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Abstract: This paper is aimed at studying the Time Minimizing Transportation Problem 
with Fractional Bottleneck Objective Function (TMTP-FBOF). TMTP-FBOF is related to 
a Lexicographic Fractional Time Minimizing Transportation Problem (LFTMTP), which 
will be solved by a lexicographic primal code. An algorithm is also developed to 
determine an initial efficient basic solution to this TMTP-FBOF. The developed TMTP-
FBOF Algorithm is supported by a real life example of Military Transportation Problem 
of Indian Army.  
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1. INTRODUCTION 

Transportation Problem with a bottleneck objective function is generally known 
as time minimizing transportation problem or bottleneck transportation problem, where a 
feasible transportation schedule is to be found, which minimizes the maximum of 
transportation time needed between a supply point and a demand point such that the 
distribution between the two points is positive. Seshan and Tikekar [4] presented a time 
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minimizing transportation problem to determine the set 
hkS  of all non basic cells which 

when introduced into the basis either eliminate a given basic cell ),( kh  from the basis or 
reduce their amount. Achary and Seshan [1] discuss a time minimizing transportation 
problem based on a more general and realistic assumption that the time )( ijij xt  required 

for transporting ijx  units from the thi  source to the thj  destination depends on the actual 
amount transported. Sonia and Puri [6] considered a two level hierarchical balanced time 
minimizing transportation problem. To obtain the global optimal feasible solution of the 
non-convex optimization problem, related balanced time minimizing transportation 
problems were defined. 

Transportation problems with fractional objective function are widely used as 
performance measures in many real life situations e.g., in the analysis of financial aspects 
of transportation enterprises and undertaking, and in transportation management 
situations, where an individual, or a group of a community is faced with the problem of 
maintaining good ratios between some crucial parameters concerned with the 
transportation of commodities from certain sources to various destinations. In 
transportation problems, examples of fractional objectives include optimization of total 
actual transportation cost/total standard transportation cost, total return/total investment, 
risk assets/capital, total tax/total public expenditure on commodity, and  etc.  

Gupta et al. [3] studied a paradox in Linear Fractional Transportation Problems 
with mixed constraints, and established a sufficient condition for the existence of a 
paradox. A Paradoxical range of flow was also obtained for any flow in which the 
corresponding objective function value was less than that of the original Linear 
Fractional Transportation Problem with mixed constraints. Corban [2] extended the 
concept of multi-dimensional transportation problem with fractional linear objective 
function and derived the optimality conditions, for global optimum in terms of simplex 
multipliers. Sharma and Swarup [5] presented a transportation technique for time 
minimization in fractional functional programming problem with an objective function. 

This paper deals with a Time Minimizing Transportation Problem with 
Fractional Bottleneck Objective Function (TMTP-FBOF). TMTP-FBOF is related to a 
Lexicographic Fractional Time Minimizing Transportation Problem (LFTMTP) which 
will be solved by a primal algorithm. The partial flows which constitute a feasible 
transportation schedule can be partitioned according to the transportation time involved. 
The main idea of the transformation is the introduction of a vector of partial flows in 
which the first component represents the partial flow which requires the highest 
transportation time, and the last component represents the partial flow which requires the 
lowest transportation time. By means of primal algorithm, the vector of partial flows is 
minimized in a lexicographic sense on the feasible set, i.e. the optimal flow vector has the 
property that no other feasible transportation schedule exists such that the flow vector is 
lexicographically smaller than the optimal one. The optimal value of the flow vector 
immediately indicates the minimal bottleneck transportation time and the minimal flow 
which requires the optimal bottleneck transportation time. A primal algorithm and its 
underlying methodology are also presented, used to solve such fractional decision 
priority problems.  
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2. MATHEMATICAL FORMULATION 

Given an actual transportation time matrix aT  and a standard transportation 
time matrix sT , where ][ a

ij
a tT =  and ][ s

ij
s tT = ,  for transporting the goods from thi  

supply point ),,2,1( Mi KK=   to thj  demand point ),,2,1( Nj KK= , the problem is to 
find a feasible distribution (of the supplies) which minimizes the maximum fractional 
bottleneck transportation time between a supply point and a demand point such that the 
distribution between the two points is positive. The mathematical formulation of the 
Time Minimizing Transportation Problem with Fractional Bottleneck Objective Function 
(TMTP-FBOF) is: 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>= 0maxmin
, ijs

ij

a
ij

ji
x

t
t

t  (1) 

subject to 

i

N

j
ij ax =∑

=1

   ),,2,1( Mi KK=  (2) 

