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Abstract: The classical economic production quantity (EPQ) model assumes that items 
produced are of perfect quality and the production rate is constant. However, production 
quality depends on the condition of the process. Due to process deterioration or other 
factors, the production process may shift and produce imperfect quality items. These 
imperfect quality items sometimes can be reworked and repaired; hence, overall 
production-inventory costs can be reduced significantly. In addition, it can be found in 
practice that the time or cost required to repetitively produce a unit of a product decreases 
when the number of units produced by a worker or a group of workers increases. Under 
this circumstance, the unit production cost cannot be regarded as constant and, therefore, 
cannot be ignored when taking account of the total cost. This paper incorporates the 
effects of learning and the reworking of defective items on the EPQ model since they 
were not considered in existing models. An optimal operation policy that minimizes the 
expected total cost per unit time is derived. A numerical example is provided to illustrate 
the proposed model. In addition, sensitivity analysis is performed and discussed. 
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1. INTRODUCTION 

The classical EPQ/EOQ (economic production/order quantity) model has been 
widely used in practice because of its simplicity (Osteryoung et al., 1986; Silver et al., 
1988; Zipkin, 2000). Over the past five decades, numerous research efforts have been 
undertaken to extend the basic EPQ model by relaxing various assumptions so that the 
model conforms more closely to real-world situations. Two major assumptions in the 
classical EPQ/EOQ model are that the output of the production facility is of perfect 
quality and that the production rate is predetermined and fixed in advance. However, in 
reality, product quality is not always perfect, but instead a function of the reliability of 
the production process employed to manufacture the products. Due to deterioration of 
process, non-perfect technology, human mistakes, or many other factors, generation of 
imperfect quality items is inevitable. Many researchers have extended the classical EPQ 
model by considering the effect of imperfect production processes (for example, Cheng, 
1991; Freimer et al., 2006; Hou, 2007; Jaber, 2006; Khouja and Mehrez, 1994; Kim and 
Hong, 1999; Lee and Rosenblatt, 1987; Rosenblatt and Lee, 1986). In practical 
production environments, the imperfect quality items sometimes can be reworked and 
repaired; hence, overall production-inventory costs can be reduced significantly (Chiu, 
2003; Chiu et al., 2007; Hayek and Salameh, 2001; Sarker et al., 2008). Examples of 
rework include the paper industry, the semiconductor industry, the glass industry, the 
metal processing industry, and the plastic industry (Barketau, et al., 2008; Buscher and 
Lindner, 2007; Chiu et al., 2007). A few studies have been accomplished to address the 
EPQ model with rework. Porteus (1986) incorporated the effect of defective items into 
the classical EPQ model. These defective items can be reworked in the same cycle. He 
found that the optimal EPQ was smaller than the EPQ in the classical model, because 
smaller lots produce fewer defective items. Hayek and Salameh (2001) derived an 
optimal operating policy for the finite production model under the effect of reworking 
imperfect quality items, assuming that all of the defective items were reworked and 
repaired. Chiu (2003) considered a finite production model with random defective rate, 
scrapping, the reworking of repairable defective items, and backlogging. An optimal 
operating policy including lot-size and backordering level that minimizes overall 
inventory costs was derived. Jamal et al. (2004) presented an inventory model to 
determine the optimum batch quantity in a single-stage system in which rework was done 
under two different operational policies. Recently, Buscher and Lindner (2007) have 
presented an approach which allows the simultaneous determination of production as 
well as rework lot and batch sizes. Other related studies on lot sizing with imperfect 
production process and allowable rework can be found in Cardenas-Barron (2008), Chiu 
et al. (2007), Inderfurth et al. (2005, 2007), Sarker et al. (2008) and their references. 

