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1. INTRODUCTION: MODEL DESCRIPTION 

The main characteristic of queuing systems with repeated attempts (retrial 
queues) is that a customer who finds the server busy upon arrival is obliged to leave the 
service area and join a retrial group (orbit). After some random time, the blocked 
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customer will have a chance to try his luck again. There is an extensive literature on the 
retrial queues and we refer the reader to [3], [7] and references there. The models in 
question arise in the analysis of different communication systems: cellular mobile 
networks, Internet, local area computer networks, see in [2], [4], [6].  

In telephone networks, we can observe that a calling subscriber after some 
unsuccessful retrials gives up further repetitions and leaves the system. In queuing 
systems with repeated attempts, this phenomenon is represented by the set of 
probabilities{ }1, ≥kHk , called the persistence function, where kH  is the probability that 
a customer will make the (k+1)-th attempt after the k-th attempt fails. In general, it is 
assumed that the probability of a customer reinitiating after failure of a repeated attempt 
does not depend on the number of previous attempts (i.e. ...432 === HHH ). In the 
queuing literature, an extensive body research addressing impatience phenomena 
observed in single or multi server retrial systems can be found, for example in [1], [8]-
[9]. An M/G/1 retrial queue with impatient customers (where 12 =H  and 12 <H ) is 
analyzed in [7]. In the case of 12 =H , the authors study the no stationary regime of the 
system, investigate the embedded Markov chain and obtain the steady state joint 
distribution of the server state and the number of customers in the retrial group. In the 
case of 12 <H , the closed form solution for the steady state distribution of the system 
state is derived only in the case of exponential service time. For general service time, the 
authors obtain the partial factorial moments of the size of retrial group in terms of the 
server utilization, and describe the embedded Markov chain. Recent contributions on this 
topic include the papers of Senthil Kumar and Arumuganathan (2009) [10], Shin and 
Choo (2009) [11], Shin and Moon (2008) [12]. In the first paper, the steady state 
behaviour of an M/G/1 retrial queue with impatient customers ( 11 <H  and 12 =H ) is 
given, where the first preliminary service is followed by the second additional one; 
possibility of the server vacation is analyzed, and some performance measures (expected 
number of customers in the retrial group, expected waiting time of the customers in the 
retrial group, ...) are obtained. In [11], the authors model the M/M/s retrial queue with 
balking and reneging as a Markov chain on two-dimensional lattice space ++ × ZZ  and 
present an algorithm to calculate the steady state distribution of the number of customers 
in retrial group and service facility. The considered model contains the retrial model with 
finite capacity of service facility by assigning specific values to the probabilities of 
joining the balking customers and reneging ones the retrial group. In [12], a retrial 
queuing system limited by a finite number (m) of retrials for each customer is analyzed as 
the model with 1=kH , for mk ≤ , and 0=kH , for mk > . 

In our work, we consider single server queuing systems where primary 
customers arrive according to a Poisson stream with rate 0>λ . If the server is busy at 
the arrival epoch, then the arriving primary customer leaves the system without service 
with probability 01 1 >−H  and joins the orbit with probability 1H . In the same situation, 
any orbiting customer leaves the system forever with probability 01 2 >− H  and returns 
to the orbit with probability 2H . If the server is idle at the arrival epoch, the 
primary/orbiting customer begins his service. The service time follow a general 
distribution with distribution function )(tB  and Laplace-Stieltjes transform 
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service time about the origin and 11βλρ H=  be the traffic intensity. Our system operates 
under so-called classical retrial policy. In this context, each blocked customer generates a 
stream of repeated attempts independently of the rest of customers in the orbit. The 
intervals between successive repeated attempts are exponentially distributed with rate 

)(0 tj Δ+θ , when the number of customers in the retrial group is j and 0>θ . Finally, we 
accept the hypothesis of mutual independence between all random variables defined 
above. 

For models in question, we review the results concerning the steady state 
distribution of the system state presented in the literature and compare them with the 
results we obtained. Since the existing formulas are cumbersome (so their utilization in 
practice becomes delicate) or the obtaining of these formulas is impossible, we apply the 
information theoretic techniques for estimating the above mentioned distribution. More 
concretely, we use the principle of maximum entropy which provides an adequate 
methodology for computing a unique estimate for an unknown probability distribution 
based on information expressed in terms of some given mean value constraints. 

