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1. INTRODUCTION 

In recent years, there have been extensive investigations concerning the analysis 
of interior-point methods (IPMs) for symmetric cone optimization (SCO). A few 
optimization problems are special cases of symmetric cones, such as nonnegative 
orthants, linear optimization (LO), semidefinite optimization (SDO) and second-order 
cone optimization (SOCO). Basic idea for solving SCO is using feasible interior-point 
method, as used by Nesterov and Nemirovskii [9]. Their method was primarily either 
primal or dual based. Later on, Nesterov and Todd [10] proposed symmetric interior-
point algorithms on a special class of convex optimization problems, where the 
associated cone is self-scaled. Later on, it was observed that these cones were precisely 
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symmetric cones [3]. Thus, Nesterov and Todd algorithm was the first primal-dual 
interior-point  algorithm for optimization over symmetric cones. Monteiro and Zhang [8] 
designed a interior-point path-following algorithm for SDO based on commutative class 
of search directions. Subsequently, Schmieta and Alizadeh [12] introduced primal-dual 
IPMs for SCO extensively under the framework of Euclidean Jordan algebra. Roos [11] 
introduced a full-Newton primal-dual infeasible interior-point (IIPM) algorithm for LO. 
Gu et al. [5] extended this algorithm to SCO based on Euclidean Jordan algebra. Darvay 
[1] proposed a new technique for finding a class of search directions. Based on this 
technique, the author designed a new primal-dual path-following interior-point algorithm 
for LO with iteration bound ࣩሺ√݊ log 

ఌ
ሻ. Recently, Wang and Bai [2] extended the 

Darvay's technique to SCO. 
Sonnevend et al. [13] were the first to introduce the predictor-corrector interior-

point algorithm for LO. This algorithm needs more corrector steps after each predictor 
step in order to return to the appropriate neighborhood of the central path. Mizuno et al.  
[7] presented a predictor-corrector interior-point algorithm for LO in which each 
predictor step is followed by a single corrector step, and whose iteration complexity is 
the best known in LO literature. Ye and Anstreicher [16] extended this result to the linear 
complementarity (LC) problems with a positive semidefinite matrix with the same 
iteration complexity. Recently, Ill݁́s and Nagy [6] presented a new version of the 
Mizuno-Todd-Ye predictor-corrector algorithm for ܲכሺߵሻ-LCP that uses self-regular 
proximity measure. 

Motivated by their work, we propose a predictor-corrector path-following 
algorithm for solving SCO based on Darvay's technique.  Our algorithm uses two kinds 
of steps: predictor and corrector. The aim of corrector step is to restore the appropriate 
neighborhood of the central path. After each corrector step, new iterates will be within 
the region where Newton process is quadratically convergent, which is an advantage of 
the algorithm. Then the algorithm operates one damped Newton step used to reduce the 
duality gap. The algorithm is repeated until an ߝ-approximate solution is followed. We 
analyze the algorithm and obtain the complexity bound, which coincides with the best 
known result for SCO. 

The paper is organized as follows: In Section 2, firstly we provide the theory of 
the Euclidean Jordan algebra and their associated symmetric cones; then, after briefly 
reviewing the central path for SCO, we obtain the search directions based on Darvay's 
technique for SCO. In Section 3, the predictor-corrector algorithm for SCO is presented.  
In Section 4, we analyze the algorithm and derive the iteration bound. Finally, we 
conclude the paper in Section 5. 

2. PRELIMINARIES 

2.1 Euclidean Jordan algebra 

Here, we outline some needed main results on Euclidean Jordan algebra and 
symmetric cones. For a comprehensive study, the reader is referred to [3, 15]. 