Apart from the assumption that all units produced are of good quality, the 
constant production rate assumption is also not valid whenever the operator begins 
production of a new product, restarts production after some delay, implements a new 
production technique, or changes to a new machine. In such situations, the learning effect 
cannot be ignored. The literature concerning effect of learning on determining optimal lot 
size can be found as early as the 1960’s. Keachie and Fontana (1966) dealt with the 
effects of learning on the calculation of the optimal economic lot size in intermittent 
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production. Adler and Nanda (1974a, 1974b) analyzed the effects of learning on optimal 
lot size determination for the manufacturing cycles of single and multiple products. They 
derived optimal lot sizes for cases where either lot sizes or production intervals were 
equal. Salameh et al. (1993) presented a modified production-inventory model that 
incorporates the effect of learning on the inventory system total cost per unit time and on 
the optimal production quantity. Li and Cheng (1994) considered the effects of learning 
and forgetting on EPQ in batch production systems, and developed a dynamic 
programming method to determine optimal lot sizes. Urban (1998) investigated the 
learning effect of run length on product quality modeling the defect rate of the process as 
a function of the run length, and closed form solutions were derived. Jaber and Bonney 
(2003) studied the effects of learning and forgetting in setups and product quality on the 
economic lot-sizing problem. Chiu and Chen (2005) considered the problem of 
incorporating both learning and forgetting in setups and production into the dynamic lot-
sizing model to obtain an optimal production policy that included the optimal number of 
production runs and the optimal production quantities during the finite period planning 
horizon. Jaber and Bonney (2007) investigated the effect of lot-size dependent learning 
and forgetting rates on the lot-size problem by incorporating the dual-phase learning–
forgetting model (DPLFM) developed by Jaber and Kher (2002) into the EPQ model. 

Recently, rework activities have attracted considerable attention because of the 
reduction of the natural resources and the rise of the cost of raw material. Rework 
activities play an important role in eliminating waste and effectively controlling the cost 
of manufacturing in a production system. Therefore, determining the optimal lot size in a 
system that allows rework is a worthwhile objective to minimize the total inventory cost. 
Besides the foregoing economical motive, rework activities were also supported by a 
growing environmental consciousness. Rework activities reduce energy use, reduce the 
need to landfill defective items, and save more natural resources for the future 
generations, so the companies are contributing to sustainable development. Although 
many researchers have studied the effect of learning or imperfect production processes on 
optimal lot size decisions, little attention has been paid to the area of investigating the 
joint effects of learning and the reworking of defective items on the optimal production 
quantity. Thus, this study investigates the learning effect of the unit production time for 
an imperfect production system. We assume that the percentage of the defective items is 
a random variable with a known probability density function. All of the defective items 
can be reworked to acceptable quality, and rework time is also considered in the model. 
Defective items are assumed to be reworked while regular production processes are 
completed. The expected total cost function is derived and a solution procedure is 
established to find the optimal lot size. A numerical example is given to illustrate the 
proposed model. Furthermore, sensitivity analysis is carried out in order to study the 
impact of different problem parameters on the behavior of the model. Finally, we 
conclude with a summary of the results and suggestions for future research. 

 

2. NOTATIONS AND BASIC ASSUMPTIONS 

The notations to be used throughout this paper are defined as follows: 
 Q Production lot size for each cycle (decision variable); 
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 r Demand rate in units per unit time; 
 T1 Regular production time; 
 T2 Reworking time; 
 T3 Time required to deplete the inventory achieved by the end of time T2; 

 T Cycle time, T=T1+T2+T3= r
Q

; 

 C1 Learning rate in regular production; 
 C2 Learning rate in reworking production; 

 b1 Learning coefficient associated with regular production, 
2log

log 1
1

Cb = ; 

 b2 Learning coefficient associated with reworking production, 

2log
log 2

2
Cb = ; 

 a1 Time required to produce the first unit for each cycle; 
 a2 Time required to rework the first unit for each cycle; 
 t1(x) Time required to produce the xth unit in the regular production run, 

