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1. INTRODUCTION 

Given a matrix n nM R ×∈  and a vector nq R∈ , the linear complementarity 

problem denoted by LCP ( , )q M , is to find nw R∈  and nz R∈  such that  

, 0, 0w Mz q w z− = ≥ ≥  (1.1) 

0tw z = . (1.2) 

LCP is normally identified as a problem of mathematical programming and provides a 
unifying framework for several optimization problems. For recent books on this problem 
and applications see Cottle, Pang and Stone [3] and the references cited therein. 

Scarf [23] introduced a generalization of the linear complementarity problem to 
accomodate more complicated real life problems as well as to diversify the field of 
applications. In this paper, we consider a generalization by Scarf, known as Scarf’s 
generalized linear complementarity problem which involves a vertical block matrix. The 
concept of a vertical block matrix was introduced by Cottle and Dantzig [2] in connection 
with vertical linear complementarity problem. Consider a rectangular matrix A of order 
m k×  with m k≥ . Suppose A  is partitioned row-wise into k  blocks. A  is said to be a 
vertical block matrix of type 1 2( , ,..., )km m m  if A  is partitioned row-wise into k  blocks 

, 1, 2,...,jm kjA R j k×∈ =  such that 
1

k

j
j

m m
=

=∑  in the form 1 tkA A A⎡ ⎤= ⎣ ⎦…  where each 

= (( ))
m kj j j

rsA a R
×

∈  with 
1

k

j
j

m m
=

=∑  Then A  is called a vertical block matrix of type 

1 2( , , , )km m m… . If = 1, = 1, , ,jm j k∀ …  then A  is a square matrix. The vector 

mq R∈  is also partitioned into k  subvectors ,
mj jq R∈  = 1,2, , .j k…  We use the 

notation 
1 1={1,2, , }J m…  to denote the set of row indices of the first block in A  and 

1 1

1 1 1
={ 1, 2, , }

r r r

r j j j
j j j

J m m m
− −

= = =

+ +∑ ∑ ∑…  to denote the set of row indices of the thr  block in 

A  for =2,3, , .r k…  
Scarf [23] introduced the following interesting generalization of the linear 

complementarity problem involving a vertical block matrix A  of type 
1 2( , , , )km m m…  

described above. Let ( )jM x  where 0 kx R≤ ∈  be k  homogeneous linear functions, each 
of which is the maximum of a finite number of linear functions and 

1 2= [ , , , ]k t kq q q q R∈…  be a vector. Scarf poses the following problem. Under what 
conditions can we say that the equations  

1 1
1

2 2
2

( )
( )

( )k k
k

M x r q
M x r q

M x r q

− =
− =

− =
#
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have a solution in nonnegative variables x  and r  with = 0j jx r  for all j ? 
Note that the important difference of Scarf’s problem and LCP (see [23]) is that 

each linear function is replaced by the maximum of several linear functions. Scarf 
pointed out that if ( )jM x  are the minimum rather than the maximum of linear functions, 
the problem could be solved by a trivial reformulation of LCP. 

A slightly generalized version of Scarf’s complementarity problem stated by 
Lemke [13] is as follows: 

Given an ,m k×  m k≥  vertical block matrix A  of type 
1 2( , , , )km m m…  and 

mq R∈  where 
1

k

j
j

m m
=

=∑  find kx R∈  such that 

( ) max( ) 0, = 1, , , 0
j

j j
j ii J

r x A x q j k x
∈

= + ≥ ≥…  (1.3) 

=1
( ) = 0,

k

j j
j

x r x∑  (1.4) 

where A  is a given ,m k×  m k≥  vertical block matrix of type 1 2( , , , ),km m m…  mq R∈  

and 
1

.
k

j
j

m m
=

=∑  

For a given a matrix m kA R ×∈  of type 
1 2( , , , )km m m…  and ,mq R∈  let * kx R+∈  

is a solution of SCP ( , ).q A  Then in the solution *x  if * 0jx =  then *( ) 0j j
iA x q+ ≥  

for atleast one 
ji J∈  and if * > 0jx  then *( ) = 0.j j

imax A x q+  
We refer to this generalization as Scarf’s complementarity problem and denote this 
problem by SCP ( , ).q A  Lemke [13] formulated the Scarf’s complementarity problem as 
a linear complementarity problem LCP ( , )q M  but he remained silent about the 
processability of this problem by his algorithm. Lemke [13] showed that this formulation 
arises for calculating a vector in the core of an n  person game (see [24]). 

