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1. INTRODUCTION 

Theories in economics indicate that abundance of resources correlates inversely 
with their market values. Any study pertaining to resource allocation is therefore useful 
only when the resources are limited. Solutions of Linear Programming (LP) problems 
give answer to the allocation of resources through the solution of the primal problem [2]. 
The solution to the dual problem does the market valuation of the resources. In crisp 
environment, solution of primal (dual) implicitly provides the solution of dual (primal). 
In fuzzy environment, instead of optimization, the goal is to find optimal satisfaction of 
aspiration levels for both primal and dual problems. The concept of Fuzzy Linear 
Programming (FLP) was introduced by Zimmermann [5]. In FLP, both optimization of 
primal-dual pair and reaching aspiration value in each case as close as possible are 
important. The primal-dual theory can be considered as a theory of industry-market 
problems and has numerous economic, business and industrial interpretations and 
applications [1]. Quite a lot of literature is available on fuzzy linear programming, but 
there are comparatively very few works on fuzzy dual problems. The first work on 
duality of fuzzy linear programming was done by Rodder and Zimmermann [3], who 
worked on a problem of economics and derived their result on the basis of economic 
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interpretation of dual variables. Bector and Chandra [1] introduced a fuzzy pair of 
primal-dual problems modifying the construction of the fuzzy dual model of Rodder- 
Zimmermann formulation. 

Yang et al. [4] in their study of FLP found that their approach to deal with non-
linear membership functions was straightforward and computationally efficient. Present 
paper improves the Bector and Chandra model of fuzzy primal-dual problem using non-
linear membership functions. The numerical example of [1] has been done on the present 
model, which resulted in an improved value of η  in the pair ( , )λ η  obtained in [1]. 

The rest of the paper is organized as follows: In section 2, main features of 
Bector-Chandra model are given for ready reference. Piecewise linear membership 
functions are introduced in section 3 and the corresponding crisp equivalent of the fuzzy 
primal-dual pair are defined. Section 4 establishes some weak duality results for the 
piecewise linear membership functions corresponding to their linear counterparts. In 
section 5, numerical example of [1] has been worked out according to the present model, 
and the results are compared with those of [1]. The conclusion is given in section 6.  

2. BECTOR-CHANDRA MODEL FOR FUZZY DUAL 

Let nR  denote the n-dimensional Euclidean space and nR+  its non negative part. 

For , , ,n mx c R w b R∈ ∈  and the matrix m nA R R∈ × , the Linear Primal (LP) and 
Linear Dual (LD) problems are expressed in the vector forms:  
(LP)                                          Maximize Tc x  
                                           subject to: , 0Ax b x≤ ≥  
and 
(LD)                                           Maximize Tb w   
                                   subject to: , 0TA w c w≥ ≥  

Bector and Chandra [1] gave the fuzzy versions of LP  and LD , respectively. In 
the sense of Zimmermann [5], it is described as below: 

Find nx R∈  such that 

0

, 0

Tc x Z
Ax b x

>

< ≥
%

%

 (1) 

and 
Find mw R∈  such that 

0

, 0

T

T

b w W

A w c w

<

> ≥
%

%

 (2) 

Here “ >
%

” and “ <
%

” are fuzzy versions for the usual symbols “≥ ” and “≤ ” 
respectively, having the linguistic interpretation as explained in [5]. Let 0Z , 0W  

respectively denote the aspiration levels of the two objectives xcT  and wbT . Further 
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assuming 0p  and ( 1,2,3,..., )ip i m=  to be subjectively chosen  positive constants 
representing the admissible tolerance values associated with the objective function and 
m  linear constraints of (1) respectively, the crisp equivalent of the fuzzy problem (1) in 
Bector and Chandra model [1, p319] is given as below: 

 

                               Maximize λ   

                   
( ) 0 0subject to:    1 ,
( 1) , 1, 2....

1 , 0

T

i i i

p c x Z
p b A x i m

and x

λ

λ
λ λ

− ≤ −

− ≤ − =
≤ ≥

                               (3) 

where iA  and ib  are the thi  row of matrix A and thi  component of vector 
( 1,2,..., )b i m= , respectively. Similarly for 0q  and ( 1, 2,..., )jq j n=  being the 

corresponding values for (2), the crisp equivalent for the problem (2) is given as below:   
 

                               Minimize( )η−   

0 0subject to: ( 1) ,

( 1) , 1, 2........

