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Abstract: The paper investigates a single period imperfect inventory model with price 
dependent stochastic demand and partial backlogging. The backorder rate is a nonlinear 
non-increasing function of the magnitude of shortage. Two special cases are considered 
assuming that the percentage of defective items follows a truncated exponential 
distribution and a normal distribution respectively. The optimal order quantity and the 
optimal mark up value are determined such that the expected total profit of the system is 
maximized. Numerical example is given to illustrate the proposed model which is 
compared with the traditional model of perfect stock. Sensitivity analysis is performed to 
explain the behavior of the proposed model with respect to the key parameters. 
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1. INTRODUCTION 

The traditional inventory models generally assume that an ordered lot contains 
all perfect items and hence, the possibility of shortage due to imperfect items in the 
accepted lot is ignored. But in reality, this concept is not fully acceptable in view of the 
extensive use of acceptance sampling in the quality control process in today’s business 
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and industry scenario. Ignoring this possibility may cause shortage during the selling 
season, and consequently increase the operating costs of the inventory system apart from 
loss of sales and customer goodwill in the highly competitive market. The objective of 
the paper is to analyze the optimal ordering and pricing policies for the retailer such that 
the expected total profit of the system is maximized.  

Shih [33] analyzed two inventory models, a deterministic EOQ model, and a 
single period stochastic inventory model assuming that the ordered lot contains a random 
proportion of defective items. He developed optimal solutions to the modified systems 
and compared them numerically with the traditional models. Moinzadeh and Lee [21] 
investigated the effect of defective items on the order quantity and reorder point of a 
continuous-review inventory model with Poisson demand and constant lead time. 
Paknejad et al. [25] considered a random number of defective units in the ordered lot in a 
continuous review system (s, Q) with stochastic demand and constant lead time. They 
developed explicit results for the cases of exponential and uniform demand during lead 
time assuming that the number of defective items in a lot follows a binomial process. 
Affisco et al. [3] also investigated the effect of lower set up cost on the operating 
characteristics of the model. Porteus [29] analyzed the process of quality improvement 
and set up cost reduction, and determined the optimal lot size for an inventory model in 
his paper. Rosenblatt and Lee [31] developed a production inventory model with 
imperfect production process. Lin [20] presented a stochastic periodic review integrated 
inventory model involving defective items, backorder price discount, and variable lead 
time. Panda et al. [28] developed a single period inventory model with imperfect 
production and random demand under chance and imprecise constraints. Wee et al. [37] 
analyzed an optimal inventory model for defective items and shortage backordering. 
Chang et al. [6] studied Wee’s [37] model to include the well known renewal-reward 
theorem and derived closed form solutions for the optimal lot size, backorder quantity 
and the maximum expected net profit. Hu et al. [14] investigated a two-echelon supply 
chain system with one retailer and one manufacturer for perishable products. They 
proposed two fuzzy random models for the newsboy problem with imperfect items in the 
centralized and decentralized systems. They used expectation theory and signed distance 
to transform the two fuzzy random models to the crisp ones. They showed that 
manufacturer’s repurchase strategy can increase the whole supply chain profit. Nasri et 
al. [22] considered a basic EOQ model that allows stock out and backordering assuming 
random number of defective items. They gave closed form expressions for the cases 
when the proportion of defectives follows uniform and exponential distributions. 
Paknejad et al. [26] adjusted the EOQ model with planned shortages and quality factor. 
Nasri et al. [23] developed an EMQ model with planned shortage and random defective 
units. Cheng [10] discussed an EPQ model with process capability and quality assurance 
considerations. Goyal et al. [13] surveyed integrated production and quality control 
policies for EPQ inventory models. They provided closed form expressions when the 
proportion of defective units in a lot follows a one-sided truncated exponential 
distribution. In two recent papers Nasri et al. [22, 27] studied the relationship between 
order quantity and quality for processes that have not yet achieved the state of statistical 
control.  

Khouza [17] gave a note on the single period newsboy problem with an 
emergency supply option. He did an extensive literature survey on the single period 
news-vendor problem in his paper [18], and suggested directions for future research. 
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Geunes et al. [12] considered an infinite horizon inventory system in the newsvendor 
model. In the present competitive market, the selling price of a product is one of the most 
important decisive factors to the buyers. Generally, higher selling price of a product 
negates the demand, and reasonable and low selling price increases the demand of the 
product. Whitin [39] first developed an inventory model with price-dependent demand. 
Chao et al. [9] discussed joint replenishment and pricing decisions in inventory systems 
with stochastically dependent supply capacity. They analyzed a single period periodic 
review system with price dependent stochastic demand. Recently Qin et al. [30] reviewed 
the newsvendor problem and provided directions for future research. 

