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Abstract: General Variable Neighborhood Search (GVNS) is shown to be a powerful 

and robust methodology for solving travelling salesman and vehicle routing problems. 

However, its efficient implementation may play a significant role in solving large size 

instances. In this paper we suggest new GVNS heuristic for solving Travelling salesman 

problem with time windows. It uses different set of neighborhoods, new feasibility 

checking procedure and a more efficient data structure than the recent GVNS method that 

can be considered as a state-of-the-art heuristic. As a result, our GVNS is much faster 

and more effective than the previous GVNS. It is able to improve 14 out of 25 best 

known solutions for large test instances from the literature. 
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1. INTRODUCTION 

The Travelling Salesman Problem with Time Windows (TSPTW) is a variant of 

the well-known Travelling Salesman Problem (TSP). Suppose that a depot, a set of 

customers, service time (i.e., the time that must be spent at the customer), and a time 

window (i.e. its ready time and due date) are given. The TSPTW problem consists of 

finding a minimum cost tour starting and ending at a given depot, after each customer is 

visited only once before its due date.  The travelling salesman is allowed to arrive to the 

customer before its ready time, but has to wait.  Obviously, there are tours which do not 

allow the travelling salesman to respect due dates of all customers. All such tours, we call 

infeasible, and the others are feasible tours (solutions). The cost of a tour is the total 

distance travelled. 

Graph G = (V, A) is given, where V = {1, 2,…, n}. Let 0 denotes a depot and let 

,  :  ,  {0A i j i j V be the set of arcs between customers. The travelling cost from i to 

j is represented by ijc , which includes both the service time of a customer i and the time 

needed to travel from i to j. Each customer i has an associated time window ,i ia b   

where ia  and ib  represent the ready time and the due date, respectively. So, the TSPTW 

can be stated, mathematically, as a problem of finding a Hamiltonian tour that starts and 

ends at the depot, satisfying all time windows constraints and minimizing the total 

distance traveled.  

TSPTW is NP-hard problem since it is a special case of the well-known 

Travelling Salesman Problem, which is NP-hard. So, there is need for a heuristic able to 

solve efficiently realistic instances in the reasonable amount of time. In that direction, 

some steps have been already made. Carlton and Barnes [3] use a tabu-search heuristic 

with a static penalty function, using infeasible solutions in the search. Gendreau et al. [8] 

propose an insertion heuristic based on GENIUS heuristic [7], which gradually builds the 

route in construction phase and improves it in a post-optimization phase (based on 

successive removal and reinsertion of nodes). Calvo [2] solves an assignment problem 

with an ad hoc objective function and builds a feasible tour merging all such found sub-

tours into a main tour; then a 3-opt local search procedure is applied to improve the initial 

feasible solution. Ohlmann and Thomas [15] use a variant of simulated annealing, called 

compressed annealing, which relaxes the time windows constraints by integrating a 

variable penalty method within a stochastic search procedure. Two new heuristics were 

proposed in 2010, by Blum et al. [12] and by Urrutia et al. [5]. In this paper, we compare 

the results of these two heuristics with ours, since they can be considered as the current 

state-of-the-art heuristics for TSPTW.  

Blum et al. [12] proposed a hybrid method combining ant colony optimization 

with beam search. In general, Beam-ACO algorithms heavily rely on accurate and 

computationally inexpensive bounding information for differentiating between partial 

solutions. Urrutia et al. [5] proposed a two-stage VNS based heuristic. In the first stage, a 

feasible solution is constructed by using Variable neighborhood search, where the linear 

integer objective function is represented as an infeasibility measure. In the second stage 

the heuristic improves the feasible solution with a GVNS heuristic.  

In this paper we propose new two-stage VNS based heuristic for solving the 

TSPTW problem. In the first stage, we use the same VNS as [5] to obtain feasible initial 
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solution. In the second stage, we use new GVNS to improve the initial solution obtained 

in  the previous stage. Our GVNS is more effective and more efficient than both state-of-

the-art heuristics. Moreover, several new best known solutions are reported.  

The rest of the paper is organized as follows. In Section 2, we describe 

implementation of our new GVNS heuristic, and in Section 3, we present computational 

results. Finally, in Section 4, we give some concluding remarks. 
 

2. GVNS FOR TSPTW 

General VNS is a variant of VNS where Variable neighborhood descent (VND) 

local search is used within basic VNS scheme (for the recent surveys on VNS see [9, 

10]). Let us denote the solution of TSPTW as (0, ,..., )i nx x x , i.e., let x  be an order of 

clients in TSP tour that starts at depot 0.  

Building an initial solution. Building an initial feasible solution is also a NP-hard 

problem.  We start with the solution obtained as in the procedure proposed in [5].  It is a 

VNS based procedure that relocates customers of a random solution (minimizing its 

infeasibility) until a feasible solution is obtained. We also tried out different usual 

initialization strategies, but they did not show better performances than the one from [5].  