1
1 1( ) bt x a x= ; 

 t2(y) Time required to rework the yth unit in the reworking production run, 
2

2 2( ) bt y a y= ; 
 β Percentage of defective items in Q; 
 f(β) Probability density function of β; 
 I1(t1) Inventory level of non-defective items at time t1, 0≤t1≤T1; 
 I2(t2) Inventory level of non-defective items at time t2, 0≤t2≤T2; 
 I1max Maximum inventory level of non-defective items, when the regular 
production process stops; 
 I2max Maximum inventory level of non-defective items, when the rework 
process stops; 
 Cs Setup cost for each production run; 
 CL1 Labor production cost per unit time (inspection cost is included); 
 CL2 Repair cost of imperfect quality items per unit time; 
 Ch1 Holding cost for each perfect item (i.e., serviceable item) per unit time; 
 Ch2 Holding cost for each imperfect quality item being reworked per unit 
time; 
 TC(Q) Total cost for each cycle; 
 TCU(Q) Total cost per unit time. 
 
The following assumptions are made: 

1. Only one product is considered in a single-stage production system. 
2. Wright’s formulation (1936) of the learning effect is utilized to characterize 

the learning phenomenon for the unit production time. 
3. Throughout our present work, we assume -1<b1≤0 and -1<b2≤0, since, for 

most practical situations, the value of learning rate is greater than 50% 
(Argote and Epple, 1990; Camm, 1985; Elmaghraby, 1990; Jaber and 
Guiffrida, 2004; Li and Cheng, 1994; Muth and Spremann,1983). 
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4. The demand rate is constant. 
5. All of the defective items can be reworked to acceptable quality. Moreover, 

no defective occurs during the rework process because of careful operation 
and special attention. The unit reworking (or repairing) cost is proportional 
to the unit reworking time. 

6. The inventory holding costs include all produced items (i.e. defective and 
non-defective items). The holding cost of non-defective items is greater 
than or equal to that of defective items (i.e. Ch1≥ Ch2 ). 

7. All items are screened while producing, and the inspection cost is included 
in the labor production cost. 

8. A fixed setup cost is charged for each cycle. 
9. The production rate of perfect quality items must always be greater than or 

equal to the sum of the demand rate and the generation rate of defective 
items. Moreover, the rework rate must always be greater than the demand 
rate. 

10. No shortages or stockouts are allowed. 
 

3. MODEL FORMULATION 

Consider a production system where the effect of learning is evident. A single 
product manufactured in batches will be produced at an increasing rate, but it will be 
consumed at a constant rate r, units per unit time. The production cycle begins with zero-
inventory and starts at time t = 0. A batch quantity Q is produced for T1 time units. 
Because the production quality is not perfect, a percentage ‘β’ of imperfect quality is 
assumed to occur during the regular production process (T1). The amount of defective 
items produced in each cycle is βQ. The rework of these defective items is subsequently 
done for T2 time units, when the regular production process T1 ends. After the rework is 
completed, the production is terminated. From this point on, the on-hand inventories will 
be used to meet the demand. Another production run will be started when all on-hand 
inventory are depleted. The behaviors of the on-hand inventory level of non-defective 
items, and defective items are illustrated in Figures 1 and 2, respectively. 
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Figure 1. On-hand inventory level of non-defective items.

Figure 2. On-hand inventory level of defective items.  
 
 

The total cost for the imperfect process discussed in this paper includes 
production setup cost (SC(Q)), inventory holding cost for the non-defective items 
(HC1(Q)), inventory holding cost for the imperfect quality items being reworked 
(HC2(Q)), production cost (PC(Q)), and reworking cost (RC(Q)). The formulations of 
these costs are described in detail as follows. 