In section 2, we provide the necessary definitions and notations used in this 
paper. Some results on solutions of a Scarf’s Complementarity Problem are presented in 
section 3. In section 4, we present equivalent formulation of Scarf’s Complementarity 
Problem SCP ( , )q A  as a vertical linear complementarity problem. A neural network 
model for Scarf’s complementarity problem is presented in section 5. Finally, section 6 
presents concluding remarks.  

2. PRELIMINARIES 

Let A  be a vertical block matrix of type 
1 2( , , , ).km m m…  A submatrix of size k  

of A  is called a representative submatrix if its thj  row is drawn from the thj  block jA  

of A . Clearly, a vertical block matrix of type 
1 2( , , , )km m m…  has at most 

1

k

j
j

m
=
∏ distinct 
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representative submatrices. An example of Scarf’s Complementarity Problem is given 
below. 
Example 1 Consider the vertical block matrix A  of type (2,2,1)  given below where 

1 3 5
3 2 1
4 0 1
4 2 7
1 1 3

A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

1
1
4
4

2

q

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

.  

The vertical block matrix A  has four representative matrices namely 1

1 35
401 ,
113

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2

1 35
4 27 ,
1 1 3

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

3

3 2 1
4 0 1
1 1 3

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 4

3 2 1
4 2 7
1 1 3

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 . The q  vector corresponding to 

representative submatrices 
1 2 3, ,A A A  and 

4A  are 1 2 3 4

1
4 .

2
q q q q

−⎡ ⎤
⎢ ⎥= = = = −⎢ ⎥
⎢ ⎥⎣ ⎦

 

The solutions corresponding to representative submatrices 
1 2 3, ,A A A  and 

4A  are given as 
follows. 

1 2 3= 1, = 0, = 0x x x  for LCP 
1 1( , )q A  

1 2 3= 1, = 0, = 0x x x  and 
1 2 3= 0, = 2, = 0x x x  for LCP

2 2( , )q A  

1 2 3= 1, = 1, = 0x x x  for LCP
3 3( , )q A  

1 2 3
5 4= , = , = 0
7 7

x x x  for LCP
4 4( , )q A  

Note that only the solution 
1 2 3= 0, = 2, = 0x x x  obtained from LCP

2 2( , )q A  
produces a solution for SCP ( , ).q A    

Another generalization of the linear complementarity problem by Cottle and 
Dantzig [2] appears in the literature in connection with a vertical block matrix. This 
generalization is presented below. 

Given a vertical block matrix , ( )m kA R m k×∈ ≥  of type 
1 2( , , , )km m m…  and 

mq R∈  where 
1

k

j
j

m m
=

=∑  the vertical linear complementarity problem is to find 

mw R∈  and kz R∈  such that   

= , 0, 0w Az q w z− ≥ ≥  (2.1) 
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=1
=0, =1,2, , .

m j
j

j i
i

z w j k∏ …
 (2.2) 

Cottle-Dantzig’s [2] generalization was designated later by the name  vertical 
linear complementarity problem [3] and this problem is denoted as VLCP ( , ).q A  
Lemke’s algorithm for the LCP( , )q M  (see [3]) has been extended with some 
modifications to the VLCP ( , )q A  by Cottle and Dantzig in [2]. 
 
