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Abstract: The practical aspect of the stochastic approximation method (SA) is studied. 
Specifically, we investigated the efficiency depending on the coefficients that generate 
the step length in optimization algorithm, as well as the efficiency depending on the type 
and the level of the corresponding noise. Efficiency is measured by the mean values of 
the objective function at the final estimates of the algorithm, over the specified number of 
replications. This paper provides suggestions how to choose already mentioned 
coefficients, in order to achieve better performance of the stochastic approximation 
algorithm.  
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1. INTRODUCTION 

There have been countless applications of the stochastic approximation method,  
in the period greater than a half century, since the seminal publication of Robbins and 
Monro [7] appeared. Some areas include neural network, simulation-based optimization, 
evolutionary algorithms, machine learning, experimental design, and signal processing 
applications such as noise cancellation and pattern recognition. This method is primarily 
used for solving systems of nonlinear equations in the presence of noisy measurements 

g(θ) = 0, θ∈Θ⊆ Rn (1) 

                                                
* Some results contained in this paper were first published in the author’s MSc thesis [4]. 
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where is g(θ)∈Rn. So, the problem of interest is a typical nonlinear system of n 
equations with n unknowns, based on noisy measurements of g(θ) in the form  

Y(θ) = g(θ)+ e(θ), (2) 
where e(θ) represents the noise term.  
The problem (1) is under certain assumptions equivalent to the problem of stochastic 
optimization 

[ ]min ( ) ( ) .L E yθ θ θ∈Θ =  (3) 

where Θ⊆ Rn is the domain of allowable values for a vector θ, L(θ) scalar function with 
n unknowns called objective function, y(θ) value of objective function L  at vector θ  in 
the presence of noise, and E[y(θ)] expected value. Namely, if we want to solve  problem 
(3) for a differentiable function L, we can convert it into problem (1) choosing the 
gradient of objective function (g(θ)≡∂L(θ)/∂θ) for function g(θ). Conversely, the problem 
(1) can be converted directly into an optimization problem by noting that θ  with g(θ) = 0 
is equivalent to θ such that║g(θ)║ is minimized for any vector norm ║ ║. The choise of 
formulation typically depends on issues such as the basic applied problem structure and 
data format, the available and relevant search algorithms, the proclivities of the analyst 
and traditions of his/her field, and the available software.  

Stochastic approximation algorithm is motivated by the deterministic steepest 
descent algorithm with the noisy measurement (2) replacing the exact root-finding 
function g(θ). In the case of unconstrained optimization the algorithm has the form 

θk+1 = θk – akYk(θk),    k = 0,1,2,…, (4) 
while in the case of constrained optimization that form is 

θk+1 = ΨΘ[ θk – akYk(θk)],    k = 0,1,2,…, (5)  
where ΨΘ  is a user-defined mapping that projects any point out of the constraint domain  
Θ to a new point inside Θ. For both iterative rules, (4) and (5), holds Yk(θk)=g(θk)+ek(θk), 
where distribution of the noise ek(θk) may vary from iteration to iteration (g(θ) is the 
gradient of objective function). An important special case is where { } 0k k

e ∞

=
 is an 

independent and identically distributed (i.i.d.) sequence of mean-zero random vectors. In 
that case holds ek(θk) = e(θk) and Y(θk) = g(θk)+e(θk), for all k = 0,1,2,…. 

The basic results related to the stochastic approximation method can be found in 
[7] and [11], where convergence analysis of this method is presented. Contrary to it, in 
this paper we investigated the efficiency depending on the coefficients that generate the 
step length in optimization algorithm, as well as the efficiency depending on type and  
level of the corresponding noise.  

The paper is organised as follows. In Section 2 we present a set of sufficient 
conditions for almost sure convergence of stochastic approximation method, with 
emphasis on the condition that refers to the step length. Section 3 contains analysis of 
choice of the coefficients that generate step length, where we proposed the way to choose 
these coefficients in order to achieve better performance of the algorithm. That section 
also contains numerical results that justify proposed choice of coefficients. All numerical 
results are obtained by using programming language Matlab.  
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2. CONVERGENCE OF STOCHASTIC APPROXIMATION 

It is of interest for any search algorithm to know whether the iterate θk generated 
with stochastic approximation method converges to a solution θ* as k→∞. That result 
guarantees that the iteration θk will fall into a small neighborhood of a solution θ* after 
sufficient function evaluations. Many sufficient conditions were given  for almost sure 
convergence of the SA recursions in (4) and (5). We shall present so called ″statistics″ 
conditions.  