Neighborhood structures. The most common moves performed on a TSP solution are 2-

opt moves and OR-opt moves. A 2-opt move breaks down two edges of a current 

solution, and makes two new edges by inverting the part of a solution in such a way that 

the resulting solution is still a tour. One variant of 2-opt move is so-called 1-opt move 

which is applicable on four consecutive customers, i.e.  1 2 3, ,x x x ,   and 4x ,   in such a 

way that edges 1 2,x x  and 3 4, ,x x  are broken down and the edge 2 3,x x is inverted.  On 

the other hand, OR-opt move relocates a chain of consecutive customers without 

inverting any part of a solution.  If a chain contains k customers, we call such move OR-

opt-k move.  If a chain of k consecutive customers is moved backward, that move will be 

called backward OR-opt-k. Similarly, if a chain is moved forward, the move will be 

called forward OR-opt-k.  

Maintaining feasibility. Previously described moves can be performed on each feasible 

solution of TSPTW problem since TSPTW is a variant of TSP. However, we must be 

careful because some moves can lead to infeasible solutions.  So, it is important to check 

whether the move yields feasible or infeasible solution.  For that purpose, we build an 

array g  where ig  denotes maximal value for which arrival time at a node i, i.e. i , 

could be increased so that the feasibility on the final part of a tour, which starts at the 

node i , is kept. Elements of the array g  are evaluated starting with the depot and 

moving backward through the tour. If we suppose that node j  precedes node i, than jg  

is calculated in the following way:  

jg   = min{ ig  + max{0, j ja }, j jb }  (1) 

where 0 0 0g b . If we want to check the feasibility of a move, we have to recalculate 

arrival time to each customer in the move, as well as the arrival time to the first and the 

last customer according to the resulting tour if the move should be performed.  If all these 

arrival times do not violate time windows and arrival time to the last customer, i.e. i, is 
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increased for value less or equal to the value of ig , then new solution is feasible, 

otherwise it is infeasible.  

Variable neighborhood descent for the TSPTW. In our VND procedure we use the 

following neighborhood structures respectively: 1-opt, backward OR-opt-2, forward OR-

opt-2, backward OR-opt-1, forward OR-opt-1, 2-opt. Since each move may be 

considered as a relocation of a customer, we decide to explore neighborhood structures 

by moving some customer backward or forward depending on the examined 

neighborhood structure. However, the search for an improvement by moving customer i 

in some neighborhood structure is stopped as soon as we find a infeasible move (move 

which does not keep feasibility of solution) which reduces the value of the objective 

function.  

Each of these neighborhood structures is explored by using the best 

improvement search strategy. However, the search for an improvement of a current 

solution is continued in the next neighborhood structure regardless the improvement is 

found or not in a previous neighborhood structure. The whole search procedure is 

repeated until an improvement of a current solution can be found in some neighborhood 

structure.  
 

Shaking procedure. Shaking procedure is a function named ( , )Shake x k  which 

performs k  random feasible OR-opt-1 moves on a given solution x .  
 

Pseudo-code. The steps of our GVNS heuristic for solving TSPTW are given in 

Algorithm1. 
 

 
 

GVNS contains 2 parameters: maximum time allowed in the search max( )t  and 

the largest distance from the incumbent solution max( )x t .  GVNS terminates when the 

given total running time maxt  elapses. In the inner loop, the incumbent solution x  moves 

until no improvement is detected in the neighborhood with the largest distance from it. 

 

3. NUMERICAL RESULTS 

The proposed method is coded in C++ and run on a 2.53GHz processor. Note 

that our computer has similar characteristics as those used in [5] (2.4GHz processor) and 
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in [12] (2.66GHz processor). The GVNS parameter maxk  has been set to 30 for all test 

instances, whereas the parameter maxt  has been adjusted to the particular instance.  In 

this section we compare our GVNS with two state of the art heuristics for TSPTW. 

GVNS heuristic proposed in [5], we denote with GVNS-1.  
 

3.1. GVNS versus GVNS-1 

The comparison between GVNS and GVNS-1 is performed on the same 

benchmark test instances used in [5], where GVNS-1 was proposed. All test problems are 

grouped in sets of five test instances. The number of customers and the maximum range 

of time windows in each test instance can be deduced from the name of the test case to 

which that instance belong. For example, all five test instances in the test case 

’n400w500’ have 400 customers with maximum range of time window equal to 500. As 

in [5], each instance is run 30 times (starting from a different initial solution) and average 

results are reported. In other words, for each test instance, we calculate the average value 

of the objective function, average time and standard deviation σ. The obtained results are 

compared with those obtained with GVNS-1. 

