Yugoslav Journal of Operations Research
22 (2012), Number , 199-223
DOI: 10.2298/YJOR101011007B

OPTIMAL INVENTORY POLICIES FOR IMPERFECT
INVENTORY WITH PRICE DEPENDENT STOCHASTIC
DEMAND AND PARTIALLY BACKLOGGED SHORTAGES

Jhuma BHOWMICK

Department of Mathematics, Maharaja Manindra Chandra College, Kolkata, India
G.P. SAMANTA

Department of Mathematics, Bengal Engineering and Science University, Shibpur,
Howrah, India
g p_samanta@yahoo.co.uk

Received: October 2010 / Accepted: February 2012

Abstract: The paper investigates a single period imperfect inventory model with price
dependent stochastic demand and partial backlogging. The backorder rate is a nonlinear
non-increasing function of the magnitude of shortage. Two special cases are considered
assuming that the percentage of defective items follows a truncated exponential
distribution and a normal distribution respectively. The optimal order quantity and the
optimal mark up value are determined such that the expected total profit of the system is
maximized. Numerical example is given to illustrate the proposed model which is
compared with the traditional model of perfect stock. Sensitivity analysis is performed to
explain the behavior of the proposed model with respect to the key parameters.
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1. INTRODUCTION

The traditional inventory models generally assume that an ordered lot contains
all perfect items and hence, the possibility of shortage due to imperfect items in the
accepted lot is ignored. But in reality, this concept is not fully acceptable in view of the
extensive use of acceptance sampling in the quality control process in today’s business
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and industry scenario. Ignoring this possibility may cause shortage during the selling
season, and consequently increase the operating costs of the inventory system apart from
loss of sales and customer goodwill in the highly competitive market. The objective of
the paper is to analyze the optimal ordering and pricing policies for the retailer such that
the expected total profit of the system is maximized.

Shih [33] analyzed two inventory models, a deterministic EOQ model, and a
single period stochastic inventory model assuming that the ordered lot contains a random
proportion of defective items. He developed optimal solutions to the modified systems
and compared them numerically with the traditional models. Moinzadeh and Lee [21]
investigated the effect of defective items on the order quantity and reorder point of a
continuous-review inventory model with Poisson demand and constant lead time.
Paknejad et al. [25] considered a random number of defective units in the ordered lot in a
continuous review system (s, Q) with stochastic demand and constant lead time. They
developed explicit results for the cases of exponential and uniform demand during lead
time assuming that the number of defective items in a lot follows a binomial process.
Affisco et al. [3] also investigated the effect of lower set up cost on the operating
characteristics of the model. Porteus [29] analyzed the process of quality improvement
and set up cost reduction, and determined the optimal lot size for an inventory model in
his paper. Rosenblatt and Lee [31] developed a production inventory model with
imperfect production process. Lin [20] presented a stochastic periodic review integrated
inventory model involving defective items, backorder price discount, and variable lead
time. Panda et al. [28] developed a single period inventory model with imperfect
production and random demand under chance and imprecise constraints. Wee et al. [37]
analyzed an optimal inventory model for defective items and shortage backordering.
Chang et al. [6] studied Wee’s [37] model to include the well known renewal-reward
theorem and derived closed form solutions for the optimal lot size, backorder quantity
and the maximum expected net profit. Hu et al. [14] investigated a two-echelon supply
chain system with one retailer and one manufacturer for perishable products. They
proposed two fuzzy random models for the newsboy problem with imperfect items in the
centralized and decentralized systems. They used expectation theory and signed distance
to transform the two fuzzy random models to the crisp ones. They showed that
manufacturer’s repurchase strategy can increase the whole supply chain profit. Nasri et
al. [22] considered a basic EOQ model that allows stock out and backordering assuming
random number of defective items. They gave closed form expressions for the cases
when the proportion of defectives follows uniform and exponential distributions.
Paknejad et al. [26] adjusted the EOQ model with planned shortages and quality factor.
Nasri et al. [23] developed an EMQ model with planned shortage and random defective
units. Cheng [10] discussed an EPQ model with process capability and quality assurance
considerations. Goyal et al. [13] surveyed integrated production and quality control
policies for EPQ inventory models. They provided closed form expressions when the
proportion of defective units in a lot follows a one-sided truncated exponential
distribution. In two recent papers Nasri et al. [22, 27] studied the relationship between
order quantity and quality for processes that have not yet achieved the state of statistical
control.