 
3.1. Setup cost  

Setup cost for each cycle is 

SC(Q)=Cs. (1) 

 
3.2. Holding cost for the non-defective items 

Under the assumptions and notations presented in the previous section, the 
cumulative time to produce Q units in regular production run, T1, can be expressed as 

T1=t1(1)+t1(2)+t1(3)+…+t1(Q) 

=a1+ a12
b1+ a13

 b1+...+ a1Q
 b1 

=a1(1+2
b1+3

 b1+...+Q
 b1) (2) 

= ∑
=

Q

x

bxa
1

1
1 . 
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An approximation can be obtained by treating Eq. (2) as a continuous function 
rather than a discrete one (Camm et al.,2004; Li and Cheng, 1994; Salameh et al., 1993; 
Jaber and Guiffrida, 2004; Smunt and Meredith, 2000). With suitable limits, we have 

.
11

1
1

0 11

1

1

+
=

∫≈
+

b
Qa

dxxaT
b

Q b

 (3) 

Thus, the expression of Q can be found as 

Q= 1
1

1
1

1 1])1([ ++ bT
a

b
. (4) 

For 0≤t1≤T1, the inventory level of non-defective items at time t1, I1(t1), can be 
computed as 

I1(t1)=(1-β) 1
1

1
1

1 1])1([ ++ bt
a

b
-rt1. (5) 

At time t1=T1, the inventory level of I1max can be easily obtained that 

I1max=(1-β)Q-rT1 (6) 

During the regular production run, the average inventory level of non-defective 
items in each cycle, AIL1, can be computed as 

22
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2
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++
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∫ −
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−=

+
+
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+
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β
 (7) 

Substituting 
11

1
1

1

+

+

b
Qa b

 for T1 in the first term of Eq. (7), we have 
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During time interval of reworking production (i.e. 0≤t2≤T2), the inventory level 
of non-defective items at time t2, I2(t2), can be computed as 
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I2(t2)=(1-β)Q-rT1+
1

1

2
2

2 2])1([ ++ bt
a

b
-rt2. (9) 

At time t2=T2, the inventory level of I2max can be easily obtained that 

I2max=Q-r(T1+ T2) (10) 

Since the amount of defective items that must be reworked in each cycle is βQ, 
the cumulative time to rework βQ units in T2 can be calculated as 

1

1
)(
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2
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22
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During the reworking production run, the average inventory level of non-
defective items in each cycle, AIL2, can be computed as 
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Substituting 
12

11
2

22

+

++

b
Qa bb β

 for T2 in the third term of Eq. (12), we have 

AIL2=(1-β)QT2-rT1T2+ 2
)

2
(

2
222

2

2 22 rTQ
b

a bb −
+

++β  (13) 

From Fig. 1, T3 can be computed as  

T3= r
I max2 =

r
TTrQ )( 21 +−

 (14) 

During time T3, the average inventory level of non-defective items in each cycle, 
AIL3, can be computed as 

AIL3= r
TTrQ

2
)]([ 2

21 +−
 (15) 

The holding cost (HC1(Q)) of the non-defective items for each cycle is the total 
inventory level of non-defective items multiplied by the unit holding cost, and is given as 
HC1(Q)= Ch1⋅( AIL1+ AIL2+ AIL3) 
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After some manipulations, Eq. (16) can be reduced to 

HC1(Q)= Ch1⋅[ )2)(1(
)
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3.3. Holding cost for the imperfect quality items being reworked 

During time interval of regular production (i.e. 0≤t1≤T1), the inventory level of 
imperfect quality items at time t1, I4(t1), can be computed as 

I4(t1)=
1

1

1
1

1 1)1( ++ bt
a

bβ  (18) 

In each cycle, the average inventory level of imperfect quality items during the 
regular production run, AIL4, can be obtained as  
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During time interval of reworking production (i.e. 0≤t2≤T2), the inventory level 
of imperfect quality items at time t2, I5(t2), can be computed as 
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I5(t2)=
1

1

2
2

2 2)1( ++
− bt

a
bQβ  (20) 

In each cycle, the average inventory level of imperfect quality items during the 
reworking production run, AIL5, can be obtained as 
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The total inventory cost of imperfect quality items for each cycle can be 
expressed as follows: 