Different classes of matrices in LCP literature: 
We say that n nM R ×∈  is   

• P -matrix if all its principal minors are positive.  
• copositive 

0( )C  ( strictly copositive ( ))C  if 0 0tx Mx x≥ ∀ ≥  ( > 0tx Mx  
0 0).x∀ ≠ ≥   

• copositive-plus 
0( )C +  if 

0M C∈  and the implication [ = 0, 0]tx Mx x ≥ ⇒  

( ) = 0tM M x+  holds.  
• 

1L -matrix if for every 0 0, ny y R≠ ≥ ∈  ∃  an i  such that >0iy  and 
( ) 0.iMy ≥   

• 
2L -matrix if for each 0 0, nRξ ξ≠ ≥ ∈  satisfying = 0Mη ξ ≥  and =0tη ξ  

∃  a ˆ0 0ξ≠ ≥  satisfying ˆˆ= ,tMη ξ−  ˆ 0,η η≥ ≥  ˆ 0.ξ ξ≥ ≥   
• L -matrix if it is in both 

1L  and 
2.L   

If M L∈  then Lemke’s algorithm can process LCP( , ).q M  
Different classes of vertical block matrix: 

A vertical block matrix A  of type 
1 2( , , , )km m m…  is called a vertical block 

( )0 0 1, , ,P C C C L+ -matrix if all its representative submatrices are P  (
0 , ,C C  

0 ,C+  
1L )-

matrices. 
A vertical block matrix A  of type 

1 2( , , , )km m m…  is called a vertical block 
matrix with copositive-plus property if every representative submatrix is copositive-plus. 

 

3. ON SOLUTION OF A SCARF’S COMPLEMENTARITY PROBLEM 

First we observe the following result on solutions of Scarf’s complementarity 
problem.  
Theorem 3.1  SCP ( , )q A  has a solution if and only if there exists a representative 
submatrix RA  and a corresponding subvector 

Rq  of q  so that LCP ( , )R Rq A  is solvable 
with a solution x  that satisfies max( ) = 0

j

j j
ii J

q A x
∈

+  if > 0jx  and 

max( ) 0
j

j j
ii J

q A x
∈

+ ≥  if = 0.jx    
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Proof. Suppose SCP( , )q A  has a solution .kx R+∈  Then max( ) 0
j

j j
ii J

q A x
∈

+ ≥  

=1, , .for j k…  Let 1, , pi i…  be the row indices for which max( ) 0
j

j j
ii J

q A x
∈

+ =  and 

1 2, , ,p p ki i i+ + …  be the row indices for which max( ) 0
j

j j
ii J

q A x
∈

+ ≥ . Let 
RA  be the 

corresponding representative submatrix, i.e., the submatrix which corresponds to the 
rows of the blocks of A  that results in the maximum and 

Rq  be the corresponding 
subvector of q . Consequently, x  is a solution of LCP( , ).R Rq A  Conversely, let x  be a 
solution of LCP( , )R Rq A  as defined above, that satisfies max( ) 0

j

j j
ii J

q A x
∈

+ =  if > 0jx  

and max( ) 0
j

j j
ii J

q A x
∈

+ ≥  if = 0.jx  Therefore, clearly x  is also a solution of 

SCP ( , ).q A  This completes the proof.      
Note that conditions stated in the above theorem cannot be relaxed. The 

following example shows that even though LCP( , )R Rq A  involving both representative 
submatrices have a solution but SCP( , )q A  has no solution.  

  
Example 1  Consider the vertical block matrix A  of type (2,1)  as given below 

0 8
0 5
4 0

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
4

5 .
2

q
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 The above vertical block matrix A  has two representative 

matrices namely 1

0 8
4 0

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 2

0 5
.

4 0
A

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The q  vector corresponding to 
1A  and 

2A  are 1

4
2

q
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 and 2

5
2

q
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

respectively. 
The solutions corresponding to representative submatrices 

1A  and 
2A  are as 

follows. 
1 20.5, 0.5x x= =  for LCP 1 1( , )q A and 1 20.5, 1x x= =  for LCP 2 2( , ).q A  

But it may be noted that though both the representative submatrices have 
solutions, none is a solution of the SCP ( , )q A . 