This paper is organized as follows. The next section contains the existing results 
on the steady state joint distribution of the server state and the number of customers in 
the orbit of the M/G/1 retrial queues with impatient customers so as our results (some 
performance measures, moments). In the third section, we present the maximum entropy 
estimations of the steady state distribution of the system state. In the last section, we 
show through numerical results how the considered information of a theoretic method 
works for the models in question. 
 

2. STEADY STATE DISTRIBUTION OF THE SYSTEM STATE 

The state of the system at time t can be described by means of the process 
{ }0),(),(),( ≥tttNtC o ζ , where )(tNo is the number of customers in the retrial group, 
and )(tC  is the state of the server at time t. Depending on the fact that the server is idle 
or busy, )(tC  is 0 or 1. If 1)( =tC ,  )(tζ  represents the elapsed service time of the 
customer in service at time t. 

An important feature of the model under consideration is that the cases 12 <H  
and 12 =H  yield different solutions. 

Case 12 =H : Under 111 <= Hλβρ , the steady state joint distribution of the 
server state and the number of the customers in the orbit 

))(,0)((lim0 ntNtCPp otn ===
∞→  

and  
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With the help of (2) and (3), we can get the generating function of the number of 

customers in the orbit 
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When the service time follow an exponential distribution 
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We have also the mean number of customers in the orbit 
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By differentiation of formulas (4)-(5), after some fastidious algebra, we get out 
the following expressions for the partial moments 
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Case 12 <H : For model in question, the closed form solution for  
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and the mean number of customers in the system 
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Note that the system is always in steady state when 111 <= Hλβρ  and 12 <H .  
By differentiation of formulas (9)-(10), we obtain 
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3. APPROXIMATION OF THE STEADY STATE DISTRIBUTION OF 

THE SYSTEM STATE 

Since the exact formulas of the steady state joint distribution of the server state 
and the number of customers in the orbit are cumbersome or impossible to get, 
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information theoretic methods  (in particular, the principle of maximum entropy) can 
provide an adequate procedure for approximating the distribution in question [4]-[5]. 

First we summarize the maximum entropy formalism. Let Q be a system with 
discrete state space { }nsS = , and the available information about Q imposes some 
number of constraints on the distribution { })( nspP = . We assume that these constraints 

take the form of mean values of m functions{ }m
knk sf 1)( =  ( )(Scardm < ). The principle of 

maximum entropy states that, among all distributions satisfying the mean values 
constraints, the minimal prejudiced is the one maximizing the Shannon’s entropy 
functional 
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where )( nk sf  are known functions and kf  are known values. The maximization 
of )(PH  can be carried out by using  the method of Lagrange’s multipliers. 

At present, we can get the first and second order estimations for the steady state 
joint distributions (1) and (8). 
 
First order estimation 

According to the principle of maximum entropy, the first order estimation of the 
steady state distributions inp , { }1,0∈i  and 0≥n , (defined by (1) and (8)) can be 
obtained by maximizing Shannon’s entropy 
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Theorem 1. If the available information is given by k
iM , { }1,0∈i  and { }1,0∈k , then 

according to the principle of maximum entropy, the first order estimation of the steady 
state distribution of the system state is 
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Then we follow the method of Lagrange’s multipliers and find the first order 
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Second order estimation 

It is necessary to maximize the Shannon’s entropy 
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subject to the constraints 
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Theorem 2. If the available information is given by k
iM , { }1,0∈i  and { }2,1,0∈k , then 

according to the principle of maximum entropy, the second order estimation of the steady 
state distribution of the system state (defined by (1) and (8)) is 
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Proof: Again, the method of Lagrange’s multiplier is used, and to this end we consider 
the following Lagrange function 
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By applying the above mentioned method, it is easy to obtain the second order 
estimations )2(ˆ inp  of the steady state distributions inp : 

)exp(1)2ln2ln2ln2ln1exp(ˆ 2212210)2(
ii
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iiiiin nn

Z
nnp ββαααα +−=−−−+−=

 

where 

)2ln2ln1exp( 0
iiiZ αα +−= , 2ln11

ii αβ = , 2ln22
ii αβ = . 

