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1. INTRODUCTION

Convexity plays an important role in optimization theory as it extends the validity
of a local solution of a minimization problem to a global one. But in several real world
problems, the notion of convexity is no longer sufficient, which motivated the introduction
of various generalizations of convex functions. It has been found that only a few properties
of convex functions are needed for establishing sufficiency and duality theorems. Hanson
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[11] introduced the concept of differentiable invexity, which is a generalization of the
concept of convexity. After the work of Hanson, other classes of differentiable nonconvex
functions have been introduced to generalize the class of invex functions from different
points of view, see the in [7-9, 12, 13, 16, 21, 22 ]. Later, Kaul and Kaur [14] presented
strictly pseudoinvex, pseudoinvex and quasiinvex functions.

Hanson and Mond [12] defined two new classes of functions called type I and
type II functions. Rueda and Hanson [23] have introduced pseudo type I and and quasi
type I functions. Mishra [24] studied a multiple objective nonlinear programming problem
by combining the concepts of type-I, pseudo-type-I, quasi-type-I, quasi-pseudo-type-I,
pseudo-quasi-type-I and univex functions. More details on type-I functions can be found
in Ye [35], Suneja and Srivastava [25], Mishra et al. [26-30]. Other classes of generalized
type I functions have been introduced in [2, 15].

In [17] and [18], Liang et al. introduced (F,α,ρ,d)-convexity, which is unifor-
mulation of generalized convexity and an extension of (F,ρ)-convexity [22] and general-
ized (F,ρ)-convexity [8]. They obtained optimality conditions and duality results for the
single objective fractional problems. Yuan et al. [32] introduced (C,α,ρ ,d)-convexity,
which is a generalization of (F,α,ρ ,d)-convexity. Chinchuluun et al. [10] and Long
[19] later studied multiobjective fractional programming problems in the framework of
(C,α,ρ,d)- convexity. Antczak[4] extended further Hanson’s invexity to G-invexity for
scalar differentiable functions. In the natural way, Antczak’s definition of G-invexity was
also extended to the case of differentiable vector-valued functions in [6].

Motivated by [4-6, 33], we consider a class of differentiable multiobjective opti-
mization problems. We introduce some new generalizations of (G,C,ρ)-convex functions
and establish sufficient optimality conditions for the optimization problem. The results of
the paper extend and unify some earlier results from the literature to a more general class
of functions.

2. DEFINITIONS AND PRELIMINARIES

In this section, we provide some definitions and some results which will we be
used in the sequel. The following convention for vector in Rn will be adopted.

x < y if and only if xi < yi, for i = 1, ...,n;
x 5 y if and only if xi ≤ yi, for i = 1, ...n;

x 6 y if and only if xi ≤ yi, for i = 1, ...,n, but x 6= y;

We consider the following nonlinear multiobjective programming problem:
(MOP)

minimize f (x) := ( f1(x), ..., fp(x)),

subject to g(x) := (g1(x), ...,gq(x)) 5 0,

x ∈ X ,
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where X is a nonempty open subset of Rn. Let A denote the set of all feasible points of
(MOP) and f : X → Rp, g : X → Rq are differentiable functions at x0 ∈ A. The index set
P = {1,2, ..., p} and Q = {1,2, ...,q}. For x0 ∈A the index set J(x0) = { j∈Q : g j(x0) = 0}
and gJ denote the vector for active constraints.
In the sequel, we need the following vector minimization problem:
(G-MOP)

minimize G f f (x) := (G f1 f1(x), ...,G fp fp(x)),

subject to Ggg(x) := (Gg1 g1(x), ...,Ggq gq(x)) 5 Gg(0),

x ∈ X ,

where G f : R→ Rp and Gg : R→ Rq are vector valued functions.

Definition 2.1. We say that x0 ∈ A is an efficient solution for problem (MOP) if and only
if there exists no x ∈ A such that f (x) 6 f (x0), that is, fi(x) ≤ fi(x0) for all i ∈ P with
strict inequality for at least one i ∈ P.

Definition 2.2. We say that x0 ∈ A is a weak efficient solution for problem (MOP) if and
only if there exists no x ∈ A such that f (x) < f (x0), that is, fi(x) < fi(x0) for all i ∈ P.

Let X be a subset of Rn. For our convenience, an element of (n+1)-dimensional
Euclidean space Rn+1 is represented, in the following, as the ordered pair (τ,ρ) with
τ ∈ Rn and ρ ∈ R.