1and , 0

T

T
j j j

q W b w

q A w c j n

w

η

η

η η

− ≤ −

− ≤ − =

≤ ≥

, (4) 

Pair (3)-(4) is termed as fuzzy pair of primal–dual linear programming in [1]. 
 

3. FUZZY MODEL WITH PIECEWISE LINEAR MEMBERSHIP 
FUNCTIONS 

     Although linear membership functions permit an easy conversion of the FLP 
problem into a crisp linear programming problem, yet in many cases membership 
functions are best represented by non-linear functions. Yang et.al. [4] have provided a 
representation of concave (and non-concave) non-linear membership functions 
approximated by two and three linear segments. Our approach in this work is to 
approximate the linear membership functions of [1] by two linear segments. We use the 
following notations for problems (1) and (2): 

 

- 0 0( ) / ( )P Dx wμ μ : Membership functions for Primal/Dual corresponding to                  
                                  objective function;                                                                                                                        
- 0 0( ) / ( )P D

k kx wμ μ : Membership functions for ( 1, 2)thk k =  linear segment of                          
                                   Primal/Dual corresponding to objective function; 
- ( ) / ( )P D

i jx wμ μ : Membership functions for Primal/Dual corresponding to m/n  
                                  constraints 1, 2,..., and 1,2,...i m j n= =                                         
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  -3 
1 

0 Z 02- p02 Z 01- p01 

 

 Z 01 Z 02 xcT
 

μ 0 

We start with the following linear membership functions of Bector-Chandra 
model. 

0

0
0 0 0 0

0

0 0

1 , ,

( ) 1 , ,

0 , ,

T

T
P T

T

c x Z

Z c x
x Z p c x Z

p

Z p c x

μ

⎧ ≥
⎪

−⎪= − − ≤ <⎨
⎪
⎪ − ≥⎩

 (5) 

1 , ,

( ) 1 , ,

0 , .

i i

P i i
i i i i i

i

i i i

A x b
A x b

x b A x b p
p

A x b p

μ

⎧ ≤
⎪

−⎪= − < ≤ +⎨
⎪
⎪ > +⎩

 (6) 

Let us now approximate 0 ( )P xμ by two linear segments as shown in Figure 1, 
and define the membership functions corresponding to each segment: 

01

01
01 01 01 01

01

1 , ,

( ) 1 , ,

0 , therwise,

T

T
P T

c x Z

Z c x
x Z p c x Z

p
o

μ

⎧ ≥
⎪

−⎪= − − ≤ <⎨
⎪
⎪
⎩

 (7a) 

and 

01

02
02 02 02 02

02

1 , ,

( ) 1 , ,

0 ,otherwise,

T

T
P T

c x Z

Z c x
x Z p c x Z

p
μ

⎧ ≥
⎪

−⎪= − − ≤ <⎨
⎪
⎪
⎩

 (7b) 

where 01 02 0p p p+ >  and 01 02 0Z Z Z< =  
 
 
 
 
 
 
 
 
 
 
                                                                      

 
                              Figure 1: Linear membership function in two line segments 
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Using 01 02 1min{ , , ,.... }P P P P
mλ μ μ μ μ= [6, p245], the crisp equivalent of the fuzzy 

problem (1) becomes: 
 

Maximizeλ   

01

01

02

02

subject to: 1

1

1 , 1,2,3,...,

1and , 0

T

T

i i

i

Z c x
p

Z c x
p

A x b
i m

p
x

λ

λ

λ

λ λ

−
≤ −

−
≤ −

−
≤ − =

≤ ≥

 (8) 

Similarly, in the dual problem (2), 0 ( )D wμ is replaced by following membership 
functions.  

01

01
01 01 01 01

01

1 , ,

( ) 1 , ,

0 ,otherwise,

T

T
D T

b w W

W b w
w W b w W q

q
μ

⎧ ≤
⎪

−⎪= + < ≤ +⎨
⎪
⎪
⎩

 (9a) 

02

02
02 02 02 02

02

1 , ,

( ) 1 , ,

0 ,otherwise,

T

T
D T

b w W

W b w
w W b w W q

q
μ

⎧ ≤
⎪

−⎪= + < ≤ +⎨
⎪
⎪
⎩

 (9b) 

where 01 02 0q q q+ >  and 01 02 0W W W> = . 