In many of the articles discussed in literature either shortages are not allowed, or 
if occur, they are considered to be completely backlogged. However, in today’s highly 
competitive market providing varieties of products to the consumers due to globalization, 
partial backorder is a more realistic one. For fashionable items and high-tech products 
with short product life cycle, the willingness of a customer to wait for backlogging 
during the shortage period decreases with the waiting time. During the stock-out period, 
the backorder rate is generally considered as a non-increasing linear function of 
backorder replenishment lead time through the amount of shortages. The larger the 
expected shortage quantity is, the smaller the backorder rate would be. The remaining 
fraction of shortage is lost. This type of backlogging is called time-dependent partial 
backlogging. Abad discussed many pioneering and inspiring backlogging rates as 
functions of waiting time. Abad [1] developed an optimal pricing and lot-sizing inventory 
model for a reseller considering selling price dependent demand. Abad [2] formulated 
optimal lot sizing policies for perishable goods in a finite production inventory model 
with partial backlogging and lost sales. Liao et al. [19] investigated a distribution-free 
newsvendor model with balking and lost sales penalty. Zhou et al. [41] analyzed 
manufacturer-buyer co-ordination in an inventory system for newsvendor type products 
with two ordering opportunities and partial backorders. They developed a newsvendor 
type co-ordination model for a single-manufacturer single buyer channel with two 
ordering opportunities. The excessive demand after the first order is partially backlogged 
and both parties share the manufacturing setup cost of the second order (if occurs). It was 
showed that the decentralized system would perform best if the manufacturer covers 
utterly the second production setup cost, opposite to what was shown by Weng et al. [38]. 
They extended the model of Weng et al. [38] in the sense that the second order decision 
is made by the buyer based on the channel’s benefit rather than only on the buyer’s 
benefit. Chang et al. [7] investigated a partial backlogging inventory model for non-
instantaneous deteriorating items. They assumed that the demand of the items are stock 
dependent, and proposed a mathematical model and a theorem to find minimum total 
relevant cost and optimal order quantity of the model under inflation. Chang et al. [8] 
deal with the optimal pricing and ordering policies for a deteriorating inventory model 
with limited shelf space. They considered that the demand of an item is dependent on the 
on-display stock level and the selling price per unit. They extended the traditional EOQ 
inventory models to two types of models for maximizing profits and derive the 
algorithms to find the optimal solution. Oberlaender et al. [24] analyzed dual sourcing 
strategies using an extended single-product newsvendor model with two order points. 
They used an exponential utility function to model different risk preferences. They 
showed that dual sourcing strategies are always preferable to an exclusive offshore 
approach, as long as the onshore ordering costs are smaller than the selling price of the 
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product. Also, the more risk-averse the decision maker, the smaller the offshore order 
quantity is. Newsvendor models are widely used in literature assuming risk neutrality. 
Wang et al. [36] discussed a loss-averse newsvendor model and showed that when the 
shortage cost is not negligible, the optimal order quantity may increase the wholesale 
price and decrease the retailer’s price, which can never occur in the risk neutral 
newsvendor model. Yang et al. [40] studied a newsvendor, who decides an order quantity 
and selling price to maximize the probability of achieving both profit and revenue targets 
simultaneously. They found that the probability depends critically on the relative 
magnitudes of the profit margin and the ratio between the profit target and the revenue 
target. They showed that if the product has greater price elasticity, the best strategy is 
always to price lower and order more. Tang et al. [34] investigated dynamic pricing in 
the newsvendor problem with yield risks. Arcelus et al. [4] evaluates the pricing and 
ordering policies of a retailer, facing a price-dependent stochastic demand for 
newsvendor type products under different degrees of risk tolerance and under a variety of 
optimizing objectives. Karakul [15] formulated joint pricing and procurement policies for 
fashion goods in the existence of clearance markets with random demand that follows a 
general distribution. The regular seasonal demand is assumed to be a linear decreasing 
function of the price of the product and excessive inventory at the end of the season is 
sold in the clearance market at a discounted price. He showed that the expected profit 
function is unimodal irrespective of the existence of clearance market. Donohue [11] 
analyzed efficient supply contracts in an inventory model for fashion goods with forecast 
updating and two production modes. Cachon [5] investigated allocation of inventory risks 
in a supply chain with push, pull, and advance-purchase discount contracts. Sahin et al. 
[32] proposed a single period newsvendor model where the inventory data capture 
process using the barcode system is prone to errors that lead to inaccurate data. They 
derived analytically the optimal policy in presence of errors when both demand and 
errors are uniformly distributed. In the second part, they examined the qualitative impact 
of record inaccuracies of an inventory system with additional coverage and shortage cost. 
Keren [16] developed a special form of the single period newsvendor problem with the 
known demand and random supply. He formulated general analytic solution for two 
types of yield risks, additive and multiplicative. Numerical examples are presented for 
the special case of uniformly distributed yield risk. Analysis of a two-tier supply chain of 
customer and producer revealed that when the customer orders more, it increases the 
producer’s optimal production quantity. Wagner [35] discussed different inventory 
models and analyzed their applications in his book “Principles of Operations Research, 
with Applications to Managerial Decisions”.          