Khouza [17] gave a note on the single period newsboy problem with an
emergency supply option. He did an extensive literature survey on the single period
news-vendor problem in his paper [18], and suggested directions for future research.
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Geunes et al. [12] considered an infinite horizon inventory system in the newsvendor
model. In the present competitive market, the selling price of a product is one of the most
important decisive factors to the buyers. Generally, higher selling price of a product
negates the demand, and reasonable and low selling price increases the demand of the
product. Whitin [39] first developed an inventory model with price-dependent demand.
Chao et al. [9] discussed joint replenishment and pricing decisions in inventory systems
with stochastically dependent supply capacity. They analyzed a single period periodic
review system with price dependent stochastic demand. Recently Qin et al. [30] reviewed
the newsvendor problem and provided directions for future research.

In many of the articles discussed in literature either shortages are not allowed, or
if occur, they are considered to be completely backlogged. However, in today’s highly
competitive market providing varieties of products to the consumers due to globalization,
partial backorder is a more realistic one. For fashionable items and high-tech products
with short product life cycle, the willingness of a customer to wait for backlogging
during the shortage period decreases with the waiting time. During the stock-out period,
the backorder rate is generally considered as a non-increasing linear function of
backorder replenishment lead time through the amount of shortages. The larger the
expected shortage quantity is, the smaller the backorder rate would be. The remaining
fraction of shortage is lost. This type of backlogging is called time-dependent partial
backlogging. Abad discussed many pioneering and inspiring backlogging rates as
functions of waiting time. Abad [1] developed an optimal pricing and lot-sizing inventory
model for a reseller considering selling price dependent demand. Abad [2] formulated
optimal lot sizing policies for perishable goods in a finite production inventory model
with partial backlogging and lost sales. Liao et al. [19] investigated a distribution-free
newsvendor model with balking and lost sales penalty. Zhou et al. [41] analyzed
manufacturer-buyer co-ordination in an inventory system for newsvendor type products
with two ordering opportunities and partial backorders. They developed a newsvendor
type co-ordination model for a single-manufacturer single buyer channel with two
ordering opportunities. The excessive demand after the first order is partially backlogged
and both parties share the manufacturing setup cost of the second order (if occurs). It was
showed that the decentralized system would perform best if the manufacturer covers
utterly the second production setup cost, opposite to what was shown by Weng et al. [38].
They extended the model of Weng et al. [38] in the sense that the second order decision
is made by the buyer based on the channel’s benefit rather than only on the buyer’s
benefit. Chang et al. [7] investigated a partial backlogging inventory model for non-
instantaneous deteriorating items. They assumed that the demand of the items are stock
dependent, and proposed a mathematical model and a theorem to find minimum total
relevant cost and optimal order quantity of the model under inflation. Chang et al. [8]
deal with the optimal pricing and ordering policies for a deteriorating inventory model
with limited shelf space. They considered that the demand of an item is dependent on the
on-display stock level and the selling price per unit. They extended the traditional EOQ
inventory models to two types of models for maximizing profits and derive the
algorithms to find the optimal solution. Oberlaender et al. [24] analyzed dual sourcing
strategies using an extended single-product newsvendor model with two order points.
They used an exponential utility function to model different risk preferences. They
showed that dual sourcing strategies are always preferable to an exclusive offshore
approach, as long as the onshore ordering costs are smaller than the selling price of the
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product. Also, the more risk-averse the decision maker, the smaller the offshore order
quantity is. Newsvendor models are widely used in literature assuming risk neutrality.
Wang et al. [36] discussed a loss-averse newsvendor model and showed that when the
shortage cost is not negligible, the optimal order quantity may increase the wholesale
price and decrease the retailer’s price, which can never occur in the risk neutral
newsvendor model. Yang et al. [40] studied a newsvendor, who decides an order quantity
and selling price to maximize the probability of achieving both profit and revenue targets
simultaneously. They found that the probability depends critically on the relative
magnitudes of the profit margin and the ratio between the profit target and the revenue
target. They showed that if the product has greater price elasticity, the best strategy is
always to price lower and order more. Tang et al. [34] investigated dynamic pricing in
the newsvendor problem with yield risks. Arcelus et al. [4] evaluates the pricing and
ordering policies of a retailer, facing a price-dependent stochastic demand for
newsvendor type products under different degrees of risk tolerance and under a variety of
optimizing objectives. Karakul [15] formulated joint pricing and procurement policies for
fashion goods in the existence of clearance markets with random demand that follows a
general distribution. The regular seasonal demand is assumed to be a linear decreasing
function of the price of the product and excessive inventory at the end of the season is
sold in the clearance market at a discounted price. He showed that the expected profit
function is unimodal irrespective of the existence of clearance market. Donohue [11]
analyzed efficient supply contracts in an inventory model for fashion goods with forecast
updating and two production modes. Cachon [5] investigated allocation of inventory risks
in a supply chain with push, pull, and advance-purchase discount contracts. Sahin et al.
[32] proposed a single period newsvendor model where the inventory data capture
process using the barcode system is prone to errors that lead to inaccurate data. They
derived analytically the optimal policy in presence of errors when both demand and
errors are uniformly distributed. In the second part, they examined the qualitative impact
of record inaccuracies of an inventory system with additional coverage and shortage cost.
Keren [16] developed a special form of the single period newsvendor problem with the
known demand and random supply. He formulated general analytic solution for two
types of yield risks, additive and multiplicative. Numerical examples are presented for
the special case of uniformly distributed yield risk. Analysis of a two-tier supply chain of
customer and producer revealed that when the customer orders more, it increases the
producer’s optimal production quantity. Wagner [35] discussed different inventory
models and analyzed their applications in his book “Principles of Operations Research,
with Applications to Managerial Decisions”.