 Jordan algebra ࣤ is a finite dimensional vector space endowed with a bilinear 
map ל: ࣤ ൈ ࣤ ՜ ࣤ  satisfying the following properties for all ݔ, א ݕ ࣤ:  

     1 െ ݔ ל ݕ ൌ ݕ ל  ,ݔ
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     2 െ ݔ ל ሺݔଶ ל ሻݕ ൌ ଶݔ ל ሺݔ ל ଶݔ  ሻ   whereݕ ൌ ݔ ל  .ݔ

Moreover, Jordan algebra ሺࣤ,  ሻ is called Euclidean if there exists an innerל
product, denoted by  "ۃ., .   such that  ,"ۄ

ݔۃ ל ,ݕ zۄ ൌ ,ݔۃ ݕ ל  ,ۄݖ

for all ݔ, ,ݕ א ݖ ࣤ. 
Jordan algebra has an identity element, if there exists a unique element ݁ א ࣤ 

such that ݔ ל ݁ ൌ ݁ ל ݔ ൌ ݔ for all ,ݔ א  ࣤ. Throughout the paper, we assume that ࣤ is a 
Euclidean Jordan algebra with an identity element ݁. The set ࣥ ൌ ሼݔଶ|ݔ א ࣤሽ  is called 
the cone of squares of Euclidean Jordan algebra ሺࣤ, ,ל .ۃ , .  ሻ .  Cone is symmetric if andۄ
only if it is the cone of squares of some Euclidean Jordan algebra. An element ܿ א ࣤ  is 
idempotent if ܿ ל ܿ ൌ ܿ. Idempotents x and y are orthogonal if ݔ ל ݕ ൌ 0. An idempotent 
c is primitive if it is nonzero and can not be expressed by sum of two other nonzero 
idempotents. A set of primitive idempotents ሼܿଵ, ܿଶ, ڮ , ܿሽ is called a Jordan frame if  
ܿ ל ܿ ൌ 0, for any ݅ ് ݆ א ሼ1,2, ڮ , ݇ሽ and ∑ ܿ


ୀଵ ൌ ݁.  For any ݔ א ࣤ, let r be the 

smallest positive integer such that ሼ݁, ,ݔ ,ଶݔ ڮ ,  is called the ݎ ;ሽ  is linearly dependentݔ
degree of ݔ and is denoted by  ݀eg ሺݔሻ. The rank of ࣤ, denoted by ݇݊ܽݎሺࣤሻ  is defined as 
the maximum of ݀eg ሺݔሻ over all ݔ א ࣤ. The importance of Jordan frame comes from the 
fact that any element of Euclidean Jordan algebra can be represented by using some 
Jordan frame, as explained more precisely in the following spectral decomposition 
theorem. 
Theorem 1 (Theorem III.1.2 in [3]) Let ሺࣤ, ,ל .ۃ , .  ሻ  be an Euclidean Jordan algebraۄ
with ݇݊ܽݎሺࣤሻ ൌ ݔ Then, for any .ݎ א ࣤ ,   there exists a Jordan frame ሼܿଵ, ܿଶ, ڮ , ܿሽ and 
real numbers ߣଵሺݔሻ, ,ሻݔଶሺߣ ڮ , ݔ ሻ such thatݔሺߣ ൌ ∑ ߣ


ୀଵ ሺݔሻܿ,  where the ߣ’s are the 

eigenvalues of ݔ. The numbers ߣሺݔሻ (with their multiplicities) are uniquely determined 
by  ݔ. Furthermore, ݎݐሺݔሻ ൌ ∑ ߣ


ୀଵ ሺݔሻ  and  ݀݁ݐሺݔሻ ൌ ∏ ߣ


ୀଵ ሺݔሻ where ݎݐ and ݀݁ݐ 

stand for the trace and determinant, respectively. 
Since `` ל ԢԢ  is a bilinear map, for each ݔ א ࣤ, there exists a matrix ܮሺݔሻ such 

that for every ݕ א ࣤ, ݔ ל ݕ ൌ ሻݔMoreover, we define ܲሺ  .ݕሻݔሺܮ ؔ ሻଶݔሺܮ2 െ  ,ଶሻݔሺܮ
where ܮሺݔሻଶ ൌ  ,ࣤ ሻ  is called the quadratic representation ofݔሻ.  The map ܲሺݔሺܮሻݔሺܮ
which is an essential concept in the theory of Jordan algebra and plays an important role 
in the analysis of interior-point algorithms. An element ݔ א ࣤ is called invertible if there 
exists a ݕ ൌ ∑ ߙ


ୀ ݉   for some finiteݔ ൏ ∞ and real numbers ߙ such that ݔ ל ݕ ൌ ݕ ל

ݔ ൌ ݁, and it is denoted as ିݔଵ. An element ݔ א ࣤ  is invertible if and only if ܲሺݔሻ  is 
invertible. In this case, ܲሺݔሻିݔଵ ൌ ሻିଵݔand ܲሺ ݔ ൌ ܲሺିݔଵሻ. 