The present paper develops a single period inventory model assuming that the 
percentage of defective items in the order quantity is a random variable. Two special 
cases are considered assuming that the percentage of defectives follows truncated 
exponential distribution and normal distribution, respectively. The demand of the product 
is dependent on the selling price and has a random component, which follows a general 
probability distribution. Shortage may occur, either due to the presence of defective items 
in the ordered lot, or due to the uncertainty of demand. Shortage, if occurs, is partially 
backlogged and the remaining fraction is lost. The backorder rate is a negative 
exponential function of the magnitude of shortage. The optimal order quantity and the 
optimal selling price are determined.  
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The rest of this paper is organized as follows. In the next section, the 
assumptions and notations used in the paper are stated. In Section 3, the proposed 
inventory model is developed, and two special cases are considered in section 4. 
Numerical examples and sensitivity analysis carried out to examine the sensitivity of the 
optimal solution in the neighborhood of the key parameters of the model are given in 
section 5.  Section 6 suggests directions for future research in the related area.  

 
2. NOTATIONS AND MODELING ASSUMPTIONS  

The mathematical models for the proposed stochastic inventory models are 
based on the following notations and assumptions: 
 
2.1. Assumptions 

i. This is a single period inventory model for seasonal items. 
ii. Demand per season, Y is a continuous random variable dependent on retailer’s 

selling price p.  
iii. The ordered lot contains a random number of defective items, which follows a 

general probability distribution. 
iv. Shortage may occur in the proposed inventory model either due to the 

unexpected presence of defective units in the accepted lot or due to the 
uncertainty of demand. 

v. Shortages, if occur are partially backlogged. The fraction of shortage 
backordered is a negative exponential function of the magnitude of shortage.  
Units unsold at the end of the season, if any, are removed from the retail shop to 
the outlet discount store and are sold at a lower price than the cost price of the 
item viz. the salvage value. 
 
 

2.2. Notations 

Q  the order quantity (a decision variable) 
Z  the percentage of defective units in the ordered lot which is a random variable  
z  the value of Z   

1Q  the percentage of non-defective / perfect items in the ordered lot i.e., 

1 (1 )Q Q z= −  
c  the unit cost price for the retailer 
m  the mark up value (a decision variable)   
p  the unit selling price for the retailer where p = m c 
X  a continuous random variable  
x  the value of X   

( )f x  the probability density function of X   
Y  the demand per season, given by Y a b= −  p X+  where a , b  are real 

numbers such that 0a b>> > . 
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y           the value of Y  i.e., y a b= −  p x a b+ = −  0c m x+ ≥  i.e. 
( )

am
bc

<  

( )g z       the probability density function of Z  

1( )y Qβ −  the fraction of shortages which is backordered i.e., 1( )
1( ) y Qy Q e εβ − −− =  where 

ε  is a positive real number. When 1( ) 1( 0)y Q orβ − =  then shortages are 
completely backlogged (or completely lost). 

( *, *)Q m  the optimal order quantity *Q  and optimal mark up value *m  which 
maximize the expected total profit ETP( Q, m).  

bC  the unit backorder cost in case of shortage 

1C  the unit cost of lost sales in case of shortage, 1C p c η= − + , where η  is a 
nonnegative real number 

λ  1 / λ  is the average value of the r.v. X  when X  follows exponential 
distribution  

θ  1 /θ  is the parameter of the p.d.f. of the r.v. Z  when the percentage of 
defectives Z  in the ordered lot follows a truncated exponential distribution 

μ  mean of Z  when Z  follows normal distribution 
σ  standard deviation of Z  when Z  follows normal distribution 

 
 

3. MODEL FORMULATION 

In traditional models, it is generally assumed that the order quantity contains all 
perfect and usable units. But, in reality, there exist a random percentage of defective units 
in the delivered lot. If the probability of imperfect units in stock is not considered while 
formulating inventory policies, then it might increase the operating costs of the inventory 
system apart from stock outs and loss of customer goodwill. In this paper, a stochastic 
inventory model is developed assuming random percentage of defective units in the 
accepted lot. Two special cases are considered presuming that the percentage of defective 
units in the order quantity follows truncated exponential distribution and truncated 
normal distribution, respectively. The results are compared with the traditional model of 
all perfect items.  

In the classic single period problem (SPP, newsboy problem or newsvendor 
problem), the retailer makes orders for seasonal items per unit cost c, and prepares well 
before the beginning of the selling season since the items generally have a very long 
replenishment lead time. The items are sold during the season at the unit selling price 
p mc= . The order quantity Q  and the mark up value m are considered as the decision 

variables in the problem. Demand is probabilistic in nature and also depends on the 
selling price p.  
 