Definition 2.3. A function C : X ×X ×Rn+1 → R is convex on Rn+1 with respect to the
third argument if and only if, for any fixed (x,x0) ∈ X×X, the inequality

C(x,x0)(λ z1 +(1−λ )z2)≤ λC(x,x0)(z1)+(1−λ )C(x,x0)(z2),∀ λ ∈ (0,1),

holds for all z1 = (τ1,ρ1)∈Rn+1 and z2 = (τ2,ρ2)∈Rn+1, where τ1,τ2 ∈Rn and ρ1,ρ2 ∈
R.

Definition 2.4. Let f = ( f1, .., fp) : X → Rp be a vector-valued function defined on a
nonempty set X ⊂Rn, I fi(x), be the range of fi, i∈P. If there exist a vector-valued function
G f = (G f1 , ....,G fp) :R→Rp such that any of its component G fi : I fi(X)→R is a strictly
increasing function on its domain and G fi( fi) is a differentiable function on X, and real
numbers ρi(i ∈ P) such that for any x ∈ X(x 6= x0), the inequality

G fi( fi(x))−G fi( fi(x0))≥ (>)C(x,x0)(5(G fi( fi))(x0),ρi), (2.1)

holds for each i ∈ P, then f is said to be (strictly) (G f ,C,ρ)-convex at x0 ∈ X, where
ρ = (ρ1, .....ρp)T . The function f is said to be (strictly) (G f ,C,ρ)-convex over X if,
for all x0 ∈ X, it is (strictly) (G f ,C,ρ)-convex. In particular, f is said to be strong
(strictly)(G f ,C,ρ)-convex or strictly (G f ,C,ρ)-convex with respect to ρ > 0 or ρ = 0,
respectively.
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In order to define an analogous class of (strictly)(G f ,C,ρ)-incave functions, the
function G fi of inequality in the above definition should be replaced by the function−G fi .
That is, the inequality

−(G fi( fi(x))−G fi( fi(x0)))≥ (>)C(x,x0)(−5 (G fi( fi))(x0),ρi),

holds for i ∈ P.

Remark 2.1. From the above definition, (C,α,ρ ,d)-convexity defined in [32] is a special
case of (G f ,C,ρ)-convexity whenever G f (t) = t, t ∈ R. Therefore, (F,α,ρ)-convexity
[17, 18] and (F,ρ)-convexity [22] are a special case of (G f ,C,ρ)-convexity since any
sublinear functional is also convex.

Theorem 2.1. Let G fi(i∈P) be strictly increasing function defined on I fi(X), Gg j ( j ∈Q)
be strictly increasing function defined on Ig j(X). Further, let 0 ∈ Ig j(X). Then x0 is an
efficient (weak) solution for (MOP) if and only if x0 is an efficient (weak) solution for
(G-MOP).

3. SUFFICIENT OPTIMALITY CONDITIONS

We assume throughout the paper that G f is a vector objective function and that
Gg is the constraint vector in (G-MOP). The definition of type I for single objective and
constraint vector function [12] can be generalized easily to a multiple objective and con-
straint vector.
Throughout this paper, the following notation will be used

ρ = (ρ1,ρ2), where ρ1 = (ρ1
1, ...,ρp

1) ∈ Rp and ρ2 = (ρ1
2, ...,ρq

2) ∈ Rq.

C(x,x0)(∇G f ( f (x)),ρ1) := (C(x,x0)(∇G f1( f1(x)),ρ1
1 ), ...,C(x,x0)(∇G fp( fp(x)),ρ1

p)).

C(x,x0)(∇Gg(g(x)),ρ2) := (C(x,x0)(∇Gg1(g1(x)),ρ2
1 ), ...,C(x,x0)(∇Ggq(gq(x)),ρ2

q )).

We are now ready to present the new classes of functions.

Definition 3.5. ( f ,g) is said to be (G,C,ρ)-type I at x0, if for all x ∈ A we have

G f ( f (x))−G f ( f (x0)) = C(x,x0)(5(G f ( f ))(x0),ρ1), (3.1)

−Gg(g(x0)) = C(x,x0)(5(Gg(g))(x0),ρ2). (3.2)

Remark 3.2. Let G f (t) = t, t ∈ R. Then, the above definition is a generalization of
(G,C,ρ)-convexity defined in [33] and (C,α,ρ ,d)-type I convexity defined in [34].
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Definition 3.6. ( f ,g) is said to be pseudoquasi (G,C,ρ)-type I at x0 , if for all x ∈ A, we
have

G f ( f (x)) < G f ( f (x0))⇒C(x,x0)(5(G f ( f ))(x0),ρ1) < 0, (3.3)

−Gg(g(x0)) 5 0⇒C(x,x0)(5(Gg(g))(x0),ρ2) 5 0. (3.4)

If in the above definition, inequality (3.3) is satisfied as

G f ( f (x)) 5 G f f (x0)⇒C(x,x0)(5(G f ( f ))(x0),ρ1) < 0, (3.5)

then, we say that ( f ,g) is strictly pseudoquasi (G,C,ρ)-type I at x0.