∑
=

=
M

i
jij bx

1

  ),,2,1( Nj KK=  (3) 

0≥ijx ),,2,1;,2,1( NjMi KKKK ==  (4) 

where 
=ia amount of the commodity available at the thi  supply point 

=jb  requirement of the commodity at the thj  demand point 

=ijx amount of the commodity transported from the thi  supply point to the thj  demand 
point 

=a
ijt actual transportation time from the thi supply point to the thj  demand point 

=s
ijt standard transportation time from the thi supply point to the thj demand point 

s
ij

a
ij

t
t = proportional contribution to the value of the fractional time objective function for 

shipping one unit of commodity from the thi  supply point to the thj demand point 
=t   fractional bottleneck transportation time.  

 
Assumption: ia  and jb  are given non-negative numbers not simultaneously zero and 
total demand requirement equal to the total supply. 
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3. LEXICOGRAPHIC FRACTIONAL TIME MINIMIZING 
TRANSPORTATION PROBLEM 

A vector-valued fractional objective function can be related to the nonlinear 
bottleneck objective function (1). Now this vector-valued fractional objective function is 
to be minimized in a lexicographic order. Setting {1, 2, , }M M′ = …… , {1, 2, , }N N′ = …… , 

{ }( , ) ,J i j i M j N′ ′ ′= ∈ ∈ , the above TMTP-FBOF may be related to the following 

Lexicographic Fractional Time Minimizing Transportation Problem (LFTMTP) and 
hIR∈ijα , hIR∈ijβ : 

lexmin

( )

( , )

( , ) 0, ,

ij i
j Nij ij

i j J
ij j

i Mij ij
i j J

ij

x a for all i M
x

x b for all j N
x

x for all i j J

α

β

′∈

′∈

′∈
′∈

⎡ ⎤′= ∈
⎢ ⎥
⎢ ⎥

′ℑ = = ∈⎢ ⎥
⎢ ⎥
⎢ ⎥′≥ ∈⎣ ⎦

∑
∑

∑∑
 (5) 

Remark 1: Let IR denote the set of the real numbers, and 0IR the set of the non-negative 
real numbers. With regard to lexicographic vector inequalities, the following convention 
will be applied: For hIR, ∈ba , the strict lexicographic inequality ba

~
>  holds if and only 

if 
cc ba ~~ >  holds for  { }min 1, 2, , , c cc c c h a b= = …… ≠% , and the weak lexicographic 

inequality ba
~
≥  holds if and only if ba

~
>  or ba= . 

 
4. SOLUTION METHODOLOGY 

In this section, the necessary propositions are presented on the basis of which 
TMTP-FBOF Algorithm is developed for determining an initial efficient basic solution 
toTime Minimizing Transportation Problem with Fractional Bottleneck Objective 
Function. 

Proposition 1 holds for formulation of Lexicographic Fractional Time 
Minimizing Transportation Problem (LFTMTP). 

 
Proposition 1. If a

cji ξ∈),( , gc ,,2,1 KK= , then vectors   

[ ]ij ceα =   (6) 

where ][ ce is an ( )1×g  unit vector. Moreover, if s
dji ξ∈),( , hggd ,,2,1 KK++= , 

then vectors     

[ ]ij deβ =  (7) 

where ][ de is an )1( ×h  unit vector. 
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Proof: Let the fractional bottleneck transportation time matrix be 
a

s

TT
T

= , where actual 

transportation time matrix [ ]a a
ijT t= and standard transportation time matrix [ ]s s

ijT t= . 
Partition the set a M Nξ = ×  into subsets a

cξ , ( 1, 2, , )c g= ……  for aT . Each of the subsets 
a
cξ  consists of all aji ξ∈),(  for which actual transportation time )( a

ijt  has the same 

numerical value. The subset a
1ξ  contains all aji ξ∈),(  with a

ijt  being the highest value, 

subset a
2ξ  contains all aji ξ∈),(  with a

ijt   being the next lower highest value, and so on. 

Finally subset a
gξ  contains all aji ξ∈),(  with a

ijt  being the lowest value. By assigning an 

( )1×g  unit vector ][ ce to each value of ijx  with a
cji ξ∈),( , we obtain the vectors ijα . 