HC2(Q)= Ch2⋅( AIL4+ AIL5) 

=Ch2{
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Similarly, after some manipulations, Eq. (22) can be reduced to 
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3.4 Production and reworking costs  

The production cost (PC(Q)) and reworking cost (RC(Q)) per cycle are 
calculated as follows:  

PC(Q)+ RC(Q)= CL1·T1+ CL2·T2= CL1 11

1
1

1
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b
Qa b

+ CL2 12

11
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22
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 (24) 

3.5 Total cost  

Summing the setup cost, the inventory holding cost for the non-defective items, 
the inventory holding cost for the imperfect quality items being reworked, the production 
cost, and the reworking cost, the total cost for each cycle can be obtained as 
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The total cost per unit time, TCU(Q), is determined by TC(Q)/T. Since the cycle 
time T=Q/r, one has 
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The expected value of TCU(Q) is E[TCU(Q)], where 
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Our objective is to minimize the expected total cost per unit time. Thus, by 
taking the first derivative of E[TCU(Q)] with respect to Q and setting the result to zero, 
one has 
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Taking the second derivative, one has 
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The result of Equation (29) is positive, because 0≤b1<-1, 0≤b2<-1, and Ch1≥Ch2. 
Hence, E[TCU(Q)] is a strictly convex function for all values of Q. E[TCU(Q)] is 

therefore a unimodal function with its minimum at Q=Q*, where *

*)]([
dQ

QTCUdE =0.  

Although the optimal lot size Q* cannot be expressed in a closed form, it can be 
obtained through the use of numerical methods. We propose the following simple search 
procedure to find the optimal lot size. 
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Set a pre-specified relative error tolerance, ε, and ε>0. Choose lq  and uq  as 

two guesses for the root such that 0)()( <uqfqf l . 

Step 2: Set qopt= 2
  uqq +l . 
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Step 3: Check the following 
a.  If 0)()( <optqfqf l , set optu qq = . Then go to Step 4. 

b.  If 0)()( >optqfqf l , set optqq =l . Then go to Step 4. 

c.  If 0)()( =optqfqf l ; then the Q* is optq . Stop the algorithm. 

Step 4: Find the new estimate of the root qopt= 2
  uqq +l . Calculate the absolute 

approximate relative error (εa) as 

100
new old
opt opt

a new
opt

q q
q

ε
−

= × % 

where 
new
optq  = estimated root from present iteration 

old
optq  = estimated root from previous iteration. 

Step 5: If εa>ε, then go to Step 3. Otherwise, the root is qopt, and the algorithm is 

stopped. 

  
4. MODEL VERIFICATION 

Suppose that no defective items are produced, i.e. β=0. Then Eq. (28) becomes 

dQ
QTCUdE )]([

=- 2Q
rCs +Ch1( )2(2

1
1

1
1

+
−

b
Qra b

)+CL1 r(
11

1
11

1

+

−

b
Qba b

)=0. (30) 

This yields the same result as derived by Salameh et al. (1993). Therefore, the 
result described in Salameh et al. (1993) is a special case of our model. 

Further, suppose that all of the defective items produced can be reworked and 
100% repaired, but without considering the learning effects and the holding cost of the 
imperfect quality items (i.e., b1=0, b2=0, and Ch2=0). Eq. (28) is reduced to the following 
equation: 

dQ
QTCUdE )]([

=- 2Q
rCs + Ch1[ 2

)(
2

)(1
2
1 2

2
1

ββ rEaEra −
+

− ]=0 (31) 

Let a1=a2= p
1

, and solving Eq. (31). The optimal value of Q* is obtained as 
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Q*=
]))()(1([

2
2

1 rEEpCh
prCs

ββ ++−
 (32) 

Eq. (32) becomes the same result of immediate rework process model as derived 
by Jamal et al. (2004). Therefore, the result described in Jamal et al. (2004) is also a 
special case of our model. 