Definition 3.7. ( f ,g) is said to be weak strictly-pseudoquasi (G,C,ρ)-type I at x0 , if for
all x ∈ A, we have

G f ( f (x)) 6 G f ( f (x0))⇒C(x,x0)(5(G f ( f ))(x0),ρ1) < 0, (3.6)

−Gg(g(x0))≤ 0⇒C(x,x0)(5(Gg(g))(x0),ρ2)≤ 0. (3.7)

Definition 3.8. ( f ,g) is said to be stong-pseudoquasi (G,C,ρ)-type I at x0, if for all
x ∈ A, we have

G f ( f (x)) 6 G f f (x0)⇒C(x,x0)(5(G f ( f ))(x0),ρ1) 6 0, (3.8)

−Gg(g(x0)) 5 0⇒C(x,x0)(5(Gg(g(x0)),ρ2) 5 0. (3.9)

If in the above definition, inequality (3.8) is satisfied as

G f ( f (x)) < G f ( f (x0))⇒C(x,x0)(5(G f ( f ))(x0),ρ1) 6 0, (3.10)

then we say that ( f ,g) is weak pseudoquasi (G,C,ρ)-type I at x0.

Definition 3.9. ( f ,g) is said to be sub-strictly-pseudoquasi (G,C,ρ)-type I at x0, if for
all x ∈ A, we have

G f ( f (x)) 5 G f ( f (x0))⇒C(x,x0)(5(G f ( f ))(x0),ρ1) 6 0, (3.11)

−Gg(g(x0))≤ 0⇒C(x,x0)(5(Gg(g))(x0),ρ2) 5 0. (3.12)

Definition 3.10. ( f ,g) is said to be weak quasistrictly-pseudo (G,C,ρ)-type I at x0, if for
all x ∈ A, we have

G f ( f (x)) 6 G f ( f (x0))⇒C(x,x0)(5(G f ( f ))(x0),ρ1)≤ 0, (3.13)

−Gg(g(x0)) 5 0⇒C(x,x0)(5(Gg(g))(x0),ρ2) 6 0. (3.14)

Definition 3.11. ( f ,g) is said to be weak quasisemi-pseudo (G,C,ρ)-type I at x0, if for
all x ∈ A, we have

G f ( f (x)) 6 G f ( f (x0))⇒C(x,x0)(5(G f ( f ))(x0)),ρ1)≤ 0, (3.15)

−Gg(g(x0))≤ 0⇒C(x,x0)(5(Gg(g(x0),ρ2) < 0. (3.16)
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Definition 3.12. ( f ,g) is said to be weak strictly-pseudo (G,C,ρ)-type I at x0, if for all
x ∈ A, we have

G f ( f (x)) 6 G f ( f (x0))⇒C(x,x0)(5(G f ( f ))(x0),ρ1) < 0, (3.17)

−Gg(g(x0)) 5 0⇒C(x,x0)(5(Gg(g))(x0)),ρ2) < 0. (3.18)

Now, we establish a sufficient optimality condition for a feasible point to be an
efficient solution for (G-MOP).

Theorem 3.2. Let x0 be a feasible solution for (G-MOP), and let there exist vector u∈ Rp

and vector v ∈ Rq such that

p

∑
i=1

ui∇(G fi( fi))(x0)+ ∑
j∈J(x0)

v j∇(Gg j(g j))(x0) = 0, (3.19)

v jGg j g j(x0) = 0,∀ j ∈ Q, (3.20)

v j ≥ 0,∀ j ∈ Q, (3.21)

ui > 0,∀i ∈ P. (3.22)

If ( f ,gJ) is strong pseudoquasi (G,C,ρ)-type I at x0 such that

p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j ≥ 0, (3.23)

C(x,x0)(0,r) < 0⇒ r < 0,∀x ∈ X , (3.24)

then, x0 is an efficient solution for (G-MOP).