However in the above example, VLCP ( , )q A  has two solutions namely 

1 20.5, 0.5x x= =  and 1 20.5, 1x x= = . 
Scarf [23] proves the following theorem on existence of solution of a SCP.  
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Theorem 3.2 (Scarf [23])  Suppose

1

2

k

A
A

A

A

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
 where max( ) .

j

j
j ii J

M x A x
∈

=  A solution to 

SCP ( , )q A  exists for all q  if  

0 ( ) 0, . ., 0 = 0.max j t
j i

i Jj j

x and x A x i e x Mx x
∈

≥ ≤ ≤ ⇒∑
 

Theorem 3.3 Suppose A  is a vertical block P matrix−  of type 
1 2( , , , ).km m m…  Then 

SCP ( , )q A  has a solution for all .q    
Proof. Suppose R  is a representative submatrix of A , where A  is a vertical block 

.P matrix−  Then by definition, R  is a .P matrix−  Therefore ( ) 0 = 0,j jx Rx j x≤ ∀ ⇒  

i.e., 
1

( ) 0 = 0.
k

j j
j

x Rx x
=

≤ ⇒∑  Since ( ) 0 = 0,j jx Rx j x≤ ∀ ⇒  for each of the 

representative submatrices, it follows that  

0 ( ) 0, . ., 0 = 0,max j t
j i

i Jj j

x and x A x i e x Mx x
∈

≥ ≤ ≤ ⇒∑
 

where M  is as defined in Theorem 3.2. This completes the proof. 
 
Theorem 3.4 Suppose A  is a vertical block strictly copositive matrix. Then a solution to 
SCP ( , )q A  exists for all .q    
Proof. Suppose A  is a vertical block strictly copositive matrix. Then each representative 
submatrix R  of A  is strictly copositive. By definition > 0 0 0.tx Rx x∀ ≠ ≥  Therefore, 

0, 0 = 0.tx x Rx x≥ ≤ ⇒  Let M  be the representative submatrix as defined in Theorem 
3.2. Therefore, 0, 0 = 0.tx x Mx x≥ ≤ ⇒  So, by Theorem 3.2, a solution to SCP( , )q A  
exists for all .q   This completes the proof.   
           
Remark 3.1 We observe in the above two theorems that if A  is a vertical block P  or 
vertical block strictly copositive matrix then a solution to SCP ( , )q A  exists for all .q  i.e., 
the vertical block matrix A  has Q -property.   
Now, we consider vertical block matrices with some special structures.  
 
 
 
 
Example 2  Consider a vertical block P -matrix A  of type (2,1)  given below where 
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2 2
3 2
1 2

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
6
4 .
4

q
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 The above vertical block matrix A  has two representative 

submatrices namely, 1

2 2
1 2

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 2

3 2
.

1 2
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Note that both 
1A  and 2A  are P -matrices. The q  vector corresponding to 

1A  

and 2A  are 1

6
4

q
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 and 2

4
4

q
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 respectively. 

The unique solutions corresponding to representative submatrices 
1A  and 2A  are 

as follows. 

1 22, 1x x= =  for LCP 1 1( , )q A and 1 20, 2x x= =  for LCP 2 2( , ).q A  

It is easy to see that the unique solution corresponding to SCP ( , )q A  is given 
by 

1 2= 0, = 2.x x  
It is well known that LCP( , )R Rq A  has a unique solution where n n

RA R ×∈  is a 
.P matrix−  This result also holds true for VLCP ( , )q A  where A  is a vertical block 

P matrix−  of type 
1 2( , , , ).km m m…  Now we raise the following question - Is this also 

true for SCP ( , )q A , where A  is a vertical block P matrix− of type 
1 2( , , , )?km m m…  

Note that this issue is not addressed in Scarf [23], Lemke [13] and Eaves [4]. We pose 
this as an open problem.  

3.1 Open problem 
  
Is it true that A  is a vertical block P matrix− of type 

1 2( , , , )km m m…  if and only 
if SCP ( , )q A  has a unique solution for every mq R∈ ? 

 
4. AN EQUIVALENT FORMULATION OF SCP 

In this section we show that Scarf’s complementarity problem may be 
formulated as vertical linear complementarity problem. This formulation is advantageous 
compare to LCP formulation presented by Lemke [13] from algorithmical point of view. 
If  Lemke’s algorithm is applied on Lemke’s LCP formulation of Scarfs problem, it will 
execute some trivial pivots. However, if we apply Cottle-Dantzig algorithm on the VLCP 
formulation presented here, then the trivial pivots may be skipped. 

