π< + − Ψ  for all 1,2i = . Thus, by Lemma 2, we have 

1 1( ( ), ) ( ( ), )i i i iC Q L C Q Lβ β− −<  when 0.5,0.8β =  and 1 with 1, 2i = . Therefore, we 
need to calculate only 

2, 3
min ( ( ), )i ii

C Q Lβ
=

 instead of 
0,1,2,3
min ( ( ), )i ii

C Q Lβ
=

 in order to get the 

optimal solution for 0.5,0.8β =  and 1. Furthermore, we find 

3 3( (0.5), ) 34960 37734C Q L = > 2 2( (0.5), )C Q L=  and 3 2(0.5) 176 173 (0.5)Q Q= > = . 
Using Theorem 1, we can conclude that 2 22, 3

min ( ( ), ) ( ( ), )i ii
EAC Q L EAC Q Lβ β

=
=  for 

0.5,0.8β =  and 1. Consequently, Lemmas 1, 2, 3 and 4, and Theorem 1, can simplify 
the solution procedure. With our criterion, it is very easy to compare the local minimum 
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points iQ  and 1iQ − . Using the monotone property between ( , )i iC Q L  and iQ , and the 
difference of the total expected annual cost function evaluated at two adjacent local 
minimum points as an increasing function of the fraction of backorders, our computation 
results become much simpler.  

 

6. CONCLUSION 

Usually, there are three kinds of stocks in a company: raw materials, work-in-
process, and finished goods. These stocks all need funds to be managed. The current 
assets are the most difficult to be cashed. Good inventory management is often the mark 
of a well-run firm. This article considers the time value of money of a continuous review 
inventory model with a mixture of backorders and lost sales, where lead time demand has 
a normal distribution. We find the optimal order quantity and optimal lead time of the 
total expected annual costs at all lengths of lead times with components crashed to their 
minimum duration, and construct a process for an optimal solution. We develop a 
principle to compare the optimal order quantities Qi(β) at points (Qi(β),Li) for all i =1, 2, 
…, n. Our approach, when solving most situations like this, differs from the traditional 
sensitivity analysis. We deduce the optimal values via complete procedures that are 
mathematically sound. 
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APPENDIX 

Proof of Lemma 1: 
From 

2

1 ( )jQ
D

j je Q f L
D Dh

θ θ θ
− − =  and ( ) 1

Q
DQ e Q

D

θ θφ = − − , which is a 

strictly increasing function, we get the following criterion for comparing jQ  and 1jQ − : 

1 1( ) ( )j j j jQ Q f L f L− −< ⇔ < 1 1( ) ( ) ( ) ( )i i i ip L R L p L R L− −⇔ + < +  

[ ]1 0( ) (1 ) ( )i i ic L L kσ π β π−⇔ + < + − Ψ . 
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Proof of Lemma 2: From Equations (4) and (7), we have 

[ ]2 2( , ) (1 ) ( )jQ
D

j i i
Dh h DhC Q L e k k L

θ σ β
θθ θ

= + + − Ψ −  (8) 

Using Equation (8) and 1 0j j j jL L b a− − = − > , we get Lemma 2. 

Proof of Lemma 3: From equation (8), we obtain 

( ) ( )

1 1 2

1

1( ( ), ) ( ( ), )

( ) ( )

Q Q
D D

j j j j

j j

j jDhC Q L C Q L e e

p L p L

θ θβ β
β β

θ

θ

− −

−

−⎛ ⎞− = −⎜ ⎟
⎝ ⎠

−
+

. (9) 

Since [ ]1 1( ) ( ) (1 ) ( ) ( )j j j jp L p L h k k L Lσ β ψ− −− = + − −  and 1j jL L− > , we 

get that 1( ) ( )i ip L p L −−  is an increasing function of β . 

From equation (7), 
( ) 2

1 ( ) ( )jQ
D

j je Q f L
D Dh

θ β θ θβ− − =  and 

( ) ( ) ( )j j jf L p L R L= + , with [ ]0( ) (1 ) ( )j jp L k L Aσ π β π= + − Ψ +  and 

1
( ) ( )

j

j k k k
k

R L c b a
=

= −∑ ; then we take the derivative of Equation (7) with respect to β  as 

follows: 

( ) 2
0( ) ( )

1jQ jD
j

dQ k
e L

D d Dh

θ β β σθ π ψθ
β

⎛ ⎞ −
− =⎜ ⎟⎜ ⎟

⎝ ⎠
. 

Hence, we get 

( )

0( ) ( )

1j

j
j

Q
D

dQ k
L

d
h e

θ β

β σθπ ψ
β

−
=

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

 (10) 

We assume ( )
1

x

x

ex
e

Η =
−

, which shows that 2( ) 0
( 1)

x

x

ex
e
−′Η = <
−

. 

From 1( ) ( )j jQ Qβ β−≥ , we have 

( )

( )

( )

( )

1

1
1 1

j j

j j

Q Q
D D

Q Q
D D

e e

e e

θ θβ β

θ θβ β

−

−

≥

− −

 (11) 

Combining Equation (11) with 1j jL L− >  shows 
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( )

( )

( )

( )

1

1
1

1 1

j j

j j

Q Q
D D

j j
Q Q

D D

e eL L
e e

θ θβ β

θ θβ β

−

−
− >

− −
 (12) 

Now, we compute the derivative of 
( ) ( )βθ
β

θ
1−

−
jj Q

D
Q

D ee  with respect to β  as 
follows: 

( ) ( ) ( ) ( )1 1 1( ) ( )j j j jQ Q Q Qj jD D D D
dQ dQd e e e e

d D d D d

θ θ θ θβ β β ββ βθ θ
β β β

− − −⎛ ⎞
− = −⎜ ⎟⎜ ⎟

⎝ ⎠
. 

Using Equations (10) and (12), we know 

( ) ( ) ( )

( )

( )

( )

( )

2
0

1

1

1

1
0

1 1

Q Q
D D

Q Q
D D

j jQ Q
D D

j j

j j

j j

kd e e
d Dh

e eL L
e e

θ θβ β

θ θβ β

θ θβ β

σθ π ψ
β

−

−

−

−

⎛ ⎞− =⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− >
⎜ ⎟− −⎝ ⎠

. 

Therefore, 
( ) ( )βθ
β

θ
1−

−
jj Q

D
Q

D ee  is an increasing function of β . 
From equation (9), 1 1( ( ), ) ( ( ), )j j j jC Q L C Q Lβ β− −−  is the sum of two increasing 

functions of β , so we finish the proof of Lemma 3. 
Proof of Lemma 4: 

Given a fixed 0β , if 0 1 0( ) ( )j jQ Qβ β−≥ , from the dual statement of Lemma 1, 

[ ]1 0 0( ) (1 ) ( )i i ic L L kσ π β π− + ≥ + − Ψ . 

Therefore, [ ]1 0( ) (1 ) ( )i i ic L L kσ π β π− + ≥ + − Ψ  , for [ ]0 ,1β β∈ . Similarly, 

from the dual statement of Lemma 1, 1( ) ( )j jQ Qβ β−≥ , for [ ]0 ,1β β∈ . 
Proof of Theorem 1: 

Using Lemma 4 induces that 1( ) ( )j jQ Qβ β−≥ , for [ ]0 ,1β β∈ . Hence, from 
Lemma 3, we complete the proof of Theorem 1. 