3.1. Model I: Inventory with imperfect items  

Let z represent the random percentage of defective items in the ordered lot Q . 
Then 1 (1 )Q Q z= −  is the available perfect or usable unit in the stock. The defective 
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items are discovered at the time of sale and are returned to the vendor for refund at his 
cost. Now, there may be two kinds of shortages. Shortage may occur when the expected 
demand ( )y a b p x= − +  is less than or equal to the order quantity Q , but greater than 

1Q , the available perfect units. Again, shortage may occur when the expected demand y 
exceeds the order quantity Q . The retailer has to sell unsold units, if there be any, at the 
end of the season at a price lower than the cost price of the item viz. the salvage value 
and incur loss. If 1y Q> , the retailer incurs a shortage cost for each unit shortage during 
the season. Here shortage is assumed to be partially backlogged. The parameter β  
represents the fraction of shortage, which is backordered. The remaining fraction is lost. 
The partial backlogging rate is given by  

1( )
1( ) , 0y Qy Q e εβ ε− −− = >  

The magnitude of shortage is equivalent to the backorder replenishment lead 
time. As backorder replenishment lead time increases, the expected shortage amount 
increases, and people tend to order less. The expected shortage amount is given by 

1 1( ) ( ) ( )y Q a b p x Q x q− = − + − = − , say, where 1( )q Q a b p= − + .  
 

The parameter β satisfies the following properties: 

(i) 
1( ) 0 1lim ( ) 1y Q y Qβ− → − =   

i.e. the complete backorder case. 

(ii) 
1( ) 1lim ( ) 0y Q y Qβ− →∞ − =   

i.e. the complete lost case. 
 

The backorders are replenished through emergency orders during the period 
incurring additional cost per unit backorder to avoid lost sales penalty and loss of 
customer goodwill. The backordered units are assumed to contain all perfect units. The 
different costs associated with the inventory model are ordering cost, expected backorder 
cost and expected cost of lost sales. 

The expected overstock i.e. the expected number of unsold units at the end of 
the season is 

0 ( ) ( ) ( )qH q x f x dxg z dz= −∫ ∫  (3.1) 

where 0 1z< ≤  
The expected shortage is   

( ) ( ) ( )qS x q f x dxg z dz∞= −∫ ∫  (3.2) 

The expected backorder in case of shortage is 
( )( ) ( ) ( )x q

qB x q e f x dxg z dzε∞ − −= −∫ ∫  (3.3) 

where ( 0)ε >  is a real number. 
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Hence, expected lost sales  

( )L S B= −  (3.4)  

The expected number of perfect units in inventory 
1
0 1 ( )G Q g z dz= ∫  

Now, expected revenue earned in No Shortage case  
1R = Expected revenue earned from sold units + Expected salvage value of 

unsold perfect units  

( )p G H v H= − +  (3.5) 

where p = m c  
Expected revenue earned in case of shortage 

{ }
{ }

( )
2 1

1

( ) ( ) ( )

( ) ( )

x q
q

q

R p Q x q e f x dxg z dz

p Q f x dxg z dz B

ε∞ − −

∞

= + −

= +

∫ ∫
∫ ∫

 (3.6)  

Therefore, expected total revenue earned during the season  

1 2ETR R R= +  (3.7) 

Expected total cost of the system 
ETC = Ordering cost of perfect units + Expected backorder cost + Expected cost 

of lost sales  

1

1( )
b

b l

c G C B C L
c G C C B C S

= + +

= + − +
 (3.8) 

Therefore, the expected total profit of the system  
 

ETP ETR ETC= −  

1 2 ( )b l lR R c G C C B C S= + − − − −  (3.9) 

Maximizing ETP with respect to the decision variables Q and m, we get the optimal 
values of the decision variables denoted by Q* and m* satisfying the necessary 
conditions  

0, 0ETP ETP
Q m

∂ ∂
= =

∂ ∂
 (3.10)  

Let ( )QQ Qm

mQ mm

ETP ETP
ETP ETP

Δ =  be the Hessian matrix, where 
2

2QQ
ETPETP
Q

∂
≡

∂
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The expected total profit ETP will be maximum at the point ( *, *)Q m  if and only if Δ  is 
negative definite at the point ( *, *)Q m  so that the principal minors of Δ are alternatively 
negative and positive, i.e., 

1 2( *, *) ( *, *)

2
3 ( *, *)

0, 0

( ) 0

QQ Q m mm Q m

QQ mm Qm Q m

ETP ETP

and

ETP ETP ETP

Δ = < Δ = <

Δ = Δ = − >

, (3.11) 

 
3.2. Model II: Inventory with all perfect units 

Assuming 0z =  in the above model, we get the traditional model of all perfect 
units. 
 

4. SPECIAL CASES 

The total demand per season is given byY a b p X= − + . Let the random 
variable X  follow exponential distribution and the probability density function of X  is 
given by 

( ) 0xf x e when xλλ −= ≤ < ∞  (4.1) 

0= , otherwise where 0λ >  and 1( )E x
λ

= . 