 
 

 
Formulation I: Scarf’s complementarity problem SCP ( , )q A  can be posed as a VLCP. 
Let mw R∈  and , , , , .ku v z x r R∈  Also let us define a matrix m kF R ×∈  as follows:  
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1

2

0 0
0 0

0 k

e
e

F

e

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

# #
… …

 

where je  is a column vector of 1’s of order jm . 
Lemke [13] formulates this problem as an equivalent linear complementarity 

problem LCP *( , )q M  where  

*

0
0 0

2 0 0

t
k

t
k

q A F
q e and M F

e F

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 

Note that M  is a square matrix of order ( 2 ),m k+  k
ke R∈  is a column vector 

of all 1’s of order .k  
Now we show that Scarf’s problem can be represented as a VLCP. 
Let I  be the identity matrix of order k and ke R∈  be a unit vector of all 1’s. 

Note that for a given ,x  the scalar  

( )= ( ) , = 1, , , 0max j j
j i

i J j

r x A x q j k x
∈

+ ≥…
 

is equivalent to the system   

, 0, 0.j j j j j j
jw q A x r e w w= − − + ≥ >/  (4.1) 

The system (4.1) along with the Scarf’s complementarity condition   

1
( ) 0, 1,2,...,

k

j j
j

x r x j k
=

= =∑  (4.2) 

give rise to the following vertical linear complementarity problem. The equivalent 
VLCP is  

0
= 0 0 , , 0

2 0 0

w q A F z w z
u e I x u x
v e I r v r

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + ≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

=1
=0, =1,2, , ,

m j
j

j i
i

z w j k∏ …
 

= 0,tu x     = 0.tv r  
Here  
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( 2 ) 3 2
1

0
ˆ= 0 0 = .

0 0 2

m k k m k

A F q
A I R and q e R

I e

+ × +

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∈ − ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦   

 
Note that 

1A  is a vertical block matrix of type 
1( , , ,1, ,1,1, ,1).km m… … …  We call this 

problem as VLCP
1ˆ( , ).q A  

 
We make use of the idea similar to Lemke [13] to prove the following lemma.   
 
Lemma 4.1  Consider the problem SCP ( , )q A  and VLCP

1ˆ( , )q A  as defined earlier. 
SCP ( , )q A  has a solution if and only if VLCP

1ˆ( , )q A  has a solution.   
 
Proof. Let ( 2 ) 3( , ), ,m k kR Rη ξ η ξ+∈ ∈  be a solution to VLCP

1ˆ( , )q A  where  

.
t tt t t t t tw u v and z x rη ξ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

 
Note that  1j ju v+ = and 0 0 0

j

j j
j i

i J
z w w

∈

≥ ⇒ = ⇒ >/∏ . Since 0 0j jr v> ⇒ = 1ju⇒ =  

0jx⇒ = and 0 0 1 0.j j j jx u v r> ⇒ = ⇒ = ⇒ =  Hence ( , )
tt tw x r⎡ ⎤⎣ ⎦  solves 

SCP ( , ).q A  

Conversely, suppose ( , )
tt tw x r⎡ ⎤⎣ ⎦  solves SCP( , ).q A  This implies 0jw >/  

0.
j

j
i

j J
w

∈

⇒ =∏  Hence 0
i

j
j i

j J
z w

∈

=∏  is satisfied. 

 
Choose 

jz  in the following manner:  

* *

1 > 0 =0
= 2 = 0 >0

, 1 < < 2 = 0 =0.

j j

j j j

j j j j

if x and r
z if x and r

z z if x and r

⎧
⎪
⎨
⎪
⎩  

From the choice of 
jz  it follows that = 0,tu x  = 0.tv r  Therefore ( ,[ ] )t t tw x r  solves 

VLCP
1ˆ( , ).q A    This completes the proof.    