The present paper develops a single period inventory model assuming that the
percentage of defective items in the order quantity is a random variable. Two special
cases are considered assuming that the percentage of defectives follows truncated
exponential distribution and normal distribution, respectively. The demand of the product
is dependent on the selling price and has a random component, which follows a general
probability distribution. Shortage may occur, either due to the presence of defective items
in the ordered lot, or due to the uncertainty of demand. Shortage, if occurs, is partially
backlogged and the remaining fraction is lost. The backorder rate is a negative
exponential function of the magnitude of shortage. The optimal order quantity and the
optimal selling price are determined.
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The rest of this paper is organized as follows. In the next section, the
assumptions and notations used in the paper are stated. In Section 3, the proposed
inventory model is developed, and two special cases are considered in section 4.
Numerical examples and sensitivity analysis carried out to examine the sensitivity of the
optimal solution in the neighborhood of the key parameters of the model are given in
section 5. Section 6 suggests directions for future research in the related area.

2. NOTATIONS AND MODELING ASSUMPTIONS

The mathematical models for the proposed stochastic inventory models are
based on the following notations and assumptions:

2.1. Assumptions

i.  This is a single period inventory model for seasonal items.

ii. Demand per season, Y is a continuous random variable dependent on retailer’s
selling price p.

iii. The ordered lot contains a random number of defective items, which follows a
general probability distribution.

iv. Shortage may occur in the proposed inventory model either due to the
unexpected presence of defective units in the accepted lot or due to the
uncertainty of demand.

v. Shortages, if occur are partially backlogged. The fraction of shortage
backordered is a negative exponential function of the magnitude of shortage.
Units unsold at the end of the season, if any, are removed from the retail shop to
the outlet discount store and are sold at a lower price than the cost price of the
item viz. the salvage value.

2.2. Notations

the order quantity (a decision variable)

the percentage of defective units in the ordered lot which is a random variable
the value of Z

the percentage of non-defective / perfect items in the ordered lot i.e.,

0 =0(-2)

the unit cost price for the retailer

the mark up value (a decision variable)

the unit selling price for the retailer where p=mc

LN NIQ

a continuous random variable
the value of X

f(x) the probability density function of X
Y the demand per season, given by Y=a-b p+X where a, b are real

b 3OO

numbers such that a >>b>0.
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y the valueof ¥ ie.,, y=a-b p+x=a->b cm+x20i.e.m<%
c
g(z)  the probability density function of Z

B(y—0,) the fraction of shortages which is backordered i.e., S(y—Q,) =e *"? where
¢ 1s a positive real number. When AB(y—Q,)=1(or 0) then shortages are

completely backlogged (or completely lost).
(Q*,m*) the optimal order quantity O* and optimal mark up value m* which

maximize the expected total profit ETP( Q, m).

C, the unit backorder cost in case of shortage

G the unit cost of lost sales in case of shortage, C;, = p—c+n, where 7 is a
nonnegative real number

A 1/4 is the average value of the rv. X when X follows exponential
distribution

12 1/0 is the parameter of the p.d.f. of the r.v. Z when the percentage of
defectives Z in the ordered lot follows a truncated exponential distribution

u mean of Z when Z follows normal distribution

o standard deviation of Z when Z follows normal distribution

3. MODEL FORMULATION

In traditional models, it is generally assumed that the order quantity contains all
perfect and usable units. But, in reality, there exist a random percentage of defective units
in the delivered lot. If the probability of imperfect units in stock is not considered while
formulating inventory policies, then it might increase the operating costs of the inventory
system apart from stock outs and loss of customer goodwill. In this paper, a stochastic
inventory model is developed assuming random percentage of defective units in the
accepted lot. Two special cases are considered presuming that the percentage of defective
units in the order quantity follows truncated exponential distribution and truncated
normal distribution, respectively. The results are compared with the traditional model of
all perfect items.

In the classic single period problem (SPP, newsboy problem or newsvendor
problem), the retailer makes orders for seasonal items per unit cost ¢, and prepares well
before the beginning of the selling season since the items generally have a very long
replenishment lead time. The items are sold during the season at the unit selling price
p =mc . The order quantity O and the mark up value m are considered as the decision

variables in the problem. Demand is probabilistic in nature and also depends on the
selling price p.