4.1. Percentage of defectives in the ordered lot follows truncated exponential 
distribution    

In this case, the probability density function of Z  is 

( ) ,0 1, 0
(1 )

zg z e z
e

θ
θ

θ θ−
−= < ≤ >

−
 (4.2) 

Then the expected total profit of the system from equation (3.9) is given by 

ETP= 

{ }

2

2 2 2

( ) 1 1 1( ) ( ) ( )
( )

( 1 )
( )

( )
( )

d Q

d Q b l l

d
Q

e e e dp c Q v p Q
Q

p C C CQp e e Q e
Q

e e e
Q

λ θ λ

λ θ λ

λ
θ λ

α β
β γ θβ βλλ λ θ

β λ θ
λ λ θ η λ

β
λ θ

− −

− −

− −

⎡ ⎤−
− + − − + − − +⎢ ⎥−⎣ ⎦

⎧ − + ⎫
− + − + −⎨ ⎬

− ⎩ ⎭

−
−

 (4.3) 
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where 1, , / (1 ), , ,e d a b p p c mθ βη λ ε γ θ λ β γ α
γ θ

− ⎧ ⎫
= + = = − = − = − =⎨ ⎬

⎩ ⎭
 (4.4) 

Here we have 

{ }

2

2

2

2 2

2
( )

( ) 2

( ) (1 ) (2 ) ( )

1(1 )(2 )
( ) ( )( )

2 (1 )( ) 2 (1 )

Q b

a b c m Q Q
Q

bcm Q a Q

ETP
m

cb ve mc u c

c bQ ee e bcm
Q Qe e

b e e Q e

θ λ

θ
λ θ λ

θ λ

λ θ θ λ

λ ρ
θ η λ

β λ
θ λ θ θ λ

θ λ ρλ
θλ

− +

− − − +

+ − − − +

∂
=

∂
⎡ ⎤⎧ ⎫

− + − + −⎨ ⎬⎢ ⎥
⎩ ⎭⎢ ⎥

⎢ ⎥⎧ ⎫⎢ ⎥− + − − −⎨ ⎬
− ⎢ − ⎥−⎩ ⎭

⎢ ⎥
⎢ ⎥+ − − − −
⎢ ⎥
⎣ ⎦  

(4.5) 

Now 
2

2 0ETP
m

∂
<

∂
 when ( 2) , 2Q θ θ

λ
−

< > , and ( )
( ) ( )
a Q am

bc bc
−

< <  . 

Since 

2 2( ) 0bc v
η λ

− >  and 2 21 ( ) 1λρλ
λ ε

⎧ ⎫= − <⎨ ⎬
+⎩ ⎭

 (4.6) 

{ }

2

2

2

3 2

2

2

( )
2 2

2

2 (1 ) 2 (2 )
( ) ( ) ( )

( )( 2) 2(1 )
( )

(2 ) ( )
( )

( )
( )2 ( 1 )

( )

Q Q e Q

Q Q

Q

a bcm Q b

Q

QQ

ETP
Q

e Qe Qcm
Q e e e e

Q Q e
Q

c ve mc u c
Q

Q Q e
e ecm Q e

Q

θ λ λ λ

θ λ θ λ

θ λ

λ

θ λ

θ λθ λ

θ λ λ
θ λ

λ θ λ θ λ
θ λ

β ρ
θ λ η λ

λ θ λ
θ λ

θ λ

− +

− +

− −

+

− +

∂
∂

⎧ ⎫− +
− −⎨ ⎬

− − −⎩ ⎭

+ − − − + −
−

⎧ ⎫
= − + − + −⎨ ⎬

− ⎩ ⎭

−
−− − +

+
−

2

( )
( )( )

1
( ) ( )

Q

Q

e Q
Qe e

ecm Q
Q e e

θ

θ λ

θ

θ λ

θ θ λ
θ λ

λ
θ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫⎢ ⎥+⎪ ⎪⎢ ⎥⎪ ⎪
⎢ ⎥⎨ ⎬

+⎢ ⎥⎪ ⎪−⎢ ⎥⎪ ⎪−−⎩ ⎭⎢ ⎥
⎢ ⎥⎧ ⎫
+ −⎢ ⎥⎨ ⎬

− −⎢ ⎥⎩ ⎭⎣ ⎦

 (4.7) 
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2

2 0ETP
Q

∂
<

∂
 when 4θ >  and 2Q

λ
<  since 2 2( ) 0bc v

η λ
− > , 

(2 ) (2 1) 0mc u c c m u+ − = − + >  (see Appendix I) (4.8) 

Also 
2

2 2

( )

2
2 2

( 1)(1 )
( ) ( ) ( )

1 ( 1 )
( ) ( )

1( 1)( ( ) 2 )
( )( )

( ( ) ( ))

Q
Q

Q Q

a b c m Q Q

Q

b

ETP
Q m

Qe ebcm e
e e e e Q

c e Q е
Q Q

ebcm Q
Qe е

c vb u c

θ λ θ
θ λ

θ λ θ λ

λ θ λ

θ

θ λ

θλ
λ λ θ λ

β θ λ
θ λ θ λ

λ ρλ
θ λ

λ ρ
η λ

+
− +

− − − +

∂
=

∂ ∂

⎡
⎢
⎢
⎢ ⎧ ⎫
⎢− − − + −⎨ ⎬

− − −⎢ ⎩ ⎭
⎢
⎢+ − − +
⎢− −
⎢
⎧ ⎫⎢ − − −⎪ ⎪⎢ −−⎪ ⎪⎢⎨ ⎬
⎪ ⎪− − + −⎪ ⎪⎩ ⎭⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥

⎦  

( 1) 0bcmλ − >  when 1m
bcλ

>  

It can be shown that 
2 2 2

2
2 2( )( ) ( )ETP ETP ETP

Q mm Q
∂ ∂ ∂

>
∂ ∂∂ ∂

 (see Appendix II) (4.9) 

Therefore, maximizing ETP with respect to the decision variables Q and m, we 
get the optimal values of the decision variables Q* and m*, respectively, satisfying the 
required necessary and sufficient conditions given by (3.10) and (3.11). 
 