         
Formulation II: We now show that SCP( , )q A  can be formulated as a vertical linear 
complementarity problem with a smaller size. 
 
For a given ,x  (4.1) and (4.2) are equivalent to the assertion that   
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, 0, 0, 0, 0, 1,..., ,j j j j j
j j jw q A x r e x r w w j k= − − + ≥ ≥ ≥ > =/  

(4.3) 

1
0, 1,...,

k

j j
j

x r j k
=

= =∑  (4.4) 

where the scalar ( ).j jr r x=  Now we define 1 , 0, 1,2,..., .j j jr u r j k= − + ≥ =   
 
We can rewrite (4.3) and (4.4) as   

( ) , 0, 0, 0, 0, 1,2,...,j j j j j j
j j jw q e A x u e x u w w j k= − − − + ≥ ≥ ≥ > =/  (4.5) 

1 , 0, 1,2,...,j j jr u r j k= − + ≥ =  (4.6) 

1
0, 1,2,...,

jm
j

j i
i

u w j k
=

= =∏  (4.7) 

1
0, 1, 2,..., .

k

j j
j

x r j k
=

= =∏  (4.8) 

  

Let 

1

k

u
u

u

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

#  and 

1

.

k

r
r

r

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

#  We note that (4.5) through (4.8) give us the VLCP
2( , )q A  

where 2 0
F A

A
I

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 is of order *( ) 2 .m

k

q e
m k k and q

e
− −⎡ ⎤

+ × = ⎢ ⎥−⎣ ⎦
 

In the above formulation m
me R∈  and k

ke R∈  are vectors of all 1 ’s and I  is the 
identity matrix of order .k   
 
Lemma 4.2  SCP ( , )q A  has a solution if and only if VLCP *

2( , )q A  has a solution.   
 
Proof.  Let ( , )r x  be a solution SCP( , ).q A  Let = 1j ju r +  and  

= ( ) .j j j j j
jw q e A x u e− − − +  It is easy to verify that ,

w u
r x

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

 solves 

VLCP *
2( , ).q A  

Conversely, let ,
w u
r x

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

 solve VLCP *
2( , ).q A  Note that = 1,j ju r +  1 .j k≤ ≤  

Hence > 0ju  which implies > 0.jw  Thus ( , )r x  solves SCP( , ).q A  This completes the 
proof.              
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4.1 VLCP Formulation of Scarf’s Complementarity Problem presented as an LCP 

In [16], an equivalent LCP ( , )q M  of order m  is constructed from VLCP ( , )q A  
by copying ,jA⋅

 
jm  times for =1,2, , .j k…  In [16], it is shown that VLCP( , )q A  has a 

solution if and only if LCP( , )q M  has a solution. 
 

Now consider the VLCP
1( , )q A  where 1A  is a vertical block matrix of type 

1( ,..., ,1,...,1,1,...,1)km m  constructed from Scarf’s complementarity problem. The 
equivalent matrix 1M  and q  in the equivalent LCP

1( , )q M  are given by 

( 2 ) ( 2 ) 2
1

0
0 0 .
0 0 2

t M k m k m k

t

A F q
M F R and q e R

F e

+ × + +

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∈ = − ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

Note that incidently the matrix M  in Lemke’s equivalent LCP [13] is the same as above. 
We prove the following lemma.   
 

Lemma 4.3 Let
0

0 0
0 0

t

t

A F
M F

F

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 be the equivalent LCP matrix. Then 
1.M L∈    

 
Proof.  We show that 

1.M L∈  Let 
1 = {1, , },mβ …  

2 = {( 1), , ( )}m m kβ + +…  and 

3 = {( ), , ( 2 )}.m k m kβ + +…  Suppose = .
tt t tz x rξ ⎡ ⎤⎣ ⎦  

Case I:  0 0z≠ ≥ , 0 0x≠ ≥  and 0 0.r≠ ≥  In this case for any index 
2 ,k β∈  >0kx  and 

( ) 0.kMξ ≥  
Case II:  0 0z≠ ≥ , 0 0x≠ ≥  and = 0.r  In this case for any index 

2 ,k β∈  >0kx  and 

( ) = 0.kMξ ≥  
Case III:  0 0z≠ ≥ , 0 0r≠ ≥  and = 0.x  In this case for any index 