Furthermore, suppose that all items produced in the regular production run are 
of perfect quality and without considering the learning effects, i.e. b1=0, b2=0, and β=0, 
Eq. (28) is reduced to the following equation: 

dQ
QTCUdE )]([

=- 2Q
rCs + Ch ( 2

1 1ra−
)=0. (33) 

Hence, the EPQ can be found from 
dQ

QTCUdE )]([
=0, which yields 

*
.tradQ =

)1(

2

1 p
rC

rC

h

s

−
 (34) 

This is the same equation as that given by the traditional EPQ model, where p is 

the production rate, and p=
1

1
a

. 

 
5. NUMERICAL EXAMPLE 

A manufactured product has a constant demand rate of 60 units/day. The setup 
cost is $20000 per production run. The holding costs for the non-defective and defective 
items are $20/unit/day and $8/unit/day, respectively. The labor production cost and 
rework cost are $1000/day and $400/day, respectively. The production rate of defective 
items is uniformly distributed over the interval [0, 0.4]. The time to produce the first unit 
(a1) is 0.01 day, and the time to rework the first unit (a2) is 0.008 day. The learning rates 
in the regular production run and in the rework production run are 94% and 91%, 
respectively. That is, 

r=60 units/day, Cs=$20000, Ch1=$20/unit/day, Ch2=$8/unit/day,CL1=$1000/day, 

CL2=$400/day, β=uniformly distributed over the interval [0,0.4], a1=0.01 day, 

a2=0.008 day, α1=94%, α2=91%. 

Because β is uniformly distributed over the range [0, 0.4], then the probability 
density function f(β) is  
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⎩
⎨
⎧ ≤≤

=
            0

4.00   5.2
)(

otherwise
for

f
β

β  

Therefore, E(β)=0.2, )( 12 +bE β =0.2431, and )( 22 +bE β =0.06329. 
By applying the proposed search procedure to solve this example, the convexity 

of the expected cost function is displayed in Figure 3, and the optimal solutions are 
summarized in Table 1. In addition, to see the effects of learning and imperfect 
production process, we also list the results of the Salameh et al. (1993) model, and the 
traditional EPQ model, respectively, in the same table. Let 

*
oQ  and 

*
SQ  denote the EPQ 

values obtained by applying our model and the Salameh et al. (1993) model, respectively. 
It can be seen from Table 1 that 

*
SQ <

*
oQ <

*
.tradQ . It can be found that the effects of 

learning and imperfect production process are evident when comparing *
oQ  and *

.tradQ . 
This comparison reveals a reduction in the optimal production quantity of about 16.97% 

[(1-
548
455

)×100%]. Furthermore, it can also be found that the proposed EPQ model has a 

larger expected total cost than that of the traditional EPQ model. From these 
comparisons, we note that if the effects of learning and imperfect production process are 
ignored in the problem formulation, then it may lead to a significant impact on the results 
of the proposed problem. In Table 1, it can also be found that the proposed EPQ model 
has a larger Q* than does the EPQ model without considering the reworking of defective 
items (i.e. the Salameh et al. (1993) model) in order to ensure that the restriction of full 
demand satisfaction is always met. 
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Figure 3. Convexity of the cost function E[TCU(Q)]. 

Table 1: Results for the numerical example 
 Q* E[TCU(Q*)] T1 T2 T3 T 

Our model 455# 5532.11 2.8930 0.4561 4.2342 7.5833 
Salameh et al. model 
(i.e., β=0) 437 5747.56