Now partition the set NMs ×=ξ  into subsets s
dξ , ( 1, 2, , )d g g h= + + ……  for sT .  

Each of the subsets s
dξ  consists of all ( , ) si j ξ∈  for which standard transportation time 

)( s
ijt  has the same numerical value. The subset s

1ξ  contains all ( , ) si j ξ∈  with s
ijt  being 

the highest value, subset s
2ξ  contains all ( , ) si j ξ∈  with s

ijt  being the next lower highest 

value, and so on. Finally subset s
hξ  contains all ( , ) si j ξ∈  with s

ijt  being the lowest value. 

By assigning an )1( ×h  unit vector ][ de  to each value of ijx  with s
dji ξ∈),( , we obtain 

the vectors ijβ .    
The following propositions are used to reduce the dimension of the vectors 

ijα  
and 

ijβ  of Lexicographic Fractional Time Minimizing Transportation Problem. 
 

Proposition 2. Let iψ  and jγ  be the permutations of column j , 1,2, ,j N= ……  and 

row i , 1,2, ,i M= ……  respectively of every actual transportation time a
ijt , then 

, [ ]i

a
i i

r t νψ ο
=

%
 and 

[ ],j

a
j j

s t νγ ο
=

%
 are the lower bounds for every row i  and column 

j respectively. 
 

Proof: For every row i of every actual transportation time a
ijt , let iψ  be any permutation 

of {1, 2, , }N……  such that 

, [1] , [2] , [ ]i i i

a a a
i i i Nt t tψ ψ ψ≤ ≤……≤ . 

Let [ ]
1

ii j
j

D b
ο

ο ψ
=

= ∑
%

%  and { }min i i ii
D D D aν ο οο ο

= ≥% %% %
. 

Then 
, [ ]i

a
i i

r t νψ ο
=

%
 is a lower bound for a

ijt , since the thi  supply constraints cannot be 

satisfied using only cells with time less than ir . Similarly, for each column j  of every 
a
ijt  let jγ be a permutation of {1, 2, , }M…… such that  
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[1], [2], [ ],j j j

a a a
j j M jt t tγ γ γ≤ ≤……≤ . 

Let [ ]
1

jj i
i

D a
ο

ο γ
=

= ∑
%

% and { }min j j jj
D D D bν ο οο ο

= ≥% %% %
. 

Then 
[ ],j

a
j j

s t νγ ο
=

%
 is a lower bound for a

ijt .  
 

Proposition 3. For every standard transportation time s
ijt  , let iψ  be the permutation of 

{1, 2, , }N…… and jγ  be the permutation of {1,2, , }M…… , then s
ii

i
tr

]~[, νοψ
=  is a lower 

bound for every row i and 
[ ],j

s
j j

s t νγ ο
=

%
 is a lower bound for every column j .    

Proof. For every row i , },,2,1{ Mi KK=  of every standard transportation time s
ijt , let 

iψ  be any permutation of column j , },,2,1{ Nj KK=  such that 

, [1] , [2] , [ ]i i i

s s s
i i i Nt t tψ ψ ψ≤ ≤……≤ . 

Let  [ ]
1

ii j
j

D b
ο

ο ψ
=

= ∑
%

%  and { }min i i ii
D D D aν ο οο ο

= ≥% %% %
. 

Then s
ii

i
tr

]~[, νοψ
=  is a lower bound for s

ijt , since the thi  supply constraints cannot be 

satisfied using only cells with time less than ir . Similarly, for each column j , 

},,2,1{ Nj KK=  of every s
ijt  let jγ  be a permutation of row i , },,2,1{ Mi KK= such that  

[1], [2], [ ],j j j

s s s
j j M jt t tγ γ γ≤ ≤……≤ . 

Let [ ]
1

jj i
i

D a
ο

ο γ
=

= ∑
%

%  and { }jjjj
bDDD ≥= οοοον ~~~~ min . 

Then s
jj

j
ts ],~[ νογ

=  is a lower bound for s
ijt .  