 
2.1. Convergence conditions 

This subsection presents a set of sufficient conditions for almost sure 
convergence of the stochastic approximation iterations θk. These conditions are 
applicable if there is a unique root of problem (1). Hence, when used for optimization 
(∂L(θ)/∂θ=0), they could be applied if there are no local minima different from the 
(unique) global minimum. Note that these conditions are the sufficient ones, but many 
practical implementation of SA will produce satisfactory results even if one or more of 
the conditions are not satisfied.  
 
″Statistics″ conditions: 
(step length)  

ak > 0,   ak → 0,  0k ka∞
= = ∞∑ ,   and   2

0k ka∞
= < ∞∑  . (C.1) 

 
(search direction)  

For some symmetric, positive definite matrix B and every 0< η <1, (C.2) 
*

1/inf ( ) ( ) 0T Bgη θ θ η θ θ θ< − < − >  
 
(mean-zero noise)   

E[ek(θ)] = 0,  for all θ and k = 0,1,2,… (C.3) 

 
(growth and variance bounds)   

║g(θ)║2 + E(║ek(θ)║2) ≤ c(1+║θ║2),    (C.4) 

for all θ and k = 0,1,2,… and some c>0. 
 
From the point of view of the user’s input, condition C.1 is the most relevant 

one. This condition provides a careful balance in having the gain {ak} decay neither too 
fast nor too slow. In particular, the gain should approach zero sufficiently fast (ak→0, 

2
0k ka∞

= < ∞∑ ) to damp out the noise effects as the iterate gets near the solution θ*, but it 

should also approach zero sufficiently slow ( 0k ka∞
= = ∞∑ ) to avoid premature (false) 

convergence of the algorithm. The choice of the gain sequence ak is critical to the 
performance of stochastic approximation algorithm. The scaled harmonic sequence ak 

= /( 1)a k + , a>0, k = 0,1,2,..., is the best-known example of a gain sequence that satisfies 
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condition C1. Usually, some numerical experimentations are required to choose the best 
value of the coefficient a that appears in the gain. 

A common generalization of the harmonic sequence is /( 1)ka a k α= +  for 
strictly positive values a and α. From basic calculus, picking 1/ 2 1α< ≤  yields to {ak}  
satisfying the conditions 0k ka∞

= = ∞∑  and 2
0k ka∞

= < ∞∑   appearing in C.1.  
When the desirability for a gain sequence that balances algorithm stability in the 

early iterations with nonnegligible step sizes in the later iterations is given, than the 
recommended gain form is 

, 1 2 1,
( 1 )

a
ak k A

α
α

= < ≤
+ +

 (6) 

where is a>0 and  A≥0. Coefficient A is called stability constant, because it affects the 
stability of the algorithm.  

The problem is how to choose the coefficients a and A in (6), to ensure the 
convergence of the SA. If we choose A=0, there are some potential problems depending 
on the size of the coefficient a. Choosing a large numerator a, in hope for producing 
nonnegligible step sizes after the algorithm has been running awhile, may cause unstable 
behavior in early iterations (when the denominator is still small). On the other hand, 
choosing a small a, can lead to a stable behavior in early iterations but sluggish 
performance in later iterations. For this reason, picking A>0 is usually recommended. A 
strictly positive A allows choice of a larger a without risking unstable behavior in early 
iterations. Then, in later iterations, the coefficient A in the denominator becomes 
negligible relative to the k while the relatively large a in the numerator helps maintain a 
nonnegligible step size. In [11] Spall recommended, as a reasonable choice for the 
stability constant, to pick A such that it is approximately 5 to 10 percent of the total 
number of allowed iterations in the search process. 

 
2.2. Rate of convergence 

However, convergence itself gives no information about the rate the iterates 
approach the solution. For that purpose we need the probability distribution of iterations 
θk, since the iterations generated by SA are random vectors. Knowledge of the 
distribution gives us a guidance to chose the ak so as to minimize the likely deviation of 
θk from θ*. 