†
 2.7886 0 4.4948 7.2833 

Classical EPQ model 
(i.e., b1=b2=0, and β=0) 548 4981.78

†
 5.4800 0 3.6533 9.1333 

# Q* is rounded down to the integer with the minimum total cost. 
†
Without including the reworking cost. 

 
Using the Wright’s learning curve equation, the time required to produce the 

first unit in the second cycle, unit number 456, can be calculated as 

a1=0.01 2log
94.0log

)456( =0.0058 (days). 
Similarly, the time required to rework the first unit (a2) in the second cycle is 

found to be 0.0043 days. The values of a1 and a2 are then used to determine the optimal 
quantity for cycle 2. This procedure is continued for all cycles, from 1 through 10. Table 
2 shows the economic production quantities, Q*, and the cycle time, T, for all cycles. The 
tabulated results indicate that the EPQ reaches a plateau of 389 units. In addition, the T 
values decrease with each additional cycle the same way the optimal production 
quantities decrease. The decreases in the optimal production quantity and cycle time are 
more drastic between the first and the second cycle than in the later ones. It can also be 
realized that the effects of learning and imperfect production process are most evident in 
the early stages of production, rather than at later stages. 
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Table 2: Summary of the optimal solutions for cycles 1-10 

Cycle Q* T 
1 455 7.5833 
2 399 6.6500 
3 396 6.6000 
4 394 6.5667 
5 392 6.5333 
6 391 6.5167 
7 390 6.5000 
8 390 6.5000 
9 389 6.4833 

10 389 6.4833 
 

 

6. SENSITIVITY ANALYSIS 

In order to explore the effects of learning and imperfect production process on 
the EPQ, we extend a wide range of values for the important problem parameters:  

Cs=8000, 14000, 20000, 26000, 32000; 

Ch1=8, 14, 20, 26, 32; 

CL1=400, 700, 1000, 1300, 1600; 

α1=90%, 92%, 94%, 96%, 98%; 

r=40, 50, 60, 70, 80. 

E(β)=0, 0.1, 0.2, 0.3, 0.4. 

The remaining parameters are assigned the same values as presented in the 
previous section.  

Accounting for learning and imperfect quality items alters the manufactured lot 
size. The percentage change in the EPQ, PCQ, is given as 

%100*
.

**
. ×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

trad

otrad

Q
QQPCQ  (35) 

to demonstrate the difference between 
*
oQ  and 

*
.tradQ .  

Figures 4-9 show the graphs when the values of PCQ are plotted against those 
of important parameters. The numerical results are summarized in Table 3. They are 
explained as follows: 

1. Figure 4 and Table 3 show that the PCQ increases substantially with the 
decrease of the value of learning rates α1. For example, in cycle 1, as α1 
goes from 98% to 90%, the PCQ increases from 2.74% to 24.09%. This 
phenomenon implies that once the learning effect had occurred, the EPQ 
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drops rapidly. The above results reveal again that the effect of learning 
cannot be ignored. From Figure 4 and Table 3, it can also be found that if 
α1 is fixed, then the PCQ increases as the production system proceeds. The 
main reason for this is the unit production time decrease as the number of 
units produced increases because of learning. 

2. Figure 5 shows the behavior of PCQ for different demand rates, r. When 
demand rates increase, the values of PCQ increases substantially. The PCQ 
is highly sensitive to changes in r. For instance, in cycle 1, as r goes from 
40 to 80, the PCQ increases drastically from 7.95% to 33.67%. 

3. Figures 6 and 7 indicate that the PCQ decreases with increased values of 
E(β) or Ch1. It can also be found that the effects of E(β) and Ch1 on the PCQ 
are most evident at the early stages of production (i.e. cycle 1). This reveals 
that production quality and the holding cost of the non-defective items have 
a considerable impact on optimal production lot size.  

4. Figures 8 and 9 show that changing Cs or CL1 has little effect on the PCQ in 
the same production cycle. However, the PCQ value remains stable for 
higher levels. 

5. In Table 3, most of the PCQ values are more than 15%. This reveals the 
effects of learning and imperfect production process on the lot size quantity 
are significant. 