 
5. TMTP-FBOF ALGORITHM 

The TMTP-FBOF Algorithm for solving the Time Minimizing Transportation 
Problem with Fractional Bottleneck Objective Function generates a finite sequence of 
basic feasible solutions to Lexicographic Fractional Time Minimizing Transportation 
Problem (LFTMTP). The optimal basic solution to LFTMTP provides a feasible 
transportation schedule that minimizes the fractional bottleneck transportation time as 
well as its total distribution. The steps of the TMTP-FBOF Algorithm are: 
Step 1: Determine the row threshold ir   and column threshold js  for actual 

transportation time matrix aT  , where ][ a
ij

a tT = , using Proposition 2 and 
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calculate the best lower bound 1 2 1 2max ( , , , ; , , , )a
l M Nt r r r s s s= …… …… for the 

actual transportation time a
ijt . 

Step 2: Calculate row threshold ir  and column threshold js  for standard transportation 

time matrix sT , where ][ s
ij

s tT = , using Proposition 3 and determine the best 

lower bound 1 2 1 2max ( , , , ; , , , )s
l M Nt r r r s s s= …… …… for standard transportation 

time s
ijt . 

Step 3: Determine an initial basic feasible solution to LFTMTP by North-West Corner 
Rule. 

Step 4: Determine an upper bound a
Ut  by selecting the highest actual transportation time 

from the resulting actual transportation time a
ijt   of the initial basic feasible 

solution. 
Step 5: Determine an upper bound s

Ut  by selecting the highest standard transportation 

time from the resulting standard transportation time s
ijt  of the initial basic 

feasible solution.      
Step 6:  Partition the set NMa ×=ξ  into subsets a

cξ , ( 1, 2, , )c g= ……  for aT . Each of the 

subsets a
cξ  consists of all aji ξ∈),(  for which actual transportation time )( a

ijt  has 

the same numerical value. The subset a
1ξ  contains all aji ξ∈),(  with a

ijt  being the 

highest value, subset a
2ξ  contains all aji ξ∈),(  with a

ijt   being the next lower 

highest value, and so on. Finally subset a
gξ  contains all aji ξ∈),(  with a

ijt  being 
the lowest value. 

Step 7: Partition the set NMs ×=ξ  into subsets s
dξ , ( 1, 2, , )d g g h= + + ……  for sT . Each 

of the subsets s
dξ  consists of all sji ξ∈),(  for which standard transportation 

time )( s
ijt  has the same numerical value. The subset s

1ξ  contains all sji ξ∈),(  

with s
ijt  being the highest value, subset s

2ξ  contains all sji ξ∈),(  with s
ijt  being 

the next lower highest value, and so on. Finally subset s
hξ  contains all 

sji ξ∈),(  with s
ijt  being the lowest value. 

Step 8: Now the best lower bound a
lt is greater than the actual transportation time a

ijt  for 

at least one pair of aξ , and the upper bound a
Ut  is less than the actual 

transportation time a
ijt  for at least one pair of aξ  which give the following 

subsets: 

( ){ }1 ,a a a a
ij Ui j t tξ ξ= ∈ > , ( ){ }2 ,a a a a

ij Ui j t tξ ξ= ∈ = , 

( ){ }3 ,a a a a
ij li j t tξ ξ= ∈ = , ( ){ }4 ,a a a a

ij li j t tξ ξ= ∈ <  
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Step 9: Let the best lower bound s
lt  is greater than the standard transportation time 

s
ijt for at least one pair of sξ  and the upper bound s

Ut  is less than the standard 

transportation time s
ijt  for at least one pair of sξ  which give the following 

subsets: 

( ){ }5 ,s s s s
ij Ui j t tξ ξ= ∈ > , ( ){ }6 ,s s s s

ij Ui j t tξ ξ= ∈ = , 

( ){ }7 ,s s s s
ij li j t tξ ξ= ∈ = , ( ){ }8 ,s s s s

ij li j t tξ ξ= ∈ <  

Step 10: Determine the vectors ijα  and ijβ , a
cji ξ∈),(  and s

dξ  respectively ;,,1( gc K=  

),,1 hgd K+= such that  

[ ]ij ceα = , [ ]ij deβ =  

by using the Proposition 1 to obtain the fractional bottleneck transportation time 

matrix ij

ij

T
α
β

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

.   

Step 11: Designate the set of pairs of indices ),( ji  of the basic variable by I and using 
initial basic feasible solution, determine recursively the vector-valued row 
multipliers 21, ii uu  and the vector-valued column multipliers 21 , jj vv defined such 
that:  

0)]([ 11 =+− jiij vuα  (8) 

0)]([ 22 =+− jiij vuβ   (9) 

for those ji,  for which ijx  is in the basis. 