4.2. Percentage of defectives in the ordered lot follows truncated normal 
distribution with mean μ  and standard deviation σ  

The probability density function of Z  is as follows: 
2

2
( )

2( ) , 0 1
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zKg z e z
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where 
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Making a transformation of variable from Z to the standard normal variable U, 

the p.d.f. of U is obtained as 
2
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−
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−

=  

Proceeding similarly as in Section 4.1, we get the optimal inventory policy of 
the proposed model in this case also. 
 

5. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS 

5.1. Numerical Example 

Example1: The following values of the given set of parameters are taken c = 100, Cb = 
130, Cl = p – c + 50, a = 1000, b = 3, ε = 0.001, v = 50, λ = 1/400, θ =1/ 0.2,          µ = 
0.2, σ = 0.05 in appropriate units. The outputs (optimal solutions) generated by computer 
are presented in Table 1 and Table 2.  

 
Table 1: Exponential distribution results 

Optimal order quantity Q* 723.11 
Optimal mark up value m* 2.612 
Expected total profit ETP* 117504.0 
Expected perfect units G* 583.393 
Expected overstock H* 137.506 
Expected Shortage S* 170.338 
Expected backorder B* 86.907 
Expected Loss of sales L* 83.431 

 
Table 2: Normal distribution results 

Optimal order quantity Q* 735.428 
Optimal mark up value m* 2.577 
Expected total profit ETP* 122362.0 
Expected perfect units G* 588.337 
Expected overstock H* 124.237 
Expected Shortage S* 162.683 
Expected backorder B* 83.001 
Expected Loss of sales L* 79.681 
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Tables 1 and 2 show that the expected total profit ETP* is greater ($122362.0 – 
$117504.0 = $4858.0) in case of normally distributed percentage of defectives than the 
exponential case, though the optimal mark up value m* is higher in the second case.  

 
Table 3: Traditional case (perfect stock)  

Optimal order quantity Q* 587.887 
Optimal mark up value m* 2.5757 
Expected total profit ETP* 122637 
Expected overstock H* 122.986 
Expected Shortage S* 162.383 
Expected backorder B* 82.848 
Expected Loss of sales L* 79.534 

 
Comparing the results in Table 3 with the results in Tables 1 and 2, we see that 

the optimal order quantity Q* increases significantly in imperfect cases (23% (approx.), 
in case of exponential distribution, and 25% (approx.) in case of normal distribution) 
compared to the perfect case. The expected total profit ETP* is, however, greater in the 
traditional case than in the defective cases, which is expected. If the traditional optimal 
policy (Q*, m*) = (587.887, 2.5757) is substituted in the profit functions of cases with 
exponentially and normally distributed defective items, then ETP = $115167.0 and ETP 
= $119210.0, respectively are obtained. Therefore, if a retailer adopts the traditional 
optimal policy when the order quantity contains imperfect items then he/she will incur a 
potential loss of profit (2% (approx.) in case of exponential distribution, and 2.6% 
(approx.) in case of normal distribution), which depends on the probability distribution of 
the percentage of defective items in the order quantity. The numerical results are further 
explained with the help of the following 3D graphs drawn below by using 
MATHEMATICA. 

 

0

500

1000

1500

2000

Q

2

3

4

5

m

-100000

0

100000

ETP

0

500

1000

1500

2000

Q

 

Figure 1: Expected profit function ETP vs. order quantity Q and mark up value m for 
normally distributed defective items. 
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Figure 2: Expected profit function ETP vs. order quantity Q and mark up value m for 
exponentially distributed defective items. 

Figures 1- 2 indicate that the expected profit functions are strictly concave with 
respect to the decision variables Q and m for  cases when the percentage of defectives in 
the order quantity follows truncated normal distribution and one-sided truncated 
exponential distribution. The expected profit of the proposed model is maximum at the 
point (Q*, m*) i.e., (735.428, 2.577) and (723.110, 2.612) for normally distributed and 
exponentially distributed percentage of defectives respectively.  
 