Test instances proposed by Urrutia et al. [5]. The GVNS proposed in this paper has 

been tested on instances introduced by Urrutia et al [5]. Values of VNS parameters  

and maxt  are set to 30 and 30 seconds, respectively.  According to the obtained results 

(Table 1), our GVNS offers 14 new best known solutions, reducing the average 

computational time, in comparison with the GVNS-1, for about 50%.  It should be noted 

that the proposed GVNS heuristic has not found the best known solution only for test 

case n300w200. However, the average value obtained by our GVNS on all test cases, is 

better than the average value obtained by the GVNS-1 (compare 12142.71 with 

12149.66).   

Table 1: Test cases proposed by Urrutia et al. [5] 
Test case GVNS Time GVNS GVNS-1 Time GVNS-1 

min.value av.value σ av.sec. σ min.value av.value σ av.sec. σ 

n200w100 10019.6 10020.4 0.8 0.0 0.0 10019.6 10019.6 0.1 4.8 0.3 

n200w200 9252.0 9254.2 11.4 0.1 0.0 9252.0 9254.1 7.2 5.8 0.2 

n200w300 8022.8 8023.1 0.3 10.0 3.3 8026.4 8034.3 4.5 7.2 0.2 

n200w400 7062.4 7072.4 19.3 11.8 3.7 7067.2 7079.3 4.4 8.7 0.4 

n200w500 6466.2 6472.7 11.4 13.8 4.2 6466.4 6474.0 5.1 10.0 0.3 

n250w100 12633.0 12633.0 0.0 0.0 0.0 12633.0 12633.0 0.0 9.9 0.2 

n250w200 11310.4 11314.0 5.0 0.3 0.1 11310.4 11310.7 0.7 11.9 0.4 

n250w300 10230.4 10231.0 3.4 3.7 1.9 10230.4 10235.1 2.8 14.9 0.6 

n250w400 8896.2 8897.9 5.3 37.7 7.7 8899.2 8908.5 4.1 18.9 0.7 

n250w500 8069.8 8083.5 13.2 42.2 8.1 8082.4 8082.4 6.7 20.7 0.9 

n300w100 15041.2 15041.2 0.0 0.0 0.0 15041.2 15041.2 0.0 21.2 0.7 

n300w200 13851.4 13857.6 14.9 0.6 0.2 13846.8 13853.1 2.3 23.7 0.6 

n300w300 11477.2 11478.8 2.7 10.9 3.4 11477.6 11488.5 5.2 37.0 3.8 

n300w400 10402.8 10419.6 25.5 30.0 6.0 10413.0 10437.4 12.9 31.7 1.2 

n300w500 9842.2 9849.2 7.9 49.5 6.3 9861.8 9876.7 8.9 35.4 1.1 

n350w100 17494.0 17494.0 0.0 0.0 0.0 17494.0 17494.0 0.0 41.0 2.5 

n350w200 15672.0 15672.0 0.0 1.7 0.9 15672.0 15672.2 0.6 47.3 2.1 

n350w300 13648.8 13660.8 17.8 13.2 3.8 13650.2 13654.1 1.7 54.9 2.2 

n350w400 12083.2 12090.6 9.5 46.8 7.9 12099.0 12119.6 8.9 60.2 2.8 

n350w500 11347.8 11360.6 17.7 59.0 7.5 11365.8 11388.2 12.0 57.8 1.2 

n400w100 19454.8 19454.8 0.0 0.0 0.0 19454.8 19454.8 0.0 57.1 0.6 

n400w200 18439.8 18442.6 5.1 1.8 0.4 18439.8 18439.9 0.6 66.9 1.9 

n400w300 15871.8 15875.8 8.5 28.8 4.8 15873.4 15879.1 3.0 93.6 7.9 

n400w400 14079.4 14112.0 24.4 54.9 6.9 14115.4 14145.5 12.9 96.2 3.9 

n400w500 12716.6 12755.8 26.9 77.5 7.8 12747.6 12766.2 9.7 109.3 4.4 

Average 12135.43 12142.71 9.25 19.78 3.40 12141.58 12149.66 4.57 37.84 1.64 
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Test instances proposed by Ohlmann and Thomas [15]. The proposed GVNS with 

  set to 30 seconds has been, also, tested on five test cases proposed by Olhmann and 

Thomas [15]. The obtained results (Table 2) show that the proposed GVNS is able to find 

best known solutions on all test cases, consuming less mean computational time in 

comparison to the computational time of the GVNS-1. Moreover, the mean value found 

by the proposed GVNS on all test cases is better than that obtained by the GVNS-1. 