Step 12: Let ( )1 2 1 2, , ; , ,i i j jU u u i M v v j N′ ′= ∈ ∈% % % % %  be the solution of (8) and (9). Compute the 

relative criterion vectors ijΔ  by using the following equation set: 

][ 12 ijijij VV βα ′−′=Δ  (10) 

where  

)]~~([ 11
jiijij vu +−=′ αα  (11) 

)]~~([ 22
jiijij vu +−=′ ββ  (12) 

∑ ∑
∈ ∈

+=
' '

11
1

~~
Mi Nj

jjii bvauV  (13) 

∑ ∑
∈ ∈

+=
' '

22
2

~~
Mi Nj

jjii bvauV  (14) 

for all IJji \),( ′∈  
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Step 13: If all ijΔ  are lexicographically greater than or equal to the zero vector for all 

( , ) \i j J I′∈ , the current basic feasible solution is optimal to the LFTMTP and 
go to Step 15. Otherwise go to Step 14. The lexicographic order is obtained by 
following the general convention of lexicographic method.  

 

Step 14: Select 

=Δ
** ji lexmin

⎭
⎬
⎫

⎩
⎨
⎧ <ΔΔ 0

~ijij
 (15) 

for all IJji \),( ′∈  and determine the variable 
** jix  which is to be the enter. 

Now the variable 
** jix becomes a basic variable of the new basic feasible 

solution. Change the current basic feasible solution to the new basic feasible 
solution using the standard transportation method and go to Step 11. 

 

Step 15: If )~(~
ijxX =  is optimal transportation schedule for LFTMTP denoted by 

equation (5), then  ( )

( )
∑
∑

′∈

′∈=ℑ

Jji
ijij

Jji
ijij

x

x

,

,
~

~
~

β

α
 and  dc ~~  is the index of the first positive 

component of the optimal flow vector ℑ
~

 or ℑ
~ )~(X . The vector of partial flows 

is minimized in a lexicographic sense on the feasible set, i.e. the optimal flow 
vector has the property that no other feasible transportation schedule exists such 
that the flow vector is lexicographically smaller than the optimal one. The 
optimal flow vector ℑ

~ )~(X  immediately specified the minimal fractional 
bottleneck transportation time and the minimal flow which requires the optimal 

fractional bottleneck transportation time. Then 
s

ij

a
ij

t
t

t ~
~

~ =  with s
d

a
cji ~~),( ξξ∈  is 

the minimal value of the fractional bottleneck objective function in equation (1) 
and is the optimal fractional bottleneck transportation time. The optimal 
transportation schedule )~(~

ijxX =  of TMTP-FBOF also minimizes the function 

( )
∑

′∈

=
ℑ
ℑ

Jji
ij

d

c x
,~

~
)( , (summing overall s

d
a
cji ~~),( ξξ∈ ), which represents the total 

distribution that requires the fractional bottleneck transportation time t~ .  
 
The TMTP-FBOF Algorithm starts with an initial basic feasible solution to 

LFTMTP and generates a finite sequence of basic feasible solutions until an optimal 
basic solution has been determined.  
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6. MILITARY TRANSPORTATION PROBLEM OF INDIAN ARMY 

The TMTP-FBOF Algorithm will be illustrated with the help of the following 
example of Military Transportation Problem of Indian Army: 

The different locations of J & K Border receive a fixed quantity of military units 
with arms, ammunitions, food and etc. which can be deputed from four regiments )(i  
available at Army Headquarter Pathankot. Indian Army used to depute different type of 
regiments on four crucial locations )( j - Kargil, NEFA, Baramula and Uri sector of J & 
K Border. The goal is to determine the feasible transportation schedule which minimizes 
the maximum Fractional Bottleneck Loading-unloading Transportation Time (Total 
Actual Loading-unloading Transportation Time/Total Standard Loading-unloading 
Transportation Time) in transporting the military units with arms, ammunitions and food 
etc. during emergency situations. Table 1 shows the Fractional Bottleneck Loading-
unloading Transportation Time (in hours) from regiments i  to locations j . 
Availabilities ia  are shown in the last column, while requirements 

jb  are shown in the 
last row.  