5.2. Sensitivity analysis 

The proposed inventory model is further analyzed through sensitivity analysis in 
case of exponentially distributed percentage of defectives (θ = 1/0.05) in the order 
quantity with respect to the key parameters of the model using the following Tables 4-10 
and the corresponding Figures 3-9:  
 
Table 4: Effect of unit cost of lost sales Cl = p – c + η 
η Q* m* ETP* H* G* S* B* L* 
30 608.702 2.5639 124151 115.766 578.267 168.329 85.882 82.447 
35 611.314 2.5673 123713 117.800 580.748 166.871 85.138 81.732 
40 613.913 2.5706 123279 119.830 583.217 165.436 84.406 81.030 
45 616.499 2.5739 122849 121.855 585.674 164.026 83.687 80.339 
50 619.074 2.5771 122424 123.878 588.120 162.637 82.978 79.659 
55 621.637 2.5802 122002 125.896 590.555 161.272 82.281 78.990 
60 624.188 2.5834 121584 127.911 592.979 159.927 81.595 78.332 
65 626.728 2.5864 121170 129.921 595.392 158.604 80.9203 77.684 
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Table 5: Effect of unit backorder cost Cb 
 Cb Q* m* ETP* H* G* S* B* L* 
100 602.780 2.5561 125153 111.178 572.641 171.704 87.604 84.099 
110 608.266 2.5633 124225 115.427 577.853 168.575 86.008 82.567 
120 613.697 2.5703 123315 119.660 583.012 165.555 84.467 81.088 
130 619.074 2.5771 122424 123.878 588.120 162.637 82.978 79.659 
140 624.400 2.5836 121549 128.079 593.180 159.816 81.539 78.277 
150 629.678 2.5899 120692 132.262 598.194 157.086 80.146 76.940 
160 634.907 2.5961 119850 136.429 603.162 154.443 78.798 75.646 
170 640.091 2.6020 119024 140.576 608.086 151.884 77.492 74.392 
 
Table 6: Effect of unit salvage value v 
v Q* m* ETP* H* G* S* B* L* 
0 561.898 2.4975 118133 80.685 533.803 197.638 100.836 96.802 

10 570.872 2.5113 118840 87.213 542.328 191.488 97.698 93.790 
20 580.855 2.5261 119612 94.599 551.812 184.960 94.367 90.592 
30 592.038 2.5419 120459 103.011 562.436 178.011 90.822 87.189 
40 604.667 2.5588 121391 112.673 574.434 170.591 87.036 83.555 
50 619.074 2.5771 122424 123.878 588.120 162.637 82.978 79.659 
60 635.709 2.5968 123573 137.027 603.924 154.070 78.607 75.463 
70 655.215 2.6182 124863 152.694 622.454 144.783 73.869 70.914 
 
Table 7: Effect of a 
   a Q* m* ETP* H* G* S* B* L* 

1000 619.074 2.5771 122424 123.878 588.120 162.637 82.978 79.659 
1100 645.777 2.7097 148910 103.893 613.488 177.486 90.554 86.932 
1200 670.051 2.8345 178335 82.862 636.548 195.966 99.983 95.984 
1300 692.056 2.9495 210977 61.438 657.453 219.131 111.802 107.33 
1400 711.942 3.0523 247212 40.575 676.345 248.531 126.801 121.729 
1500 729.849 3.1396 287561 21.757 693.357 286.517 146.182 140.335 
1600 745.908 3.2068 332769 7.449 708.613 336.781 171.827 164.954 
1700 760.230 3.2479 383943 1.965 722.219 405.368 206.820 198.547 
  
Table 8: Effect of b 
b Q* m* ETP* H* G* S* B* L* 

0.5 786.796 14.0130 1070150 179.264 747.456 131.153 66.915 64.238 
1.0 745.362 7.1485 499199 162.538 708.094 139.593 71.221 68.372 
1.5 709.041 4.8612 309710 149.517 673.589 146.748 74.872 71.877 
2.0 676.435 3.7183 215539 139.141 642.613 152.867 77.994 74.874 
2.5 646.649 3.0332 159466 130.742 614.317 158.123 80.675 77.448 
3.0 619.074 2.5771 122424 123.878 588.120 162.637 82.978 79.659 
3.5 593.273 2.2518 96244 118.236 563.309 166.507 84.952 81.554 
4.0 568.919 2.0083 76846 113.591 540.473 169.806 86.636 83.170 
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Table 9: Effect of θ  
1/θ Q* m* ETP* H* G* S* B* L* 

0.03 606.168 2.5762 122567 123.294 587.983 162.463 82.890 79.574 
0.04 612.550 2.5765 122506 123.545 588.048 162.535 82.926 79.609 
0.05 619.074 2.5771 122424 123.878 588.120 162.637 82.978 79.659 
0.06 625.735 2.5777 122316 124.283 588.191 162.782 83.052 79.730 
0.07 632.524 2.5787 122180 124.802 588.248 162.953 83.139 79.814 
0.08 639.427 2.5798 122012 125.396 588.275 163.183 83.257 79.926 
0.09 646.428 2.5812 121809 126.082 588.259 163.469 83.403 80.067 
0.10 653.503 2.5828 121569 126.855 588.182 163.820 83.582 80.238 
 