Table 2: Test instances proposed by Ohlmann and Thomas [15] 
Test case 

 

GVNS Time GVNS GVNS-1 Time GVNS-1 

min.value av.value σ av.sec. σ min.value av.value σ av.sec. σ 

n150w120 722.0 722.1 0.6 11.2 3.6 722.0 722.3 0.4 11.8 0.3 

n150w140 693.8 693.9 0.4 18.7 4.4 693.8 694.8 0.5 13.3 0.5 

n150w160 671.0 672.6 2.9 13.4 5.0 671.0 671.2 0.3 15.0 0.8 

n200w120 803.6 803.9 0.3 11.5 3.6 803.6 803.9 0.1 30.3 2.0 

n200w140 798.0 798.7 1.6 24.7 5.9 798.0 799.5 1.1 38.0 1.1 

Average 737.68 738.24 1.16 15.91 4.51 737.68 738.34 0.48 21.68 0.94 
 

Test instances proposed by Gendreau et al. [8]. On all test instances proposed by 

Gendreau et al. [8], we have run the GVNS with the  set to 10 seconds. The obtained 

computational results are presented in Table 3. According to these results, the proposed 

GVNS offers one new best known solution (test case n100w100), while on all other 

instances, it gives the same minimal values as the GVNS-1. Similarly as on the previous 

test cases, our GVNS is more than two times faster than the GVNS-1 (compare 1.11 

seconds with 2.45 seconds). 

 

Table 3: Test instances proposed by Gendreau [8] 
Test case GVNS Time GVNS GVNS-1 Time GVNS-1 

min.value av.value σ av.sec. σ min.value av.value σ av.sec. σ 

n20w120 265.6 265.6 0.0 0.0 0.0 265.6 265.6 0.0 0.3 0.0 

n20w140 232.8 232.8 0.0 0.0 0.0 232.8 232.8 0.0 0.3 0.0 

n20w160 218.2 218.2 0.0 0.0 0.0 218.2 218.2 0.0 0.3 0.0 

n20w180 236.6 236.6 0.0 0.0 0.0 236.6 236.6 0.0 0.4 0.0 

n20w200 241.0 241.0 0.0 0.0 0.0 241.0 241.0 0.0 0.4 0.0 

n40w120 377.8 377.8 0.0 0.0 0.0 377.8 377.8 0.0 0.8 0.0 

n40w140 364.4 364.4 0.0 0.0 0.0 364.4 364.4 0.0 0.8 0.0 

n40w160 326.8 326.8 0.0 0.0 0.0 326.8 326.8 0.0 0.9 0.0 

n40w180 330.4 330.5 0.9 2.2 1.2 330.4 331.3 0.8 1.0 0.0 

n40w200 313.8 313.8 0.3 3.6 1.2 313.8 314.3 0.4 1.0 0.1 

n60w120 451.0 451.0 0.0 0.3 0.2 451.0 451.0 0.1 1.5 0.1 

n60w140 452.0 452.0 0.0 0.1 0.0 452.0 452.1 0.2 1.7 0.1 

n60w160 464.0 464.6 0.2 0.0 0.0 464.0 464.5 0.2 1.7 0.0 

n60w180 421.2 421.2 0.0 0.4 0.2 421.2 421.2 0.1 2.2 0.1 

n60w200 427.4 427.4 0.0 0.3 0.1 427.4 427.4 0.0 2.4 0.1 

n80w100 578.6 578.6 0.0 0.7 0.4 578.6 578.7 0.2 2.3 0.1 

n80w120 541.4 541.4 0.1 1.3 0.8 541.4 541.4 0.0 2.7 0.1 

n80w140 506.0 506.3 0.6 1.4 0.5 506.0 506.3 0.2 3.2 0.3 

n80w160 504.8 505.1 1.2 1.5 1.1 504.8 505.5 0.7 3.3 0.1 

n80w180 500.6 500.9 2.3 3.3 1.0 500.6 501.2 0.9 3.7 0.1 

n80w200 481.8 481.8 0.0 0.4 0.2 481.4 481.8 0.1 4.2 0.2 

n100w80 666.4 666.4 0.0 0.4 0.2 666.4 666.6 0.2 3.1 0.2 

n100w100 640.6 641.0 1.5 2.8 1.1 642.0 642.1 0.1 3.7 0.1 

n100w120 597.2 597.5 0.5 5.6 1.7 597.2 597.5 0.3 4.1 0.2 

n100w140 548.4 548.4 0.0 0.2 0.0 548.4 548.4 0.0 4.4 0.2 

n100w160 555.0  555.0 0.0 1.1 0.3 555.0 555.0 0.1 5.1 0.2 

n100w180 561.6 561.6 0.0 1.2 0.6 561.6 561.6 0.0 6.3 0.3 

n100w200 550.2 550.6 3.97 4.0 1.0 550.2 551.0 1.2 6.8 0.3 

Average 441.27 441.37 0.41 1.11 0.42 441.31 441.50 0.20 2.45 0.10 



 N. Mladenović, R. Todosijević and D. Urošević / An Efficient General Variable 25 

Test instances proposed by Dumas [6]. According to the results obtained by our 

GVNS, with   set to 10 seconds, our GVNS manifests similar behavior as the 

GVNS-1 regarding the quality of the obtained solution. However, our GVNS is more 

than four times faster. 