Let ijx  be the quantity of military units with arms, ammunitions and food etc. 

sent from regiments i  to locations j . Then it is required to 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>= 0maxmin
),( ijs

ij

a
ij

ji
x

t
t

t  

subject to 
 ∑

=

=
4

1j
iij ax    ( 1, 2, , 4)i = …   

∑
=

=
4

1i
jij bx  ( 1, 2, , 4)j = …     

     0≥ijx    ( 1, 2, , 4; 1,2, , 4)i j= … = …   
  

Table 1: Fractional Bottleneck Loading-unloading Transportation Time (in hours) for 
Military Transportation Problem 

  
Regiments 

i  

 
Locations j  

 
 
ia   

1 
 
2 

 
3 

 
4 

1 
⎥⎦
⎤

⎢⎣
⎡

20:3
40:4  

⎥⎦
⎤

⎢⎣
⎡

30:3
50:4

⎥⎦
⎤

⎢⎣
⎡

40:3
20:4

⎥⎦
⎤

⎢⎣
⎡

50:3
45:4 7 

2 
⎥⎦
⎤

⎢⎣
⎡

30:3
55:4  

⎥⎦
⎤

⎢⎣
⎡

35:3
35:4

⎥⎦
⎤

⎢⎣
⎡

50:3
45:4

⎥⎦
⎤

⎢⎣
⎡

00:3
00:4 1 

3 
⎥⎦
⎤

⎢⎣
⎡

30:3
00:5  

⎥⎦
⎤

⎢⎣
⎡

40:3
45:4

⎥⎦
⎤

⎢⎣
⎡

20:3
30:4

⎥⎦
⎤

⎢⎣
⎡

40:3
50:4 8 

4 
⎥⎦
⎤

⎢⎣
⎡

45:3
40:4  

⎥⎦
⎤

⎢⎣
⎡

20:3
50:4

⎥⎦
⎤

⎢⎣
⎡

10:3
20:4

⎥⎦
⎤

⎢⎣
⎡

35:3
45:4 4 

jb  5 6 3 6  
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6.1. Computational Procedure 

The lower bound for the total actual loading-unloading transportation time 
matrix aT  is obtained by calculating row thresholds (4:40, 4.00, 4:45, 4:40) and column 
thresholds (4:40, 4:45, 4:20, 4:45), which gives  a

lt  = 4:45. 

Similarly, for the total standard loading-unloading transportation time matrix sT , the 
lower bound is s

lt =   3:35. 
 
The initial basic feasible solution 1X  of Military Transportation Problem is:  

511 =x , 212 =x , 122 =x , 332 =x , 333 =x , 234 =x , 444 =x . 
with the resulting Total Actual Loading-unloading Transportation Time 4:50, which 
gives  the upper bounds a

Ut = 4:50 and resulting Total Standard Loading-unloading 
Transportation Time 3:40, which gives  the upper bounds s

Ut = 3:40. 
 
Hence g  = 4 and h  = 4, so aξ and sξ  has four subsets: 

{ }1 ( , ) 4 : 50a a a
iji j tξ ξ= ∈ > ,  { }2 ( , ) 4 : 50a a a

iji j tξ ξ= ∈ = , 

{ }3 ( , ) 4 : 45a a a
iji j tξ ξ= ∈ = ,  { }4 ( , ) 4:45a a a

iji j tξ ξ= ∈ <  

and   
{ }5 ( , ) 3 : 40s s s

iji j tξ ξ= ∈ > ,  { }6 ( , ) 3 : 40s s s
iji j tξ ξ= ∈ = , 

{ }7 ( , ) 3 : 35s s s
iji j tξ ξ= ∈ = ,  { }8 ( , ) 3 : 35s s s

iji j tξ ξ= ∈ <  

The related Lexicographic Fractional Time Minimizing Military Transportation Problem 
is:  

lexmin 

4

4 4
1

4
1 1

4 4
1

1 1

, ( 1, 2, , 4)

, ( 1, 2, , 4)

0

ij i
j

ij ij
i j

ij j
i

ij ij
i j ij

x a i
x

x b j
x

x

α

β

=

= =

=

= =

⎡ ⎤
= = …⎢ ⎥

⎢ ⎥
⎢ ⎥
ℑ = = = …⎢ ⎥
⎢ ⎥
⎢ ⎥≥⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑∑

∑
∑∑

 

and the Fractional Bottleneck Loading-unloading Transportation Time Matrix  T can be 
written as: 

34 2 4

8 8 6 5

31 4 4

8 7 5 8

31 4 2

8 6 8 6

34 2 4

5 8 8 7

ee e e
e e e e

ee e e
e e e e

T
ee e e

e e e e

ee e e
e e e e

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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Using the initial basic feasible solution 1X , the associated vector-valued row multipliers 
21 , ii uu , )4,,2,1( K=i and associated vector-valued column multipliers 21 , jj vv , )4,,2,1( K=j  

are calculated as explained in Step 11.  
 