Table 10: Effect of (µ, σ) taking σ = 0.02 

µ Q* m* ETP* H* G* S* B* L* 
0.03 607.848 2.5759 122614 123.092 587.925 162.408 82.861 79.547 
0.04 613.135 2.5759 122610 123.111 587.932 162.412 82.863 79.549 
0.05 619.111 2.5759 122608 123.122 587.937 162.415 82.865 79.550 
0.06 625.527 2.5759 122606 123.130 587.940 162.417 82.866 79.551 
0.07 632.207 2.5759 122605 123.135 587.941 162.417 82.866 79.551 
0.08 639.070 2.5759 122604 123.137 587.943 162.419 82.866 79.552 
0.09 646.093 2.5759 122604 123.142 587.944 162.419 82.866 79.552 
0.10 653.273 2.5759 122603 123.145 587.946 162.420 82.867 79.553 
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Figure 3: Percentage change in the optimal solution vs. percentage change in η 
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Figure 4: Percentage change in the optimal solution vs. percentage change in a 
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Figure 5: Percentage change in the optimal solution vs. percentage change in Cb 
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Figure 6: Percentage change in the optimal solution vs. percentage change in v 
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Figure 7: Percentage change in the optimal solution vs. percentage change in µ 

 

Figure 8: Percentage change in the optimal solution vs. percentage change in 1/ θ 
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Figure 9: Percentage change in the optimal solution vs. percentage change in b 
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From the Figures 3 – 9, we observe that  
i. From Fig. 3, we see that S* is slightly sensitive to η and decreases as η increases, 

which is expected since the cost of lost sales Cls rises as η increases. The other 
variables Q*, m*, and ETP* are insensitive to η. 

ii. From Fig. 4, it is found that, the optimal expected profit ETP* is highly sensitive to a 
and increases rapidly as a increases. Further, the rate of increase rises for higher 
values of a. The variables Q*, m*, and S* are moderately sensitive to a and increase 
as a increases. 

iii. From Fig. 5, S* is moderately sensitive to Cb and decreases as Cb increases. Q* and 
ETP* are slightly sensitive to Cb. Q* increases as Cb increases, whereas ETP* 
decreases. However, m* is insensitive to Cb. 

iv. From Fig. 6, S* is moderately sensitive to the salvage value v and decreases as v 
increases. This is justified, since higher value of v motivates overstock and hence 
lower expected shortage. Q* is also moderately sensitive to v. ETP* and m* are 
slightly sensitive to v and increase with v. 

v. From Fig. 7, Q* is slightly sensitive to µ and increases as µ increases. However, the 
other variables are insensitive to µ. 

vi. From Fig. 8, Q* is slightly sensitive to 1/θ and increases with 1/θ. Though, the other 
variables are insensitive to 1/ θ. 

vii. From Fig. 9, ETP* is highly sensitive to b and decreases rapidly as b increases. The 
rate of decrease falls with b. The optimal mark-up m* is again highly sensitive to b, 
whereas, Q* and S* are moderately sensitive to b. 

 
From the above sensitivity analysis we conclude that the parameters a, b, and v 

should be estimated carefully since the optimal solution is highly/moderately sensitive 
with respect to these parameters.  
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Figure 10: The truncated exponential p.d.f. (θ = 1/0.2) vs. the percentage of defectives  
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Figure 11: The truncated normal p.d.f. (µ = 0.2, σ = 0.05) vs. the percentage of 

defectives  

 

Figure 12: Comparison of expt. profit for different values of  and µ  in [0.03, 0.10] 
taking σ = 0.02 

Figure 12 shows that in case of exponentially distributed percentage of 
defectives as  increases from 3% to 10%, the expected profit decreases from 
$122567.0 to $121569. However, for normally distributed percentage of defectives, the 
decrease in expected profit is negligible. Therefore, while formulating optimal inventory 
policies extra care is needed in the exponential case for the given set of parameter values.  
 

6. CONCLUDING REMARKS 

In this paper, a single period stochastic inventory model is developed assuming 
random percentage of defective units in the order quantity. The demand of the product is 
random as well as sensitive to the selling price of the product. The optimal order quantity 
and selling price are obtained to maximize the expected total profit. In the present 
scenario of globalization and stiff competition, the business firms are giving more and 
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more importance to reduction of on hand stock and acceptance of good quality and 
perfect items only in inventory to maximize the expected profit of the system. This is the 
reason behind the evolution of “Just In Time inventory” or “JIT”. Consequently, quality 
inspection and acceptance sampling has become very important in the industry 
nowadays. Rigorous inspection of each item in the ordered lot is impossible in most cases 
and sometimes it might be destructive. The quality inspection process is thus based on 
sample inspection and hence, it is not full proof.  There is always the possibility of 
having defective items in inventory and additional measures must be taken to minimize 
the expected total cost. The paper can be extended by considering quality improvement 
policies, capacity planning of the system or production inventory models with variable 
set up costs. 
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APPENDIX 
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Because 2( )( (2 ) ( ) ) 2( )( ) 0Qe Q Q Q Q e eθ θ λθ λ θ λ λ θ λ⎡ ⎤− − + − + − >⎣ ⎦  
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which is true when ( 2)Q θ
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−

<  and 2Q
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Assuming ( 2) 2θ − >  i.e. 4θ >  we get 
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∂
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Appendix II: We have 
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(4.10) 

Again  
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(4.11) 

Comparing the terms of (4.10) and (4.11) we conclude that 
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