Table 4:Test instances proposed by Dumas [6] 
Test case GVNS Time GVNS GVNS-1 Time GVNS-

1 

min.value av.value σ av.sec. σ min.value av.value σ av.sec. Σ 

n20w20 361.2 361.2 0.0 0.0 0.0 361.2 361.2 0.0 0.2 0.0 
n20w40 316.0 316.0 0.0 0.0 0.0 316.0 316.0 0.0 0.2 0.0 

n20w60 309.8 309.8 0.0 0.0 0.0 309.8 309.8 0.0 0.2 0.0 

n20w80 311.0 311.0 0.0 0.0 0.0 311.0 311.0 0.0 0.3 0.0 
n20w100 275.2 275.2 0.0 0.0 0.0 275.2 275.2 0.0 0.3 0.0 

n40w20 486.6 486.6 0.0 0.0 0.0 486.6 486.6 0.0 0.3 0.0 

n40w40 461.0 461.0 0.0 0.0 0.0 461.0 461.0 0.0 0.4 0.0 
n40w60 416.4 416.4 0.0 0.0 0.0 416.4 416.4 0.0 0.5 0.0 

n40w80 399.8 399.8 0.0 1.2 0.6 399.8 399.9 0.4 0.5 0.0 

n40w100 377.0 377.0 0.0 0.0 0.0 377.0 377.0 0.2 0.6 0.0 
n60w20 581.6 581.6 0.0 0.0 0.0 581.6 581.6 0.0 0.6 0.0 

n60w40 590.2 590.6 1.9 0.1 0.0 590.2 590.2 0.0 0.8 0.0 

n60w60 560.0 560.0 0.0 0.0 0.0 560.0 560.0 0.0 0.9 0.0 
n60w80 508.0 508.0 0.0 0.2 0.2 508.0 508.1 0.2 1.2 0.0 

n60w100 514.8 514.8 0.0 0.1 0.1 514.8 514.8 0.0 1.3 0.0 

n80w20 676.6 676.6 0.0 0.0 0.0 676.6 676.6 0.0 0.9 0.0 
n80w40 630.0 630.0 0.0 0.1 0.0 630.0 630.0 0.0 1.3 0.0 

n80w60 606.4 606.7 1.2 1.0 0.6 606.4 606.4 0.1 1.8 0.1 

n80w80 593.8 593.9 0.2 0.6 0.8 593.8 593.8 0.1 2.1 0.1 
n100w20 757.6 757.6 0.0 0.0 0.0 757.6 757.6 0.0 1.4 0.0 

n100w40 701.8 701.8 0.0 0.1 0.0 701.8 701.8 0.0 1.9 0.1 

n100w60 696.6 696.6 0.0 0.1 0.1 696.6 696.6 0.0 2.7 0.1 
n150w120 868.4 868.4 0.0 0.1 0.1 868.4 868.4 0.0 3.6 0.3 

n150w140 834.8 834.8 0.0 0.4 0.4 834.8 834.8 0.0 5.3 0.3 

n150w60 
n200w20 

818.6 
1009.0 

818.6 
1009.1 

0.00 
0.20 

1.9 
2.0 

0.8 
1.2 

818.6 
1009.0 

818.6 
1009.1 

0.1 
0.1 

7.4 
8.5 

0.7 
0.5 

n200w40 984.2 984.2 0.21 5.2 1.4 984.2 984.2 0.1 12.6 0.8 

Average 579.50 579.53 0.14 0.50 0.23 579.50 579.51 0.05 2.14 0.11 

 

3.2. GVNS versus Beam-ACO [12] 

The proposed GVNS is also tested on test instances that were not used for 

testing GVNS proposed in [5].  The time limit, , for GVNS was set to 60 seconds (as 

it was time limit for Beam-ACO [12]). The proposed GVNS was run 15 times on each 

test instance. The obtained results are compared with those obtained by recently proposed 

Beam-ACO algorithm [12]. Comparison of results is done regarding mean relative 

percentage deviation (RPD) as well as standard deviation of RPD (σ RPD) n 15 runs. 
 

Test instances proposed by Ascheuer [1]. The proposed GVNS is tested on asymmetric 

test instances proposed by Ascheur [1]. According to the results, it succeeded to find six 

new best known solutions, and only on two instances did not succeed to find best known 

solutions. In comparison with Beam-ACO algorithm, the proposed GVNS is more 

efficient in finding good solution in a reasonable amount of time. The mean value per 

instance found by our GVNS is less than that found by Beam-ACO algorithm. Also, the 

mean time per instance of GVNS is less than that of Beam-ACO. 
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Table 5:Test instances proposed by Ascheuer [1] 

Test case Best 

known 

GVNS Time 

GVNS 

Beam-ACO 

[12] 

Time 

Beam-

ACO [12] 

 value min. 

value 

av.value mean 

RPD 

σ 

RPD 

av. 

sec 

σ mean 

RPD 

σ 

RPD 

av. 