General results on the asymptotic distribution of the SA iterate θk are given in 
Fabian [2]. His work is a generalization of the first asymptotic distribution results for SA 
in Chung [1] and Sacks [8]. Fabian shows that, under appropriate regularity conditions,  

.
*2 ( ) (0, ),

dist

kk N k
α

θ θ− → Σ → ∞  (7) 

where 
.dist

→  denotes ″converges in distribution″, Σ is some covariance matrix that depends 
on the coefficients in the gain sequence ak and on the Jacobian matrix of g(θ), and α 
governs the decay rate for the SA gain {ak}. The intuitive interpretation of (7) is that 
iteration θk is approximately normally distributed with mean θ* and covariance matrix 

/ kαΣ  for k reasonably large.  
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Expresion (7) implies that the rate at which the iterate θk approaches θ* is 
proportional, in a stochastic sense, to / 2k α−  for large k. Under condition C.1 on the gain 
ak for convergence of the iterate, the rate of convergence of θk to θ* is maximized at α = 1 
when the gain has the standard form ak = . That is, the maximum rate of 
convergence for the root-finding SA algorithm under the general conditions is 0(1/ )k  
in an appropriate stochastic sense. 

3. THE CHOICE OF COEFFICIENTS 

Let us consider the standard stochastic optimization problem without  
constraints  

[ ]min ( ) ( ) .L E yθ θ θ=  (8)  

Suppose that the gradient of the objective function g(θ) can only be measured in the 
presence of the noise e(θ). More specifically, suppose that measurements of g(θ) at any θ 
are available as Yk(θ) = g(θ) + ek(θ), k = 0,1,2,… Estimation θk, which is close to the true 
solution θ* of the problem (8), in most cases does not have to be the best in the sense of 
values of L(θ). This is the reason why efficiency is measured by the mean values of the 
objective function at the final estimations of solution. The true objective function values 
L(θk) are used in constructing all tables and figures. These values are not available to the 
algorithm, which uses only noisy measurements Y(θ) at the various values of θ. 

In this section we shall analyse the choice of the coefficients a, A, and α   
appearing in the term 

, 1 2 1.
( 1 )

a
ak k A

α
α

= < ≤
+ +

  

As it was already mentioned in Section 2, coefficient A is stability constant, 
while coefficient α regulates the decay rate of the gain {ak}. The rate of convergence of 
θk  to θ* is maximized at α = 1, but in practical problems it may not be the best to choose 
that value, because in practice, it is often (but not always as we shall see) preferable to 
have a slower decay rate. The intuitive reason for the desirability of α < 1 is that a slower 
decay provides a larger step size in the iterations with large k, allowing the algorithm to 
move in bigger steps toward the solution. Intuitively, if the standard deviation of the 
noise is large, it is more difficult to converge to the solution. Acording to our numerical 
tests, in the case of larger deviation of the noise, smaller values of the coefficient a are 
desirable. It seems to be a reasonable choice, because smaller values of a could neutralize 
negative effects of the noise.  

In order to verify the reported conclusions, a computer program is coded in 
Matlab to solve two standard test functions: 
 
Test function 1:   

L(θ) = t1
4 + t12 + t1t2 + t2

2, 



 M. Japundžić / Efficiency of the Stochastic Approximation Method 136 

initial point θ0 = [1,1]T, 

optimal point θ* = [0,0]T,  L(θ*) = 0. 
 
Test function 2 (Rozenbrock function):  

L(θ) = 100(t2 - t12)2 + (1 - t1)2, 

initial point θ0 = [0,0]T,  
optimal point θ* = [1,1]T,  L(θ*) = 0. 

 
In the case of the test function 1, we suppose that the gradient of the objective 

function g(θ) can only be measured in the presence of the N(0, 0.12I2) noise (I2 is a 
identity matrix of dimension 2). Table 1 shows the mean values of test function 1 at final 
estimates over p = 10 replications and k = 10 iterations. The pair of coefficients (A,a) 
represents the optimal choice of the coefficients, in the sense that their realization gives 
the smallest value of the mean values of the objective function. As we can see in Table 1, 
in this case (k = 10 iterations), better results are obtained by choosing α = 0.501. 
 
Table 1: Sample means for terminal values of the objective function in the case of p = 10 
replications and k = 10 iterations    

 
The approximate optimal values of the coefficient a are chosen by trial and error 

over k = 1000 iterations. In the case of α = 0.501, for the test function 1, the optimal 
choice of coefficient a is 0.085 ≤ a ≤ 0.092, while in the case α = 1, optimal choice is 1.5 
≤ a ≤ 2. Figure 1 is created choosing a = 0.09, and a = 1.8, where the mean values of the 
test function 1 at the final estimates over p = 10 replications and k = 1000 iterations are 
presented. In contrast to the previous case of k = 10 iterations, here we can see that better 
results are obtained by choosing α = 1. This appears to be a consequence of asymptotic 
theory when using 1000 measurements to estimate only two parameters. 