Since ∑ ∑
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End of proof 
 

4. APPLICATION 

In this section, we illustrate numerically the use of the principle of maximum 
entropy to get the estimations for the steady state distributions (1) and (8). To this end we 
consider M/M/1 retrial queues with 11 <H  and 12 =H  (model M1) so as with 11 <H  
and 12 <H (model M2). To examine the accuracy of the maximum entropy estimations, 
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we compare the numerical outcomes from (13)-(14) and (16) against the classical 
solutions given by (6)-(7) (for model M1) and by (11)-(12) (for model M2). The obtained 
numerical results are presented in Tables 1 and 2. The last row of each table gives the 
value of the Shannon entropy (SE). We can observe that the entropy decreases when the 
number of known moments increases ( { }2,1,0∈k ). 
 
Table 1: M/M/1 retrial queue with impatient customers ( )1,9.0,1,5,9.0 21 ===== HHγθλ   
j jP0  jP1  1

0 jP  1
1 jP  2

0 jP  2
1 jP  2,1

0 jP  2,1
1 jP  

0 
1 
2 
3 
4 
5 
6 
7 
8 

0.12927 
0.01884 
0.00900 
0.00530 
0.00341 
0.00231 
0.00161 
0.00115 
0.00084 

0.11634 
0.11120 
0.09818 
0.08429 
0.07135 
0.05987 
0.04995 
0.04150 
0.03437 

0.09862 
0.04282 
0.01859 
0.00807 
0.00360 
0.00345 
0.00096 
0.00078 
0.00069 

0.13691 
0.11421 
0.09527 
0.07947 
0.06629 
0.05530 
0.04613 
0.03848 
0.03210 

0.10362 
0.03709 
0.01511 
0.00520 
0.00300 
0.00217 
0.00096 
0.00088 
0.00067 

0.12827 
0.10990 
0.09889 
0.07998 
0.06794 
0.05755 
0.04861 
0.04094 
0.03438 

0.12013 
0.01931 
0.01341 
0.00639 
0.00330 
0.00235 
0.00142 
0.00101 
0.00079 

0.11741 
0.11102 
0.09823 
0.08400 
0.07098 
0.05914 
0.04901 
0.04182 
0.03436 

SE 3.10522 3.16868 3.13633 3.11455 

Table 2: M/M/1 retrial queue with impatient customers 
( 8.02,9.0,1,5,5.0 1 ===== HHγθλ ) 

j jP0  jP1  1
0 jP  1

1 jP  2
0 jP  2

1 jP  2,1
0 jP  2,1

1 jP  

0 
1 
2 
3 
4 
5 
6 
7 
8 

0.44189 
0.15612 
0.07181 
0.02356 
0.00811 
0.00388 
0.00092 
0.00004 
0.00001 

0.35351 
0.17231 
0.09452 
0.04315 
0.03363 
0.00613 
0.00088 
0.00010 
0.00001 

0.43979 
0.18001 
0.09610 
0.02739 
0.00523 
0.00170 
0.00110 
0.00010 
0.00006 

0.37219 
0.19341 
0.10895 
0.05623 
0.03143 
0.00962 
0.00108 
0.00042 
0.00003 

0.44021 
0.17314 
0.07542 
0.02300 
0.00724 
0.00283 
0.00105 
0.00005 
0.00004 

0.35892 
0.17645 
0.09913 
0.04521 
0.03305 
0.00782 
0.00090 
0.00026 
0.00002 

0.44100 
0.15934 
0.07291 
0.02354 
0.00823 
0.00379 
0.00103 
0.00004 
0.00002 

0.35426 
0.17462 
0.09734 
0.04324 
0.03388 
0.00629 
0.00085 
0.00011 
0.00003 

SE 3.14154 3.30995 3.18720 3.15960 
 

For the first and the second order estimations, the moments k
iM  were calculated 

by taking derivates of the partial generating functions (4)-(5) and (9)-(10) at the point 
1=z . To improve the estimation, for the problem (15) we add another constraint 

providing information related to another point 0zz = , that is ∑
∞

=

=
0

00 )(
n

n
ini zpzP , 1,0=i . 

In the same way, we obtain a new estimation 

)exp(1ˆ 0
,22210),2( 00 nz

iiii
i

z
in znn

Z
p αααα −−−−= , 
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where ∑
∞

=

−−−−=
0

0
,22210 )exp( 0

n

nz
iiiii znnZ αααα . 

From tables 1 and 2, it is easy to see that the estimation improves when we use ),2( 0ˆ z
inp  

(with 55.00 =z ) instead of 2ˆ inp . 
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