sec 

σ 

rbg010a.tw 671 671 671.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg016a.tw 938 938 938.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg016b.tw 1304 1304 1304.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg017.2 852 852 852.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg017.tw 893 893 893.00 0.00 0.00 0 0 0.00 0.00 1 1 

rbg017a 4296 4296 4296.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg019a 1262 1262 1262.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg019b 1866 1866 1866.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg019c.tw 4536 4536 4536.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg019d.tw 1356 1356 1356.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg020a.tw 4689 4689 4689.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg021 4536 4536 4536.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg021.2.tw 4528 4528 4528.00 0.00 0.00 0 0 0.00 0.00 2 2 

rbg021.3.tw 4528 4528 4528.00 0.00 0.00 0 0 0.00 0.00 9 8 

rbg021.4.tw 4525 4525 4525.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg021.5.tw 4515 4515 4515.00 0.00 0.00 0 0 0.02 0.02 13 19 

rbg021.6 4480 4480 4480.00 0.00 0.00 0 0 0.00 0.00 8 6 

rbg021.7.tw 4479 4479 4479.00 0.00 0.00 0 0 0.00 0.00 2 2 

rbg021.8.tw 4478 4478 4478.00 0.00 0.00 0 0 0.00 0.00 1 1 

rbg021.9 4478 4478 4478.00 0.00 0.00 0 0 0.00 0.00 1 1 

rbg027a.tw 5091 5091 5091.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg031a 1863 1863 1863.00 0.00 0.00 0 0 0.00 0.00 1 1 

rbg033a.tw 2069 2069 2069.00 0.00 0.00 0 0 0.00 0.00 0 0 

rbg034a 2220 2222 2222.00 0.00 0.00 0 0 0.09 0.00 2 2 

rbg035a.2 2056 2056 2056.00 0.00 0.00 0 0 0.04 0.02 15 17 

rbg035a.tw 2144 2144 2144.00 0.00 0.00 0 0 0.00 0.00 1 1 

rbg038a 2480 2480 2480.00 0.00 0.00 0 0 0.00 0.00 6 8 

rbg040a.tw 2378 2378 2378.00 0.00 0.00 0 0 0.02 0.03 15 16 

rbg041a.tw 2598 2598 2598.00 0.00 0.00 9 11 0.06 0.06 34 15 

rbg042a.tw 2772 2772 2772.93 0.03 0.04 14 21 0.16 0.07 24 16 

rbg048a.tw 9387 9383 9383.00 -0.04 0.00 1 1 0.11 0.05 26 16 

rbg049a 10019 10018 10018.50 0.00 0.01 6 15 0.05 0.04 26 17 

rbg050a 2953 2953 2953.27 0.01 0.03 11 17 0.30 0.04 20 15 

rbg050b 9863 9863 9863.00 0.00 0.00 6 8 0.05 0.04 28 15 

rbg050c 10026 10024 10024.00 -0.02 0.00 2 3 0.07 0.04 40 17 

rbg055a 3761 3761 3761.00 0.00 0.00 0 0 0.00 0.00 11 14 

rbg067a 4625 4625 4625.00 0.00 0.00 0 0 0.00 0.02 15 13 

rbg086a 8400 8400 8400.00 0.00 0.00 1 1 0.06 0.05 24 19 

rbg092a 7158 7158 7158.00 0.00 0.00 5 6 0.05 0.03 18 15 

rbg125a 7936 7936 7936.00 0.00 0.00 0 0 0.05 0.04 32 19 

rbg132 8468 8468 8468.00 0.00 0.00 6 6 0.19 0.08 27 16 

rbg132.2 8191 8191 8191.73 0.01 0.01 11 17 0.45 0.14 38 17 

rbg152 10032 10032 10032.00 0.00 0.00 11 16 0.06 0.03 25 18 

rbg152.3 9791 9788 9788.60 -0.02 0.01 16 18 0.15 0.06 35 15 

rbg172a 10950 10950 10951.20 0.01 0.01 19 20 0.39 0.16 35 17 

rbg193 12535 12535 12540.20 0.04 0.03 20 17 0.29 0.14 37 15 

rbg193.2 12143 12138 12141.10 -0.02 0.02 19 15 0.51 0.10 37 16 

rbg201a 12948 12948 12950.10 0.02 0.02 23 16 0.48 0.12 37 14 

rbg233 14992 14993 15001.30 0.06 0.03 33 17 0.56 0.15 42 10 

rbg233.2 14496 14494 14497.60 0.01 0.03 33 13 0.61 0.10 43 11 

Average 5551.1 5550.82 5551.35 0.002 0.005 4.9 4.8 0.01 0.03 14.6 8.5 

Test instances proposed by Potvin and Bengio [18]. On all test instances proposed by 

Potvin and Bengio [18], the proposed GVNS is able to find best known solutions. On the 

other hand, Beam-ACO algorithm is also able to find all best known solutions, but on 

these test instances Beam-ACO algorithm has less mean RPD than the proposed GVNS. 
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Regarding computational time, the proposed GVNS is much faster than Beam-ACO 

algorithm. 