α = 0.501 α = 1
A a Sample mean A a Sample mean 

0.5 0.35 7.8055 *10-4 0.5 0.5 1.9022*10-3 

0.6 0.36 7.8962 *10-4 0.6 0.53 1.5971*10-3 

0.7 0.37 7.9857 *10-4 0.7 0.56 1.4094*10-3 

0.8 0.38 8.0704 *10-4 0.8 0.59 1.3097*10-3 

0.9 0.39 8.1592 *10-4 0.9 0.62 1.2746*10-3 

1 0.4 8.2643 *10-4 1 0.65 1.2855*10-3 
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Figure 1: Sample means for terminal values of objective function in the case of p = 10 

replications and k = 1000 iterations 
 

 
To examine the effect of different levels of the random noise, 5 values of 

standard deviation σ∈{0.01, 0.1, 1, 5, 10} were tested. We considered the noise with 
normal N(0, σ2I2) distribution, as well as the noise with uniform U(c,d) distribution. For 
coefficients c and d we choose values c = –σ 3  and d = σ 3 , in order to obtain mean 0 
and variance σ2 for uniform distribution. Tables 2-6 present the mean values of 
Rozenbrock function at the final estimates, over p = 20 replications, k = 1000 iterations, 
and selected α = 1. The pair of coefficients (A,a) represent the optimal choice of 
coefficients,  in the sense that their realization gives the smallest value of the mean values 
of the objective function. 
 
Table 2: Sample means for standard deviation σ = 0.01 

σ = 0.01
A a N(0, σ2I2) a U(–σ , σ ) 
50 0.67 0.0403 0.67 0.0404 
60 0.78 0.0330 0.78 0.0330 
70 0.85 0.0299 0.85 0.0299 
80 0.92 0.0276 0.92 0.0278 
90 1.08 0.0249 1.08 0.0249 
100 1.15 0.0238 1.15 0.0239 
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Table 3: Sample means for standard deviation σ = 0.1 
σ = 0.1

A a N(0, σ2I2) a U(–σ , σ ) 
50 0.66 0.0408 0.66 0.0410 
60 0.76 0.0337 0.77 0.0335 
70 0.83 0.0308 0.83 0.0310 
80 0.97 0.0280 0.97 0.0282 
90 1.08 0.0249 1.08 0.0251 
100 1.13 0.0243 1.18 0.0244 

 
Table 4: Sample means for standard deviation σ = 1 

 
Table 5: Sample means for standard deviation σ = 5 

σ = 5
A a N(0, σ2I2) a U(–σ , σ ) 
50 0.53 0.0634 0.54 0.0759 
60 0.63 0.0578 0.63 0.0696 
70 0.7 0.0553 0.73 0.0643 
80 0.77 0.0535 0.83 0.0614 
90 0.84 0.0522 0.92 0.0596 
100 0.89 0.0517 1.02 0.0583 

 
Table 6: Sample means for standard deviation σ = 10 

σ = 10
A a N(0, σ2I2) a U(–σ , σ ) 
50 0.47 0.0944 0.48 0.1307 
60 0.55 0.0909 0.55 0.1257 
70 0.55 0.0898 0.62 0.1214 
80 0.6 0.0883 0.67 0.1187 
90 0.63 0.0876 0.73 0.1168 
100 0.61 0.0873 0.79 0.1155 

 
Analysing the data from tables 2-6 we can see that the type of the noise does not 

affect significantly the efficiency of the stochastic approximation method. Figure 2 and 

σ = 1
A a N(0, σ2I2) a U(–σ , σ ) 
50 0.62 0.0436 0.62 0.0457 
60 0.72 0.0370 0.73 0.0385 
70 0.82 0.0333 0.84 0.0343 
80 0.92 0.0304 0.94 0.0315 
90 1.01 0.0286 1.04 0.0293 
100 1.12 0.0272 1.14 0.0276 
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Figure 3 show the values of coefficient a depending on the level of the noise. Also, 
Figure 2 and Figure 3 confirm that smaller values for the coefficient a are desirable in 
case of larger deviation of the noise. 

 
 

NORMAL DISTRIBUTION

0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2

0.01 0.1 1 5 10

Standard deviation

V
al

ue
s o

f c
oe

ffi
ci

en
t a A=50

A=60
A=70
A=80
A=90
A=100

 
Figure 2: Values of coefficient a depending on the level of the noise 
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Figure 3: Values of coefficient a depending on the level of the noise 
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