Proof : Suppose that x0 is not an efficient solution for (G-MOP). Then, there
exists x ∈ A, such that

G fi( fi(x))≤ G fi( fi(x0)),∀i ∈ P, (3.25)

with strict inequality for at least one i ∈ P. Also,

g j(x0) = 0,∀ j ∈ J(x0). (3.26)

Since ( f ,gJ) is strong pseudoquasi (G,C,ρ)-type I at x0, from (3.25) and (3.26), it follows
that

C(x,x0)(5(G fi( fi))(x0),ρ1
i )≤ 0,∀i ∈ P, (3.27)

with strict inequality for at least one i ∈ P, and

C(x,x0)(5(Gg j(g j))(x0),ρ j
2)≤ 0,∀ j ∈ J(x0). (3.28)
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Let

τ =
p

∑
i=1

ui + ∑
j∈J(x0)

v j.

Multiplying (3.27) and (3.28) with 1
τ ui and 1

τ v j, respectively, and then adding the inequal-
ities, we have

p

∑
i=1

1
τ

uiC(x,x0)(5(G fi( fi))(x0),ρi
1)+ ∑

j∈J(x0))

1
τ

v jC(x,x0)(5(Gg j(g j))(x0),ρ j
2) < 0.

Using the convexity of C, we get

C(x,x0)(
1
τ
(

p

∑
i=1

ui5 (G fi( fi))(x0)+ ∑
j∈J(x0)

v j5 (Gg j(g j))(x0)),
p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j ) < 0.

From (3.19), it follows that

C(x,x0)(0,
p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j ) < 0.

Therefore, from (3.24), it follows that

p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j < 0.

Which is a contradiction to (3.23). Hence, x0 is an efficient solution for (G-MOP). This
complete the proof.

We can weaken the strict inequality requirement that ui > 0 for all i ∈ P in the
above theorem, but we require different convexity conditions on ( f ,gJ). This is given by
the following two theorems.

Theorem 3.3. Let x0 be a feasible solution for (G-MOP) and let there exist vector u ∈
Rpand vector v ∈ Rq such that

p

∑
i=1

ui∇(G fi( fi))(x0)+ ∑
j∈J(x0)

v j∇(Gg j(g j))(x0) = 0, (3.29)

v jGg j g j(x0) = 0,∀ j ∈ Q, (3.30)

v j ≥ 0,∀ j ∈ Q, (3.31)

ui ≥ 0,∀i ∈ P, (3.32)

with strict inequality for at least one i ∈ P.
If ( f ,gJ) is weak strictly pseudoquasi (G,C,ρ)-type I at x0 such that

p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j ≥ 0, (3.33)



306 Yadvendra Singh et al. / On Sufficiency In Multiobjective

C(x,x0)(0,r) < 0⇒ r < 0,∀x ∈ X , (3.34)

then, x0 is an efficient solution for (G-MOP).

Proof: Suppose that x0 is not an efficient solution for (G-MOP). Then, there
exists x ∈ A, such that

G fi fi(x)≤ G fi( fi(x0)),∀i ∈ P, (3.35)

with strict inequality for at least one i ∈ P. Also

g j(x0) = 0,∀ j ∈ J(x0). (3.36)

Since ( f ,gJ) is weak strictly pseudoquasi (G,C,ρ)-type I at x0, from (3.35) and (3.36), it
follows that

C(x,x0)(5(G fi( fi))(x0),ρ1
i ) < 0,∀i ∈ P, (3.37)

C(x,x0)(5(Gg j(g j))(x0),ρ j
2)≤ 0,∀ j ∈ J(x0). (3.38)

Now, the proof is similar to that of Theorem 3.1.

Theorem 3.4. Let x0 be a feasible solution for (G-MOP) and let there exist vector u ∈
Rpand vector v ∈ Rq such that

p

∑
i=1

ui∇(G fi( fi))(x0)+ ∑
j∈J(x0)

v j∇(Gg j(g j))(x0) = 0, (3.39)

v jGg j(g j(x0)) = 0,∀ j ∈ Q, (3.40)

v j ≥ 0,∀ j ∈ J(x0), (3.41)

(ui,v j)≥ 0,∀i ∈ P,∀ j ∈ Q. (3.42)

If ( f ,gJ) is weak quasistrictly pseudo (G,C,ρ)-type I at x0 such that

p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j ≥ 0, (3.43)

C(x,x0)(0,r) < 0⇒ r < 0,∀x ∈ X , (3.44)

then, x0 is an efficient solution for (G-MOP).