3.1. Model I: Inventory with imperfect items

Let z represent the random percentage of defective items in the ordered lotQ .
Then O, =Q(1—-z) is the available perfect or usable unit in the stock. The defective
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items are discovered at the time of sale and are returned to the vendor for refund at his
cost. Now, there may be two kinds of shortages. Shortage may occur when the expected
demand y=(a—b p+x) is less than or equal to the order quantity O, but greater than
0,, the available perfect units. Again, shortage may occur when the expected demand y
exceeds the order quantity O . The retailer has to sell unsold units, if there be any, at the

end of the season at a price lower than the cost price of the item viz. the salvage value
and incur loss. If y > O, , the retailer incurs a shortage cost for each unit shortage during

the season. Here shortage is assumed to be partially backlogged. The parameter [

represents the fraction of shortage, which is backordered. The remaining fraction is lost.
The partial backlogging rate is given by

Blr-0)=e " e>0

The magnitude of shortage is equivalent to the backorder replenishment lead
time. As backorder replenishment lead time increases, the expected shortage amount
increases, and people tend to order less. The expected shortage amount is given by

-9)=(@-bp+x-0)=(x—q),say, where ¢g=(0,—a+b p).

The parameter f satisfies the following properties:
(1) hn’l(yfg1 )—0 Bly-0)=1
i.e. the complete backorder case.

(i) lim, 5, B(y=0) =0

i.e. the complete lost case.

The backorders are replenished through emergency orders during the period
incurring additional cost per unit backorder to avoid lost sales penalty and loss of
customer goodwill. The backordered units are assumed to contain all perfect units. The
different costs associated with the inventory model are ordering cost, expected backorder
cost and expected cost of lost sales.

The expected overstock i.e. the expected number of unsold units at the end of
the season is

H=[[§(g-2f g (2)d (3.1)

where 0 <z <1
The expected shortage is

§= f f 7 (x—q) f(x)dxg(z)dz (3.2)
The expected backorder in case of shortage is
B[] (= f()dvg(2)dz (33)

where &(> 0) is a real number.
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Hence, expected lost sales

L=(S-B) 3.4)
The expected number of perfect units in inventory

G=[,0g(2)dz

Now, expected revenue earned in No Shortage case
R, =Expected revenue earned from sold units + Expected salvage value of

unsold perfect units
=p(G-H)+vH (3.5

where p=m ¢
Expected revenue earned in case of shortage

R, = p[[ {0 +(x—q)e ™"} f(x)dxg(z)dz

(3.6)
- p{jj . Qf (x)dxg(z)dz + B}
Therefore, expected total revenue earned during the season
et (3.7)

Expected total cost of the system
ETC = Ordering cost of perfect units + Expected backorder cost + Expected cost
of lost sales

=cG+C,B+CL

(3.8)
=cG+(C,-C)B+CS
Therefore, the expected total profit of the system
ETP=ETR-ETC
=R+R,-cG-(C,-C))B-C,S (3.9)

Maximizing ETP with respect to the decision variables Q and m, we get the optimal
values of the decision variables denoted by Q* and m* satisfying the necessary
conditions

OETP _  OETP _

—=0,—/—=0 (3.10)
o0 om
ETF,, ETF,, . . 2ETP
Let A=( oo o ) be the Hessian matrix, where ETP,, = OETP
ETPmQ ETPmm 0 6Q2
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The expected total profit ETP will be maximum at the point (Q* m*) if and only if A is
negative definite at the point (Q*, m*) so that the principal minors of A are alternatively
negative and positive, i.e.,

Ay = ETFyy vy < 0
and , (3.11)

A, =|A| = (ETRy,ETR,,, — ETR,,")| e y> 0

0,A, = ETPmm‘(Q*’m*) <

3.2. Model II: Inventory with all perfect units

Assuming z =0 in the above model, we get the traditional model of all perfect
units.

4. SPECIAL CASES

The total demand per season is given byY =a—-b p+ X . Let the random

variable X follow exponential distribution and the probability density function of X is
given by

f(x)=Ae™ when 0< x <o 4.1)

=0 , otherwise where 4 >0 and E(x) = % .