Further, letting 01 02 1min{ , , ,.... }D D D D
nη μ μ μ μ= , the crisp equivalent for the dual problem is  

Minimize ( )η−   

subject to: 01

01

1 ,
TW b w

q
η

−
≤ +  

02

02

1 ,
TW b w

q
η

−
≤ +   (10) 

1 , 1,2,3...... ,
T
j j

j

A w c
j n

q
η

−
≤ + =  

1, , 0and wη η≤ ≥   

The pair (8)-(10) is termed as fuzzy pair of primal–dual linear programming problems in 
our model. 
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4. SOME WEAK DUALITY RESULTS 

Standard weak duality theorem: Let x and w be any feasible solutions to problems (LP) 
and (LD) respectively, then 

T Tc x b w≤  (11) 

Modified weak duality theorem: Let ( , )x λ  be feasible for (3) and ( , )w η  be feasible 
for (4), then 

( 1) ( 1) ( )T T T Tp w q x b w c xλ η− + − ≤ −  (12) 

where 1 2( , ,..., )T
mp p p p= and 1 2( , ,..., )T

nq q q q= . 
The modified weak duality theorem has been proved by Bector and Chandra [1, 

p 320] for the fuzzy environment, where they considered membership functions to be 
linear. Obviously (12) reduces to (11) for 1λ η= = . Further, since (12) does not involve 
tolerance values 0 0( )p and q  associated with the objective functions, it can be concluded 
that any change in the membership functions for the objective functions as suggested in 
(7a), (7b), (9a) and (9b), will not effect the result. This justifies the following remark.  
 

Remark 1: The modified weak duality theorem is valid even if ( , )x λ  and ( , )w η  are 
feasible solutions for (8) and (10), respectively. 
The inequality [1, (28)], relating the relative difference of aspiration level 0Z  of Tc x and 

0W of Tb w  in terms 0 0p and q respectively, can be modified in the form of the following 
result.   
 

Theorem 1. Let ( , )x λ be the feasible solution for non-linear primal (8) and ( , )w η  be 
feasible solution for non-linear dual (10), then               

01 02 01 02 01 02 01 02( 1)( ) ( 1)( ) 2( ) {( ) ( )}T Tp p q q c x b w W W Z Zλ η− + + − + ≤ − + + − +  (13) 

Proof: From the first two inequalities of (8) and (10) we have  

01 02 01 02

01 02 01 02

( 1)( ) 2 ( ),

( 1)( ) ( ) 2

T

T

p p c x Z Z

q q W W b w

λ

η

− + ≤ − +

− + ≤ + −
 (14)  

Adding the two inequalities in (14), the proof is complete. 
 

We now extend the result [1, Corollary 1] to the non-linear case.  
 

Theorem 2. Let ( , )x λ and ( , )w η  be feasible solutions of (8) and (10), respectively that 
satisfy: 
(i)    ( 1) ( 1) ( )T T T Tp w q x b w c xλ η− + − = − , 

(ii)  01 02 01 02 01 02 01 02( 1)( ) ( 1)( ) 2( ) {( ) ( )}T Tp p q q c x b w W W Z Zλ η− + + − + = − + + − +  
(iii) 01 02 01 02Z Z W W+ ≤ + ,  

then ( , )x λ is optimal to (8) and ( , )w η  is optimal to (10). 
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Proof: Let ( , )x λ and ( , )w η be some feasible solutions of (8) and (10), respectively. Then, 
by Remark 1, we have  

( 1) ( 1) ( )T T T Tp w q x b w c xλ η− + − ≤ −  (15) 

From (15) and the hypothesis (i) of Theorem 2, we have 

( 1) ( 1) ( ) ( 1) ( 1) ( )T T T T T T T Tp w q x b w c x p w q x b w c xλ η λ η− + − − − ≤ − + − − −  (16) 

From hypothesis (i) and (16), it can be implied that ( , , , )x wλ η is optimal to the following 
problem whose maximum is zero. 
Maximize{( 1) ( 1) ( )}T T T Tp w q x b w c xλ η− + − − −  

subject to:  01 01( 1) Tp c x Zλ − ≤ − , 

02 02( 1) Tp c x Zλ − ≤ − , 

01 01( 1) Tq W b wη − ≤ − , 

02 02( 1) Tq W b wη − ≤ − , 

( 1) i i ip c A xλ − ≤ − , 

( 1) T
j j jq A w cη − ≤ − , 

1, 1λ η≤ ≤ , 

 , , , 0x w λ η ≥ . 