Proof: Suppose that x0 is not an efficient solution for (G-MOP). Then, there
exists x ∈ A, such that

G fi fi(x)≤ G fi fi(x0),∀i ∈ P, (3.45)
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with strict inequality for at least one i ∈ P. Also

g j(x0) = 0,∀ j ∈ J(x0) (3.46)

Since ( f ,gJ) is weak quasistrictly pseudo (G,C,ρ)-type I at x0, from (3.45) and (3.46), it
follows that

C(x,x0)(5(G fi( fi))(x0),ρ1
i )≤ 0,∀i ∈ P, (3.47)

C(x,x0)(5(Gg j(g j))(x0),ρ j
2)≤ 0,∀ j ∈ J(x0), (3.48)

with strict inequality for at least one j ∈ J(x0).
Now, the proof is similar to that of Theorem 3.1.

Remark 3.3. Similarly, we can prove more results like Theorem 3.1-3.3 by varying the
convexity condition on ( f ,gJ) and changing the sign of u and v.

It is obvious that the Theorem 3.1 and 3.2 hold for weak efficient solutions too.
However, it is important to know that convexity assumptions of Theorem 3.1 and 3.2 can
be weakened for weak efficient solutions.

Theorem 3.5. Let x0 be a feasible solution for (G-MOP) and let there exist vector u ∈
Rpand vector v ∈ Rq such that the triple (x,u,v) satisfies system (3.19-3.22) of the Theo-
rem 3.2. If ( f ,gJ) is weak pseudoquasi (G,C,ρ)-type I at x0 such that

p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j ≥ 0, (3.49)

C(x,x0)(0,r) < 0⇒ r < 0,∀x ∈ X , (3.50)

then, x0 is a weak efficient solution for (G-MOP).

Proof: Suppose that x0 is not a weak efficient solution for (G-MOP). Then, there
exists x ∈ A, such that

G fi fi(x) < G fi fi(x0),∀i ∈ P, (3.51)

with strict inequality for at least one i ∈ P. Also,

g j(x0) = 0,∀ j ∈ J(x0). (3.52)

Since ( f ,gJ) is weak pseudoquasi (G,C,ρ)-type I at x0, from (3.51)and(3.52), it follows
that

C(x,x0)(5(G fi( fi(x0)),ρ1
i )≤ 0,∀i ∈ P, (3.53)

with strict inequality for at least one i ∈ P,

C(x,x0)(5(Gg j(g j(x0)),ρ j
2)≤ 0∀ j ∈ J(x0). (3.54)

Now, the proof is similar to that of Theorem 3.1.
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Theorem 3.6. Let x0 be a feasible solution for (G-MOP) and let there exist vector u ∈
Rpand vector v ∈ Rq such that the triple (x,u,v) satisfies system (3.19-3.22) of the Theo-
rem 3.2. If ( f ,gJ) is pseudoquasi (G,C,ρ)-type I at x0 such that

p

∑
i=1

uiρ1
i + ∑

j∈J(x0)
v jρ2

j ≥ 0, (3.55)

C(x,x0)(0,r) < 0⇒ r < 0,∀x ∈ X , (3.56)

then, x0 is a weak efficient solution for (G-MOP).

Proof: Suppose that x0 is not a weak efficient solution for (G-MOP). Then, there
exists x ∈ A, such that

G fi fi(x) < G fi fi(x0),∀i ∈ P, (3.57)

with strict inequality for at least one i ∈ P. Also,

g j(x0) = 0,∀ j ∈ J(x0). (3.58)

Since ( f ,gJ) is pseudoquasi (G,C,ρ)-type I at x0, from (3.57) and (3.58), it follows that

C(x,x0)(5(G fi( fi(x0)),ρ1
i ) < 0,∀i ∈ P, (3.59)

C(x,x0)(5(Gg j(g j(x0)),ρ j
2)≤ 0,∀ j ∈ J(x0). (3.60)

Now, the proof is similar to that of Theorem 3.2.

Remark 3.4. The importance of the Theorems (3.4) and (3.5) lies in the fact that a similar
result does not necessarily hold for efficient solutions.

4. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have introduced a new class of (G,C,ρ)-type I function and
their generalizations. For a class of differentiable multiobjective programming problems,
we have established sufficient optimality conditions. The results of the paper may be
utilized to formulate Mond-Weir and Wolfe type dual problems and establish duality the-
orems.
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