4.1. Percentage of defectives in the ordered lot follows truncated exponential
distribution

In this case, the probability density function of Z is

0
= e”,0<z<1,0>0 4.2
==, z (42)
Then the expected total profit of the system from equation (3.9) is given by
ETP=
e’ -e™) d 1 1 1
(p—c)aQ+(v—p)ﬁ{———+Q(———)—— .
-0 B Ty 68 pA

p—2L [e" -0 +1-g)e )+ Lme T S©rG G (4.3)

AQA-0) n p)

ﬂeid (efe _e—AQ)

(1Q-0)
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where 77:ﬂ+g,}/:0/1,,8:;//(l—e_g),a:{——é},d=a—b p,p=cm 4.4)
v

Here we have

b2’

o+ c, v
g (1-e” ’IQ){p(ch+u—c)+(77—’;—? }

b_Q 0420\ e’ B 1
+ 7 (1-e )(2 bcmi){(eg—ew) (H—JQ)}

2b
+_

Hﬂ {e(bc‘rrHQfa)l (1 _ e*G)(g _ AQ) _ ZPAZ (1 _ e*H+ZQ)}

(0-2) @-0)_ _ a

(be) (be)

f}<1

,0>2,and

and pA’ :{1—( 4
A+e

om 201-e""%)  220e°  (2+20Q)7°
0-20)°  (¢"-e?) (e -e™)
AZ

- _ _ _ _ —0+10
+((9_/1Q)2 {(0-20)0-20-2)+2(1-¢ "))

O’ETP _
om?
_ Czﬁ plabem=-0)2
(@-10)
2
Now 6E_€P<0 when Q <
om
Since
C v
(57> 0
O*ETP
o0?
— _ ﬂ (a—bem—Q)A
(6-10)

{p(ch+u—c)+(c—b2—L2)}
n A

A0(0 - 20)e"*° .
| 2em(0-1Q0-1+e ") (e’ —e*)?
(0-20)° 0’  (0+20)
(" —¢) (6-20)

1 e’
_+cm/1Q{(€_/1Q) - % —e}"Q)}

(4.5)

(4.6)

(4.7)
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2
aﬁEQJ;P <0 when >4 and 0< % since (0—2—%) >0,
n
(2mc+u—c)=c(2m—1)+u >0 (see Appendix I) (4.8)
Also
OETP
0Q0m
0+20 0 I2]
bemA—1)(1-e %% Qe + c -
R X ){(e” -y A’ =€) A0-20)
Cﬂ e(afbcme)/I + 1 (0_2{Q_1+e*5+@)
(0-20) (0-20)
o
(bemA—1)0(—° Lo

(bcmA—1)>0 whe

It can be shown that ( —)(
om

(€ —e?) (0-20)

b2 (plu—c)+ (2 ——)
n A

nom>—
bcA

O*ETP_ O*ETP

O*ETP

( )* (see Appendix II)

00’

)> o oom

(4.9)

Therefore, maximizing ETP with respect to the decision variables Q and m, we
get the optimal values of the decision variables Q* and m*, respectively, satisfying the
required necessary and sufficient conditions given by (3.10) and (3.11).

4.2. Percentage of defectives in the ordered lot follows truncated normal
distribution with mean x4 and standard deviation o

The probability density function of Z is as follows:

G
2
b

K

e
o~N2m
:0’

20

g(z)=

otherwise
where

0<z<1
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K- 2 K = ﬂ,Kzz(l—,u),
K, B ﬁ o o
{Erf B {ﬁ}}

u:(z—ﬂ)
(o2

K 2 % .
and Erf{T;} =ﬁj‘0ﬁe dt
Making a transformation of variable from Z to the standard normal variable U,
K eiT,Where u= (z=4)
2z o
Proceeding similarly as in Section 4.1, we get the optimal inventory policy of
the proposed model in this case also.

the p.d.f. of U is obtained as ¢(u) =

5. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS

5.1. Numerical Example

Examplel: The following values of the given set of parameters are taken ¢ = 100, C, =
130, C;=p—c +50,a=1000,b =3, £ =0.001, v=150, A = 1/400, 6 =1/ 0.2, p=
0.2, 0 = 0.05 in appropriate units. The outputs (optimal solutions) generated by computer
are presented in Table 1 and Table 2.

Table 1: Exponential distribution results

Optimal order quantity Q* 723.11
Optimal mark up value m* 2.612
Expected total profit ETP* 117504.0
Expected perfect units G* 583.393
Expected overstock H* 137.506
Expected Shortage S* 170.338
Expected backorder B* 86.907
Expected Loss of sales L* 83.431
Table 2: Normal distribution results
Optimal order quantity Q* 735.428
Optimal mark up value m* 2.577
Expected total profit ETP* 122362.0
Expected perfect units G* 588.337
Expected overstock H* 124.237
Expected Shortage S* 162.683
Expected backorder B* 83.001

Expected Loss of sales L* 79.681
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Tables 1 and 2 show that the expected total profit ETP* is greater ($122362.0 —
$117504.0 = $4858.0) in case of normally distributed percentage of defectives than the
exponential case, though the optimal mark up value m* is higher in the second case.