Table 6: Test instances proposed by Potvin and Bengio [18] 

Test 

case 

Best 

known 
GVNS 

Time 

GVNS 

Beam-ACO 

[12] 

Time 
Beam-ACO 

[12] 

 value min. 
value 

av. 
value 

mean 
RPD 

σ 
RPD 

av. 
sec 

σ mean 
RPD 

σ 
RPD 

av. 
sec 

σ 

rc_201.1 444.54 444.54 444.54 0.00 0.00 0 0 0.00 0.00 0 0 

rc_201.2 711.54 711.54 711.54 0.00 0.00 0 0 0.00 0.00 0 0 

rc_201.3 790.61 790.61 790.61 0.00 0.00 0 0 0.00 0.00 2 3 
rc_201.4 793.64 793.64 793.64 0.00 0.00 0 0 0.00 0.00 0 0 

rc_202.1 771.78 771.78 771.78 0.00 0.00 14 12 0.00 0.00 0 0 

rc_202.2 304.14 304.14 304.14 0.00 0.00 0 0 0.00 0.00 0 0 
rc_202.3 837.72 837.72 837.72 0.00 0.00 0 0 0.00 0.00 1 1 

rc_202.4 793.03 793.03 793.03 0.00 0.00 0 0 0.00 0.00 0 0 

rc_203.1 453.48 453.48 453.48 0.00 0.00 0 0 0.00 0.00 0 0 
rc_203.2 784.16 784.16 784.16 0.00 0.00 0 0 0.00 0.00 0 0 

rc_203.3 817.53 817.53 817.53 0.00 0.00 0 0 0.00 0.00 2 2 

rc_203.4 314.29 314.29 314.29 0.00 0.00 0 0 0.00 0.00 0 0 
rc_204.1 878.64 878.64 878.64 0.00 0.00 0 0 0.00 0.00 11 10 

rc_204.2 662.16 662.16 662.16 0.00 0.00 0 0 0.00 0.00 8 7 

rc_204.3 455.03 455.03 455.03 0.00 0.00 0 0 0.00 0.00 0 0 
rc_205.1 343.21 343.21 343.21 0.00 0.00 0 0 0.00 0.00 0 0 

rc_205.2 755.93 755.93 755.93 0.00 0.00 0 0 0.00 0.00 0 0 
rc_205.3 825.06 825.06 825.06 0.00 0.00 0 0 0.00 0.00 1 1 

rc_205.4 760.47 760.47 760.47 0.00 0.00 0 0 0.00 0.00 5 5 

rc_206.1 117.85 117.85 117.85 0.00 0.00 0 0 0.00 0.00 0 0 
rc_206.2 828.06 828.06 828.06 0.00 0.00 0 0 0.00 0.00 0 0 

rc_206.3 574.42 574.42 574.42 0.00 0.00 0 0 0.00 0.00 1 1 

rc_206.4 831.67 831.67 832.06 0.05 0.18 1 4 0.00 0.00 3 2 
rc_207.1 732.68 732.68 732.68 0.00 0.00 0 0 0.00 0.00 0 0 

rc_207.2 701.25 701.25 701.25 0.00 0.00 0 0 0.00 0.00 7 5 

rc_207.3 682.40 682.40 682.40 0.00 0.00 0 0 0.00 0.00 1 1 
rc_207.4 119.64 119.64 119.64 0.00 0.00 0 0 0.00 0.00 0 0 

rc_208.1 789.25 789.25 791.86 0.33 0.28 1 2 0.30 0.29 19 21 

rc_208.2 533.78 533.78 533.78 0.00 0.00 0 0 0.00 0.00 1 1 
rc_208.3 634.44 634.44 634.44 0.00 0.00 0 0 0.00 0.00 12 11 

Average 634.75 634.75 634.85 0.013 0.015 0.53 0.60 0.010 0.010 2.47 2.37 
 

Test instances proposed by Pesant et al. [16].  On test instances proposed by Pesant et 

al. [16], both the proposed GVNS and Beam-ACO, in all 15 runs succeeded to find best 

known solutions on each test instance. However, the proposed GVNS need significantly 

less time than Beam-ACO algorithm to obtain those solutions. 
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Table 7. Test instances proposed by Pesant et al. [16] 

Test 

case 

Best 

known 
GVNS 

Time 

GVNS 

Beam-ACO 

[12] 

Time 

Beam-ACO 
[12] 

 value min. 

value 

av. 

value 

mean 

RPD 

σ 

RPD 

av. 

sec 

σ mean 

RPD 

σ 

RPD 

av. 