1,k β∈  >0kz  and 

( ) = 0.kMξ ≥  
Case IV:  0 0x≠ ≥ , 0 0r≠ ≥  and = 0.z  In this case for any index 

2 3,k β β∈ ∪  

> 0
tt

t
k

x
r
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and ( ) 0.kMξ ≥  

 
The other cases (V) 0 0, = 0, = 0z x r≠ ≥ , (VI) = 0,z  0 0,x≠ ≥  = 0r  and (VII) 

= 0,z  = 0,x  0 0r≠ ≥  are easy to verify. Thus 
1.M L∈  This completes the proof.   

Remark 4.1 We observe that vertical block matrix of type 
1 2( , , , )km m m…  are 

encountered in both VLCP and SCP. Cottle-Dantzig’s algorithm (a generalization of 
Lemke’s algorithm) can process the VLCP ( , )q A  where A  is a vertical block matrix of 
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type 
1 2( , , , )km m m…  and it belongs to some known processable class. In view of Lemma 

4.1 and 4.2, it is clear that we can make use of Cottle-Dantzig’s algorithm to process a 
subclass of Scarf’s complementarity problem SCP ( , ).q A  In Lemma 4.3, the observaion 
that M  is semimonotone (which is a special structure) may be useful from 
computational point of view.   
         

5. NEURAL NETWORK MODEL FOR SCARF’S PROBLEM  

The dynamic system presented below is in the form of first-order ordinary 
differential equations. It is expected that for an initial state, the dynamic system will 
approach its static state (or equilibrium point) which corresponds the solution of the 
underlying Scarf’s complementarity problem. 

Neogy, Das and Das [18] used neural network approaches to solve vertical 
linear complementarity problems. In this paper, we propose the following neural network 
dynamics to solve Scarf’s Complementarity Problem.  

 
5.1 Proposed Neural Netwok Dynamics 

We propose the following recurrent neural network model, which is described 
by the following non-linear dynamic system 

1,2,...,
max ( ) , 0.

j

j
ji m

dx dxq A x k x
dt dt=

⎧ ⎫= + + >⎨ ⎬
⎩ ⎭

 (5.1)  

Theorem 5. If the neural network whose dynamics is described by the differential 
equation (5.1) converges to a stable state, then the converged state is a solution for the 
Scarf’s Complimentarity Problem.   

 
Proof. Consider the Scarf’s Complimentarity Problem involving a vertical block matrix 
A  of type 

1( , , ).km m…  Equation (5.1) can be written as 

{ }
1,2,...,
max ( ) , 0

j

jj
jii m

dx
q A x dx x

dt =
= + + >  (5.2) 

  
1

=1,2, ,
=max[ {( ( )) , , ( ( )) },0], = 0.maxj j j

m jji m j

dx
q A x dx q A x dx if x

dt
− + + + +

…
…                 (5.3) 

 
Note that equation (5.3) ensures that x  will be bounded from below by 0 . Let 

*lim ( )= .
t

x t x
→∞

 By stability of convergence 
*

= 0.dx
dt

 So equations (5.2) and (5.3) become 

{ }*

1,2,...,
max ) 0

j

j
ii m

q Ax
=

− + ≤  (5.4) 

{ }* *

1,2,...,
max ( ) 0

j

j
j ii m

x q Ax
=

⎡ ⎤− + =⎢ ⎥⎣ ⎦
 (5.5) 
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Therefore, we get the inequalities (1.3) and (1.4) involving Scarf’s problem. So, by 
definition, *x  is a solution of SCP ( , ).q A  This completes the proof.          
 