Table 3: Traditional case (perfect stock)

Optimal order quantity Q* 587.887
Optimal mark up value m* 2.5757
Expected total profit ETP* 122637
Expected overstock H* 122.986
Expected Shortage S* 162.383
Expected backorder B* 82.848
Expected Loss of sales L* 79.534

Comparing the results in Table 3 with the results in Tables 1 and 2, we see that
the optimal order quantity Q* increases significantly in imperfect cases (23% (approx.),
in case of exponential distribution, and 25% (approx.) in case of normal distribution)
compared to the perfect case. The expected total profit ETP* is, however, greater in the
traditional case than in the defective cases, which is expected. If the traditional optimal
policy (Q*, m*) = (587.887, 2.5757) is substituted in the profit functions of cases with
exponentially and normally distributed defective items, then ETP = $115167.0 and ETP
= $119210.0, respectively are obtained. Therefore, if a retailer adopts the traditional
optimal policy when the order quantity contains imperfect items then he/she will incur a
potential loss of profit (2% (approx.) in case of exponential distribution, and 2.6%
(approx.) in case of normal distribution), which depends on the probability distribution of
the percentage of defective items in the order quantity. The numerical results are further
explained with the help of the following 3D graphs drawn below by using
MATHEMATICA.

Figure 1: Expected profit function ETP vs. order quantity Q and mark up value m for
normally distributed defective items.
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Figure 2: Expected profit function ETP vs. order quantity Q and mark up value m for
exponentially distributed defective items.

Figures 1- 2 indicate that the expected profit functions are strictly concave with
respect to the decision variables Q and m for cases when the percentage of defectives in
the order quantity follows truncated normal distribution and one-sided truncated
exponential distribution. The expected profit of the proposed model is maximum at the
point (Q*, m*) i.e., (735.428, 2.577) and (723.110, 2.612) for normally distributed and
exponentially distributed percentage of defectives respectively.

5.2. Sensitivity analysis

The proposed inventory model is further analyzed through sensitivity analysis in
case of exponentially distributed percentage of defectives (6 = 1/0.05) in the order
quantity with respect to the key parameters of the model using the following Tables 4-10
and the corresponding Figures 3-9:

Table 4: Effect of unit cost of lost sales C;=p—c +n7

n Q* m* ETP* H* G* S* B* L*

30 | 608.702 | 2.5639 | 124151 | 115.766 | 578.267 | 168.329 | 85.882 | 82.447

35 | 611.314 | 2.5673 | 123713 | 117.800 | 580.748 | 166.871 | 85.138 | 81.732

40 | 613.913 | 2.5706 | 123279 | 119.830 | 583.217 | 165.436 | 84.406 | 81.030

45 | 616.499 | 2.5739 | 122849 | 121.855 | 585.674 | 164.026 | 83.687 | 80.339

50 | 619.074 | 2.5771 | 122424 | 123.878 | 588.120 | 162.637 | 82.978 | 79.659

55 | 621.637 | 2.5802 | 122002 | 125.896 | 590.555 | 161.272 | 82.281 | 78.990

60 | 624.188 | 2.5834 | 121584 | 127.911 | 592.979 | 159.927 | 81.595 | 78.332

65 | 626.728 | 2.5864 | 121170 | 129.921 | 595.392 | 158.604 | 80.9203 | 77.684
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Table 5: Effect of unit backorder cost Cb