Multiplying (i) by 2 and then adding to (ii), we get  

01 02 01 02 01 02

01 02

2( 1) 2( 1) ( 1)( ) ( 1)( ) {( )
( )} 0

T Tp w q x p p q q Z Z
W W

λ η λ η− + − + − + + − + + +

− + =
Since each term of the above expression is non-positive due to hypothesis (iii) and the 
fact that , 1λ η ≤ , it must therefore be separately equal to zero. Hence, 

01 02

01 02

( 1)( ) 0
( 1)( ) 0

p p
q q

λ
η
− + =

− + =
 (17) 

Further, since 01 02,p p , 01 02, 0q q > , we also have  

01 02

01 02

( 1) 0, ( 1) 0
( 1) 0, ( 1) 0

p p
q q

λ λ
η η
− ≤ − ≤

− ≤ − ≤
 (18)  

From (17) and (18), it is obvious that 

01 01 02 02

01 01 02 02

( 1) ( 1) , ( 1) ( 1)
( 1) ( 1) , ( 1) ( 1)

p p p p
q q q q

λ λ λ λ
η η η η
− ≤ − − ≤ −

− ≤ − − ≤ −
 

Above inequalities imply that λ λ≤  and η η− ≥ − . This proves the theorem. 
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     0   -1   -2   ½=Z01   1=Z02 

  1 

      01p  

      

Remark 2: Following the arguments of  [1, Remark 3], there may not be any direct or 
converse duality theorems between (8) and (10), and if (8) [or (10)] has an optimal 
solution, then (10)[or(8)] certainly has a feasible solution. Further, the optimal values of 
two objective functions of (8) and (10) may not be equal in general.  

 

5. NUMERICAL EXAMPLE 

Consider the following primal-dual problem [1, p 323]. 

(P) Maximize 2x , subject to  1, 0,x x< ≥
%

 

and   

(D) Minimize ,w  subject to 2w >
%

, 0w ≥ .                             

Consider Fig. 2. Taking 01 1/ 2Z =  and 02 1Z = , we get 01 3 / 2p =  and 02 4p = , 1( 2)p =  
remains the same as in [1]. Using (8), the crisp equivalent of the fuzzy problem (P) 
becomes: 

Maximizeλ  

1 2 1 22subject to:   1 , 1 ,
3 4
2

2 2 3, 1 and , 0

x x

x x

λ λ

λ λ λ

− −
≤ − ≤ −

+ ≤ ≤ ≥

 (19) 

 
 
 
 
 
 
 
   

                     

Figure 2: Piecewise linear membership functions for problem (P) 

Referring to Figure 3 and using 01W =1.70, 02W =1, 01q =0.30, 02q =1.75 and 1q = 3 in 
(10), the crisp equivalent of fuzzy problem (D) can be obtained as following. 
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Minimize ( )η−   

1.70subject to: 1 ,
.30

11 ,
1.75

3 1,
1 and , 0.

w

w

w
w

η

η

η
η η

−
≤ +

−
≤ +

− ≤
≤ ≥

, (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                          

Figure 3: Piecewise linear membership functions for problem (D) 

The optimum solutions ( , )λ η  of fuzzy primal-dual pair (P-D) through (19) and 

(20) are 1λ =  and 0.79η =  leading to 0.50x = and 1.37w= . The optimum pair of 

results ( , )λ η  for the same problem from Bector- Chandra model were 1λ =  and 
0.75η =  leading to 0.50x = and 1.25w= . It can be observed that the maximum value of 

λ  has been fully achieved as 1 in both models, but the minimum value of η−  has been 
improved in our model from -0.75 to -0.79. This implies that in (D), the aspiration for 

2w >
%

 could be achieved up to w = 1.37 by our approach, contrary to w = 1.25 in [1]. 

6. CONCLUSION 

A fuzzy primal-dual model is worked out in this paper using non-linear 
membership functions and thereby improving a similar model given by Bector and 
Chandra [1]. Some weak duality results in fuzzy environment corresponding to piecewise 
linear membership functions are also established. Working numerically on the example 
of [1], it is demonstrated that the fuzzy primal-dual model using piecewise linear 
membership functions is capable of giving better optimization. The problem is still open 
to possible extension to a class of more general non-linear membership functions.  
 

    -1   3 
    
1=W02 

    
1.70=W01 

       
0 1 2p −
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