5.1.1 Matlab Code for Solving the Neural Network Dynamics 
 
Euler’s method was used for solving the differential equation (5.1). The 

following code describes the matlab implementation of the proposed neural network 
dynamics. For ease of computation, the cofficient k  is taken as time step dt . 
 
    while >dx ε  

for =1 : 1j k           % k1 is number of blocks  

      for 
1

1 1
= 1 :

j j

r r
r r

i m m
−

= =

+∑ ∑ ; 

         =max{ *( )} ;j
j ii

M q A x dx⋅ + +  

      end 
end 
for =1: 1j k  
   = *{ * ( )};jdx dt q M x dx− − +  

end 
= ( ,0) ;dx max x dx x+ −       % to make 0x≥   

= ;x x dx+  

     end 
  

Example 5. 1  Consider the Scarf’s Problem, where A  is a vertical block matrix of type 
(2,2,1) , and 5q R∈  as given below 

1 3 5
3 2 1
4 0 1
4 2 7
1 1 3

A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

1

4
4

2

q

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Solution to the above problem obtained using Scarf’s Complemetarity 
Algorithm is (0, 2, 0). The dynamics converges to above solution in just 75 iterations, 

where step length dt  and convergence criteria ε  are taken as 0.1 and 610−  respectively. 
The convergence of the dynamics to the solution satisfying the complementarity 
condition is given in the following figure.  
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Figure  1: Example No. 5.1 
 

Example 2  Consider another Scarf’s Problem, where A is a vertical block matrix of 
type (3,1,2,2) , and 8q R∈  as given below 

2 4 5 7
4 3 5 9

3 1 5 4
2 3 4 2
3 5 7 2

2 5 3 4
2 2 0 5
4 5 2 4

A

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥= ⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

5
8

1
2
3
4
3
7

q

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 
Solution to the above problem, obtained using Scarf’s Complemetarity Algorithm, is 
(0, 0, 0, 0.6). The dynamics converges to above solution in just 37 iterations, where 

step length dt  and convergence criteria ε  are taken as 0.1 and 610−  respectively. The 
convergence of the dynamics to the solution satisfying the complementarity condition is 
given in the following figure. 
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Figure  2: Example No. 5.2 
 

Example 3  Consider another Scarf’s Problem of higher dimension, where A  is 
a vertical block matrix of type (2,3,4,2,1,3) , and 15q R∈  as given below 

 

4 3 4 3 1 5
3 0 2 0 5 4
3 2 0 4 2 0

2 1 0 3 5 3
3 2 0 5 0 2
5 7 5 0 4 6
3 0 5 3 7 9
1 2 0 5 0 2
2 3 0 5 2 9
3 0 2 4 0 5

0 3 4 5 2 3
5 0 3 3 2 2

3 5 0 1 0 0
0 5 0 3 2 7
2 0 3 5 6 9

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥

= − −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 and 

5
10
3
3
7
3

7
2
5
3
3

7
3

9
7

q

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥

⎢ ⎥−
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

  

Solution to the above problem, obtained using Scarf’s Complemetarity 
Algorithm, is (1.7, 0, 0, 0.6, 0, 0). The dynamics converges to above solution in 40 

iterations, where step length dt  and convergence criteria ε  are taken as 0.1 and 610−  
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respectively. The convergence of the dynamics to the solution satisfying the 
complementarity condition is given in the following figure. 
 

 

Figure 3: Example No. 5.3 
 

6. CONCLUDING REMARK ON SCARF’S COMPLEMENTARITY 
PROBLEM 

In this paper, we consider Scarf’s complementarity problem and observe that even 
though LCP involving representative submatrices has a solution, SCP( , )q A  has no 
solution. It is well known that if A  is a P  matrix or strictly copositive matrix, then 

.A Q∈  We show that if A  is a vertical block matrix P -matrix or vertical block strictly 
copositive matrix of type 

1 2( , , , )km m m…  then SCP( , )q A  has a solution for all q , i.e., 
A  has Q -property. This generalizes the LCP result in the setting of Scarf’s 

complementarity problem. We observe that a Scarf’s complementarity problem can be 
reformulated as a vertical linear complementarity problem. This extends the application 
of Cottle-Dantzig’s algorithm to Scarf’s complementarity problem. Finally, we present a 
neural network model to solve a Scarf’s complementarity problem. The proposed neural 
network model is tried for a large number of test problems and converges to a solution 
for all such test problems. 
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