C, | Q* m* | ETP* H* G* S* B* L*

100 | 602.780 | 2.5561 | 125153 | 111.178 | 572.641 | 171.704 | 87.604 | 84.099

110 | 608.266 | 2.5633 | 124225 | 115.427 | 577.853 | 168.575 | 86.008 | 82.567

120 | 613.697 | 2.5703 | 123315 | 119.660 | 583.012 | 165.555 | 84.467 | 81.088

130 | 619.074 | 2.5771 | 122424 | 123.878 | 588.120 | 162.637 | 82.978 | 79.659

140 | 624.400 | 2.5836 | 121549 | 128.079 | 593.180 | 159.816 | 81.539 | 78.277

150 | 629.678 | 2.5899 | 120692 | 132.262 | 598.194 | 157.086 | 80.146 | 76.940

160 | 634.907 | 2.5961 | 119850 | 136.429 | 603.162 | 154.443 | 78.798 | 75.646

170 | 640.091 | 2.6020 | 119024 | 140.576 | 608.086 | 151.884 | 77.492 | 74.392

Table 6: Effect of unit salvage value v

N Q* m* ETP* H* G* S* B* L*

0 | 561.898 | 2.4975 | 118133 | 80.685 | 533.803 | 197.638 | 100.836 | 96.802

10 | 570.872 | 2.5113 | 118840 | 87.213 | 542.328 | 191.488 | 97.698 | 93.790

20 | 580.855 | 2.5261 | 119612 | 94.599 | 551.812 | 184.960 | 94.367 | 90.592

30 | 592.038 | 2.5419 | 120459 | 103.011 | 562.436 | 178.011 | 90.822 | 87.189

40 | 604.667 | 2.5588 | 121391 | 112.673 | 574.434 | 170.591 | 87.036 | 83.555

50 | 619.074 | 2.5771 | 122424 | 123.878 | 588.120 | 162.637 | 82.978 | 79.659

60 | 635.709 | 2.5968 | 123573 | 137.027 | 603.924 | 154.070 | 78.607 | 75.463

70 | 655.215 | 2.6182 | 124863 | 152.694 | 622.454 | 144.783 | 73.869 | 70.914

Table 7: Effect of a

a Q* m* | ETP* H* G* S* B* L*

1000 | 619.074 | 2.5771 | 122424 | 123.878 | 588.120 | 162.637 | 82.978 | 79.659

1100 | 645.777 | 2.7097 | 148910 | 103.893 | 613.488 | 177.486 | 90.554 | 86.932

1200 | 670.051 | 2.8345 | 178335 | 82.862 | 636.548 | 195.966 | 99.983 | 95.984

1300 | 692.056 | 2.9495 | 210977 | 61.438 | 657.453 | 219.131 | 111.802 | 107.33

1400 | 711.942 | 3.0523 | 247212 | 40.575 | 676.345 | 248.531 | 126.801 | 121.729

1500 | 729.849 | 3.1396 | 287561 | 21.757 | 693.357 | 286.517 | 146.182 | 140.335

1600 | 745.908 | 3.2068 | 332769 | 7.449 | 708.613 | 336.781 | 171.827 | 164.954

1700 | 760.230 | 3.2479 | 383943 | 1.965 | 722.219 | 405.368 | 206.820 | 198.547

Table 8: Effect of b

b Q* m* ETP* H* G* S* B* L*

0.5 | 786.796 | 14.0130 | 1070150 | 179.264 | 747.456 | 131.153 | 66.915 | 64.238

1.0 | 745362 | 7.1485 | 499199 | 162.538 | 708.094 | 139.593 | 71.221 | 68.372

1.5 1709.041 | 4.8612 | 309710 | 149.517 | 673.589 | 146.748 | 74.872 | 71.877

2.0 | 676.435 | 3.7183 | 215539 | 139.141 | 642.613 | 152.867 | 77.994 | 74.874

2.5 | 646.649 | 3.0332 | 159466 | 130.742 | 614.317 | 158.123 | 80.675 | 77.448

3.0 1 619.074 | 2.5771 122424 | 123.878 | 588.120 | 162.637 | 82.978 | 79.659

3.5 1593.273 | 2.2518 96244 | 118.236 | 563.309 | 166.507 | 84.952 | 81.554

4.0 | 568.919 | 2.0083 76846 | 113.591 | 540.473 | 169.806 | 86.636 | 83.170
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Table 9: Effect of 6