An arbitrary value of zero is assigned to 01 =iu  and 02 =iu . 
 

Since 11x  is in the basis, so 
   1

1
1
111 vu +=α   and  2

1
2
111 vu +=β  

giving      4
1
1 ev =    and    

8
2
1 ev =  

As 12x  is in the basis, therefore 
1
2

1
112 vu +=α   and  2

2
2
112 vu +=β  

which gives      2
1
2 ev =    and  8

2
2 ev =  

Similarly 22x  is in the basis, therefore    
     

42
1
2 eeu +−=   and  

87
2
2 eeu −=  

Now 
32x  is in the basis, leading to 

32
1
3 eeu +−=   and  

86
2
3 eeu −=  

As 
33x  and 

34x  are in the basis, 
Giving   432

1
3 eeev +−=   and  

86
2
3 2eev +−=  

32
1
4 2 eev −=   and  8

2
4 ev =  

Also 44x  is in the basis, therefore 

32
1
4 22 eeu +−=   and  87

2
4 eeu −=  

 
Once the vector-valued row and column multipliers are determined as above, the 

values of relative criterion vectors ijΔ  are obtained from the equation (10). 
 

Table 2 shows the initial basic feasible solution 1X  of Military Transportation 
Problem. The amount 

ijx  is shown in the upper right hand side of the cell and ijα  is 
displayed as numerator and ijβ  as denominator in the upper left hand side of the cell. The 
last column contains the vector-valued multipliers 1

iu  and 2
iu , while the bottom row 

contains 1
jv  and 2

jv . For all IJji \),( ′∈ , the lower side of the cell contains ijΔ , if 

ijΔ are lexicographically smaller than or equal to zero vectors. jb  is displayed in the top 

row of the table, while ia  in the first column. The flow vector )( 1Xℑ = 
(0,2,0,0,0,0,8,4,2,0,1,3,0,0,0,0)T indicates the Fractional Bottleneck Loading-unloading 
Transportation Time = 1.380 and Bottleneck Flow = 2. As 1X  is not optimal, therefore 
using the standard transportation method, variable 14x  becomes an entering basic 
variable.  
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Table 2: Initial basic feasible solution 1X  of Military Transportation Problem 
bj 
ai 

 
5 

 
6 

 
3 

 
6 ][ 1

iu ][ 2
iu  

7 
8

4

e
e   

5 8

2

e
e   

2 6

4

e
e   

5

3

e
e   

 ]0[  

]0[  
   

[0,0,0,0,-13,0,0, 
-9,-5,0,-18,5,-2, 

0,24,18] 

[0,-4,0,-7,-10, 
0,-9,10,-10,0, 

0,10,-16, 0,27, 9]

1 
8

1

e
e   

7

4

e
e   

1 5

3

e
e   

8

4

e
e   

 2 4[ ]e e− +  
7 8[ ]e e−  

 
 

[0,0,5,0,5,5,0,0, 
9,10,-10,7,6,-1, 

-7,-29] 
 

 

[0,-4,0,-7,-4,0,-9, 
3,4,0,-19,17,4, 

-1,27,-11] 
 

[0,0,0,0,-5,0,0, 
5,-1,0,0,12, 
-14,9,3,-9] 

 

8 
8

1

e
e   

6

3

e
e   

3 8

4

e
e   

3 6

2

e
e   

2 
2 3[ ]e e− +  

6 8[ ]e e−  [0,0,5,0,9,5,0, 
2,5,10,4,-5,6,-5, 

-17,-19] 
   

4 

5

4

e
e   

8

2

e
e   

8

4

e
e   

7

3

e
e   

4 

2 3[ 2 2 ]e e− +

7 8[ ]e e−  
[0,-4,0,-7,10,0, 
-9,-10,14,0,0,-

3, 
20,9,-20,0] 