6. In summary, the PCQ is highly sensitive to changes in r and α1, whereas it 
is insensitive to changes in Cs and CL1. 
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Figure 4. The behavior of PCQ with respect to learning rate α1. 
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Figure 5. The behavior of PCQ with respect to demand rate r. 
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Figure 6. The behavior of PCQ with respect to expected defect rate E(β). 
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Figure 7. The behavior of PCQ with respect to holding cost Ch1. 
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Figure 8. The behavior of PCQ with respect to setup cost Cs. 
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Figure 9. The behavior of PCQ with respect to labor cost CL1. 

 
Table 3: The PCQ values for various values of a1, r, E(β),Ch1 , CS, and CL1 

a1= 90% 92% 94% 96% 98% 
cycle 1 24.09% 20.99% 16.97% 11.31% 2.74% 
cycle 5 33.21% 31.39% 28.47% 23.36% 13.87% 
cycle 10 33.58% 31.93% 29.01% 24.27% 14.60% 

r= 40 50 60 70 80 
cycle 1 7.95% 11.86% 16.97% 23.87% 33.67% 
cycle 5 15.62% 21.48% 28.47% 36.75% 47.20% 
cycle 10 16.16% 22.15% 29.01% 37.34% 47.87% 

E(β)= 0 0.1 0.2 0.3 0.4 
cycle 1 20.26% 18.80% 16.97% 14.78% 12.41% 
cycle 5 29.56% 29.01% 28.47% 27.74% 27.01% 
cycle 10 30.11% 29.56% 29.01% 28.47% 27.92% 

Ch1 = 8 14 20 26 32 
cycle 1 20.67% 18.32% 16.97% 16.04% 15.47% 
cycle 5 30.02% 29.01% 28.47% 27.92% 27.71% 
cycle 10 30.48% 29.62% 29.01% 28.75% 28.41% 

CS = 8000 14000 20000 26000 32000 
cycle 1 15.32% 16.38% 16.97% 17.31% 17.75% 
cycle 5 27.17% 27.95% 28.47% 28.53% 28.86% 
cycle 10 28.03% 28.60% 29.01% 29.17% 29.44% 

CL1 = 400 700 1000 1300 1600 
cycle 1 17.34% 17.15% 16.97% 16.79% 16.61% 
cycle 5 28.47% 28.47% 28.47% 28.28% 28.28% 
cycle 10 29.20% 29.20% 29.01% 29.01% 29.01% 
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7. CONCLUSION 

Reworking of defective products has received increasing attention over the last 
decade. Not only a growing environmental concern and enforced legislation in many 
countries but also economic incentives are driving factors behind this development. The 
classical EPQ model is not appropriate when produced lots have some defective items 
and the effects of learning are considered. Therefore, new models are required for more 
realistic solutions in real-life problems. In this paper, we study the effects of learning and 
the reworking of imperfect quality items produced on the production-inventory model. 
The unit production time decreases with the increase of total units produced as a result of 
learning. When regular production stops, all defective items are assumed to be reworked. 
An optimal production policy that minimizes the expected total cost per unit time for the 
production model is derived. We have shown that the traditional EPQ model, the 
Salameh et al. (1993) model, and the immediate rework process model proposed by 
Jamal et al. (2004) are special cases of our model. A numerical example has been used to 
illustrate the proposed methodology. The results indicate that ignoring the effects of 
learning and imperfect production process may result in production lot-size decisions 
with high percentage errors. It is also found that, in the presence of learning and 
imperfect production process, the proposed EPQ model has a smaller production lot size 
and a larger expected total cost than that of the traditional EPQ model. In addition, the 
effects of learning and imperfect production process on the lot size quantity are more 
influential than that on the expected total cost. Finally, a sensitivity analysis is performed 
to study the impact of different problem parameters on the behavior of the model. It is 
found that the difference between 

*
oQ and *

 learningnoQ  is highly sensitive to changes in r 

and α1, whereas it is insensitive to changes in Cs and CL1. 
Our model can provide guidelines for managerial decisions in actual 

manufacturing situations and can easily be extended to a situation where some of the 
defectives are not reworkable. Another extension could be to investigate the effect of 
forgetting on the proposed model. 
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