1/6 Q* m* ETP* H* G* S* B* L*

0.03 | 606.168 | 2.5762 | 122567 | 123.294 | 587.983 | 162.463 | 82.890 | 79.574

0.04 | 612.550 | 2.5765 | 122506 | 123.545 | 588.048 | 162.535 | 82.926 | 79.609

0.05 | 619.074 | 2.5771 | 122424 | 123.878 | 588.120 | 162.637 | 82.978 | 79.659

0.06 | 625.735 | 2.5777 | 122316 | 124.283 | 588.191 | 162.782 | 83.052 | 79.730

0.07 | 632.524 | 2.5787 | 122180 | 124.802 | 588.248 | 162.953 | 83.139 | 79.814

0.08 | 639.427 | 2.5798 | 122012 | 125.396 | 588.275 | 163.183 | 83.257 | 79.926

0.09 | 646.428 | 2.5812 | 121809 | 126.082 | 588.259 | 163.469 | 83.403 | 80.067

0.10 | 653.503 | 2.5828 | 121569 | 126.855 | 588.182 | 163.820 | 83.582 | 80.238

Table 10: Effect of (u, o) taking 6 = 0.02

u Q* m* ETP* H* G* S* B* L*

0.03 | 607.848 | 2.5759 | 122614 | 123.092 | 587.925 | 162.408 | 82.861 | 79.547

0.04 | 613.135 | 2.5759 | 122610 | 123.111 | 587.932 | 162.412 | 82.863 | 79.549

0.05 | 619.111 | 2.5759 | 122608 | 123.122 | 587.937 | 162.415 | 82.865 | 79.550

0.06 | 625.527 | 2.5759 | 122606 | 123.130 | 587.940 | 162.417 | 82.866 | 79.551

0.07 | 632.207 | 2.5759 | 122605 | 123.135 | 587.941 | 162.417 | 82.866 | 79.551

0.08 | 639.070 | 2.5759 | 122604 | 123.137 | 587.943 | 162.419 | 82.866 | 79.552

0.09 | 646.093 | 2.5759 | 122604 | 123.142 | 587.944 | 162.419 | 82.866 | 79.552

0.10 | 653.273 | 2.5759 | 122603 | 123.145 | 587.946 | 162.420 | 82.867 | 79.553

Effect of h on the optimal solution in percentage
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Figure 3: Percentage change in the optimal solution vs. percentage change in 1
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Effect of a on the optimal solution in percentage
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Figure 4: Percentage change in the optimal solution vs. percentage change in a
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Figure 5: Percentage change in the optimal solution vs. percentage change in C,
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Figure 6: Percentage change in the optimal solution vs. percentage change in v
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Effect of m on the optimal solution in percentage
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Figure 7: Percentage change in the optimal solution vs. percentage change in p
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Figure 8: Percentage change in the optimal solution vs. percentage change in 1/ 6
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Figure 9: Percentage change in the optimal solution vs. percentage change in b
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From the Figures 3 — 9, we observe that

1.

ii.

iii.

1v.

Vi.

Vii.

From Fig. 3, we see that S* is slightly sensitive to 1 and decreases as 1 increases,
which is expected since the cost of lost sales Cj rises as 1 increases. The other
variables Q*, m*, and ETP* are insensitive to 7.

From Fig. 4, it is found that, the optimal expected profit ETP* is highly sensitive to a
and increases rapidly as a increases. Further, the rate of increase rises for higher
values of a. The variables Q*, m*, and S* are moderately sensitive to a and increase
as a increases.

From Fig. 5, S* is moderately sensitive to C, and decreases as C, increases. Q* and
ETP* are slightly sensitive to C,. Q* increases as C, increases, whereas ETP*
decreases. However, m* is insensitive to C,,.

From Fig. 6, S* is moderately sensitive to the salvage value v and decreases as v
increases. This is justified, since higher value of v motivates overstock and hence
lower expected shortage. Q* is also moderately sensitive to v. ETP* and m* are
slightly sensitive to v and increase with v.

From Fig. 7, Q¥ is slightly sensitive to p and increases as p increases. However, the
other variables are insensitive to L.

From Fig. 8, Q* is slightly sensitive to 1/0 and increases with 1/6. Though, the other
variables are insensitive to 1/ 6.

From Fig. 9, ETP* is highly sensitive to b and decreases rapidly as b increases. The
rate of decrease falls with b. The optimal mark-up m* is again highly sensitive to b,
whereas, Q* and S* are moderately sensitive to b.

From the above sensitivity analysis we conclude that the parameters a, b, and v

should be estimated carefully since the optimal solution is highly/moderately sensitive
with respect to these parameters.

truncated exponential func .

N w s U

Percentage of defective items

Figure 10: The truncated exponential p.d.f. (6 = 1/0.2) vs. the percentage of defectives
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truncated nomel density func .
8

s w : : — Percentage of defective items
0.1 0.2 0.3 0.4 0.5

Figure 11: The truncated normal p.d.f. (un = 0.2, 6 = 0.05) vs. the percentage of
defectives
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Figure 12: Comparison of expt. profit for different values of {1/8) and p in [0.03, 0.10]
taking o = 0.02

Figure 12 shows that in case of exponentially distributed percentage of
defectives as (148} increases from 3% to 10%, the expected profit decreases from
$122567.0 to $121569. However, for normally distributed percentage of defectives, the
decrease in expected profit is negligible. Therefore, while formulating optimal inventory
policies extra care is needed in the exponential case for the given set of parameter values.

6. CONCLUDING REMARKS

In this paper, a single period stochastic inventory model is developed assuming
random percentage of defective units in the order quantity. The demand of the product is
random as well as sensitive to the selling price of the product. The optimal order quantity
and selling price are obtained to maximize the expected total profit. In the present
scenario of globalization and stiff competition, the business firms are giving more and
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more importance to reduction of on hand stock and acceptance of good quality and
perfect items only in inventory to maximize the expected profit of the system. This is the
reason behind the evolution of “Just In Time inventory” or “JIT”. Consequently, quality
inspection and acceptance sampling has become very important in the industry
nowadays. Rigorous inspection of each item in the ordered lot is impossible in most cases
and sometimes it might be destructive. The quality inspection process is thus based on
sample inspection and hence, it is not full proof. There is always the possibility of
having defective items in inventory and additional measures must be taken to minimize
the expected total cost. The paper can be extended by considering quality improvement
policies, capacity planning of the system or production inventory models with variable
set up costs.

Acknowledgement: We thank the referees for their very helpful comments and
suggestions for the overall improvement of the paper.
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