 

[0,0,0,0,10,0,0,
-10,14,0,0,-3, 
16,9,-27,-9] 

 

[0,0,0,0,1,0,0, 
-12,9,0,-9,2,10, 

9,-10,0] 
 

 

1[ ]jv  
2[ ]jv  

4[ ]e  

8[ ]e  
2[ ]e  

8[ ]e  2 3 4[ ]e e e− + 6 8[ 2 ]e e− + 2 3[2 ]e e−  

8[ ]e  

1( )Xℑ = 
[0,2,0,0,0,0,8, 
4,2,0,1,3,0,0, 

0,0] 
 
 

The new basic feasible solution 2X  together with the values of the vector-valued 
multipliers and the relative criterion vectors are displayed in Table 3. The flow vector 

)( 2Xℑ = (0,0,0,0,0,0,8,4,0,0,1,5,0,0,2,0)T indicates the Fractional Bottleneck Loading-
unloading Transportation Time = 1.334 and Bottleneck Flow = 8. However, 2X  does not 
satisfy the optimality conditions. Proceeding in the same manner described above, Table 
4 shows optimal solution 3~X  together with the values of the vector-valued multipliers 
and relative criterion vectors. The current basic feasible solution 3X  is the optimal for 
Lexicographic Fractional Time Minimizing Military Transportation Problem. The 
optimal value of the flow vector is )~(~ 3Xℑ = (0,0,0,0,0,0,4,0,0,0,1,5,0,0,6,4)T. Thus the 
optimal Fractional Bottleneck Loading-unloading Transportation Time is t~ = 1.334, and 
the optimal Bottleneck Flow = 4. 
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7. CONCLUSION 

The algorithm helps the Transportation System Decision Maker in determining 
all efficient transportation schedules with respect to the minimization of non-linear time 
function and the distribution that requires the fractional time. The developed algorithm 
solves fractional time transportation problems. The algorithm offers a more universal 
apparatus for a wider class of real life decision priority problems.  

 
 

Table 3: Solution 2X  of Military Transportation Problem 
bj 
ai 

5 6 3 6 ][ 1
iu ][ 2

iu  

7 
8

4

e
e   

5 
8

2

e
e   

6

4

e
e  

5

3

e
e   

2 
]0[  

]0[  
  [0,2,0,9,5,0,9, -

5,5,0, 0,6,8, 9,-30,-
18] 

[0,0,0,11,0,0,9, -
22,0,0,-18,11,0, 
9,0,0] 

 

1 
8

1

e
e   

7

4

e
e   

1 
5

3

e
e  

8

4

e
e   

0 
3 4[ ]e e− +  

5 8[ ]e e− +  
 
 

[2,0,5,-9,0,5,-
13, 
5,0,8,-10,5,0, 
-10,19,-7] 

 [0,0,0,-7,0,0,-13, 
-1,0,0,-19,21,0, 
-1,27,-7] 

 

8 
8

1

e
e   

6

3

e
e   

5 
8

4

e
e  

3 
6

2

e
e   [0]  

5 6

7 8

[
]

e e
e e
− +

− +
 

[2,0,5,-11,0,5, 
-11,11,0,8,4,-
11, 
0,-14,11,1] 

  [0,2,0,-2,5,0, 
0,-5,5,0,0,-
16, 
8,-9,3,9] 

4 
5

4

e
e   

8

2

e
e   

8

4

e
e  

7

3

e
e   

4 
]0[  

5 7[ ]e e− +  
[0,0,0,-22,0,0, 
-18,0,0,0,0,11, 
0,9,11,9] 

[0,2,0,-2,5,0, 
0,-5,5,0,0,17, 
8,18,-30,-18] 

[0,0,0,0,0,0,0, 
-11,0,0,-9,22,0, 
18,-11,-9] 

 

][ 1
jv  

][ 2
jv  

][ 4e  

][ 8e  
][ 3e  

][ 875 eee −+  

][ 4e  

][ 765 eee +−  
][ 3e  

][ 5e  
)( 2Xℑ  =  

[0,0,0,0,0,0,8, 
4,0,0,1,5,0,0, 2,0] 
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Table 4: Optimal Solution 3~X  of Military Transportation Problem 
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ai 
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