sec 

σ 

rc201.0 628.62 628.62 628.62 0.00 0.00 0 0 0.00 0.00 0 0 
rc201.1 654.70 654.70 654.70 0.00 0.00 0 0 0.00 0.00 0 0 

rc201.2 707.65 707.65 707.65 0.00 0.00 0 0 0.00 0.00 0 0 

rc201.3 422.54 422.54 422.54 0.00 0.00 0 0 0.00 0.00 0 0 
rc202.0 496.22 496.22 496.22 0.00 0.00 0 0 0.00 0.00 0 0 

rc202.1 426.53 426.53 426.53 0.00 0.00 0 0 0.00 0.00 0 0 

rc202.2 611.77 611.77 611.77 0.00 0.00 0 0 0.00 0.00 0 0 
rc202.3 627.85 627.85 627.85 0.00 0.00 0 0 0.00 0.00 0 0 

rc203.0 727.45 727.45 727.45 0.00 0.00 0 0 0.00 0.00 1 0 

rc203.1 726.99 726.99 726.99 0.00 0.00 0 0 0.00 0.00 3 3 
rc203.2 617.46 617.46 617.46 0.00 0.00 0 0 0.00 0.00 1 1 

rc204.0 541.45 541.45 541.45 0.00 0.00 0 0 0.00 0.00 0 0 

rc204.1 485.37 485.37 485.37 0.00 0.00 0 0 0.00 0.00 2 2 
rc204.2 778.40 778.40 778.40 0.00 0.00 2 5 0.00 0.01 19 14 

rc205.0 511.65 511.65 511.65 0.00 0.00 0 0 0.00 0.00 0 0 

rc205.1 491.22 491.22 491.22 0.00 0.00 0 0 0.00 0.00 0 0 
rc205.2 714.69 714.70 714.70 0.00 0.00 0 0 0.00 0.00 1 1 

rc205.3 601.24 601.24 601.24 0.00 0.00 0 0 0.00 0.00 0 0 

rc206.0 835.23 835.23 835.23 0.00 0.00 3 3 0.00 0.00 5 5 
rc206.1 664.73 664.73 664.73 0.00 0.00 0 0 0.00 0.00 3 3 

rc206.2 655.37 655.37 655.37 0.00 0.00 0 0 0.00 0.00 2 2 
rc207.0 806.69 806.69 806.69 0.00 0.00 0 0 0.00 0.00 0 0 

rc207.1 726.36 726.36 726.36 0.00 0.00 0 0 0.00 0.00 2 2 

rc207.2 546.41 546.41 546.41 0.00 0.00 0 0 0.00 0.00 0 0 
rc208.0 820.56 820.56 820.56 0.00 0.00 1 4 0.00 0.00 7 8 

rc208.1 509.04 509.04 509.04 0.00 0.00 0 0 0.00 0.00 2 2 

rc208.2 503.92 503.92 503.92 0.00 0.00 0 0 0.00 0.00 1 1 

Average 623.71 623.71 623.71 0.00 0.00 0.22 0.44 0.00 0.00 1.81 1.63 
 

 

Test instances proposed by Langevin et al. [11]. According to test results on test 

instances proposed by Langevin et al. [11], the proposed GVNS need less computational 

time to obtain best known solutions in comparison with Beam-ACO algorithm.  Also, in 

all 15 runs, both heuristics are able to find best known solutions on each test instance. 

Table 7:Test instances proposed by Langevin et al. [11] 
Test case Best 

known 

GVNS Time GVNS Beam-ACO 

[12] 

Time Beam-

ACO [12] 

 value min. 

value 

av. 

value 

mean 

RPD 

σ 

RPD 

av. 

sec 

σ mean 

RPD 

σ 

RPD 

av. 

sec 

σ 

n20w30 724.7 724.7 724.7 0.00 0.00 0 0 0.00 0.00 0 0 

n20w40 721.5 721.5 721.5 0.00 0.00 0 0 0.00 0.00 0 0 

n40w20 982.7 982.7 982.7 0.00 0.00 0 0 0.00 0.00 0 0 

n40w40 951.8 951.8 951.8 0.00 0.00 0 0 0.00 0.00 0 0 

n60w20 1215.7 1215.7 1215.7 0.00 0.00 0 0 0.00 0.00 0 1 

n60w30 1183.2 1183.2 1183.2 0.00 0.00 0 0 0.00 0.00 0 0 

n60w40 1160.7 1160.7 1160.7 0.00 0.00 0 0 0.00 0.00 3 2 

Average 991.47 991.47 991.47 0.00 0.00 0 0 0.00 0.00 0.43 0.43 
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4. CONCLUSIONS 

According to the numerical results reported in this paper, the proposed GVNS 

outperforms recently proposed GVNS based [5] and ACO - Beam heuristics [12] as 

currently being state-of- the-art heuristics for solving TSP with time windows constraints.  

Our method outperforms both mentioned heuristics with respect to the quality of 

solutions and CPU running time consumed. The efficiency and effectiveness of our 

implementation relies on the larger number of neighborhood structures examined, the 

new updating formula and the new efficient feasibility checking procedure.  In some 

future work, this approach can be extended to similar TSP problems. 
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