Let ݔ ൌ ∑ ߣ

ୀଵ ሺݔሻܿ  be the spectral decomposition of ݔ. It is possible to 

extend the definition of any real valued continuous function ݂ሺ. ሻ to elements of Jordan 
algebra via their eigenvalues, i.e., ܨ: ࣤ ՜ ࣤ  is given by 

ሻݔሺܨ ൌ  ݂ሺߣሺݔሻሻܿ



ୀଵ

. 

In particular, we have the square root, ݔ
భ
మ ൌ ∑ ඥߣሺݔሻ ܿ


ୀଵ  when ݔ א ࣥ,  and 

undefined otherwise, the inverse,  ିݔଵ ൌ ∑ ߣ
ିଵሺݔሻ ܿ


ୀଵ , wherever ߣ ് 0,  for all 

݅ ൌ 1, 2, ڮ ,  .and undefined otherwise  ,ݎ
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The next lemma contains a result of crucial importance in the design of IPMs 
within the framework of Jordan algebra. 
Lemma 2 (Lemma 2.2 in [4]) Let ݔ, ݏ א ࣥ. Then,  ݎݐሺݔ ל ሻݏ  0,  and we have ݎݐሺݔ ל
ሻݏ ൌ 0  if and only if  ݔ ל ݏ ൌ 0. 

For any ݔ, ݕ א ࣤ,  ሻݕሺܮ ሻ andݔሺܮ are said to be operator commutable if  ݕ and ݔ
commute, i.e., ܮሺݔሻܮሺݕሻ ൌ  operator are commutable ݕ and ݔ ,ሻ. In other wordsݔሺܮሻݕሺܮ
if for all ݖ א ࣤ, ݔ ל ሺݕ ל ሻݖ ൌ ݕ ל ሺݔ ל  .ሻ  (see [12])ݖ
Theorem 3 (Lemma X.2.2 in [3]) Let ݔ, א ݕ ࣤ.  The elements ݔ and ݕ operator are 
commutable if and only if they share a Jordan frame, that is, ݔ ൌ ∑ ߣ


ୀଵ ሺݔሻܿ and 

ݕ ൌ ∑ ߣ

ୀଵ ሺݕሻܿ  for Jordan frame  ሼܿଵ, ܿଶ, ڮ , ܿሽ. 

For any ݔ, א ݕ ࣤ,  we define the canonical inner product of  ݔ, א ݕ ࣤ as 
follows: 

,ݔۃ ۄݕ ൌ ݔሺݎݐ ל  ,ሻݕ

and the Frobenius norm of ݔ as follows:  

צ ݔ ிൌצ ඥݔۃ, ۄݔ ൌ ඥݎݐሺݔଶሻ. 

It follows that 

צ ݔ ிൌצ ඥݎݐሺݔଶሻ ൌ ඩ ߣ
ଶ



ୀଵ

ሺݔሻ ൌצ ሻݔሺߣ  .צ

Note that ݎݐሺ. ሻ is associative, and we have 
,ݕሻݔሺܮۃ ۄݖ ൌ ݔ൫ሺݎݐ ל ሻݕ ל ൯ݖ ൌ ݕ൫ሺݎݐ ל ሻݔ ל ൯ݖ ൌ ݕሺݎݐ ל ሺݔ ל ሻሻݖ ൌ ,ݕۃ  ,ۄݖሻݔሺܮ

showing that ܮሺݔሻ is a self-adjoint operator. As the definition of ܲሺݔሻ depends only on 
 ሻ andݔሺߣ ሻ is also self-adjoint. Letݔଶሻ, both of which are self-adjoint, ܲሺݔሺܮ ሻ andݔሺܮ
  respectively. Then  ,ݔ ሻ  denote the smallest and the largest eigenvalue ofݔ௫ሺߣ

|ሻݔሺߣ|  צ ݔ ,ிצ |ሻݔ௫ሺߣ| צ ݔ ,ிצ ,ݔۃ| |ۄݕ צ ݔ צிצ ݕ  .ிצ

The following lemma shows the existence and the uniqueness of a scaling point 
,ݔ  corresponding to any points ݓ ݏ א  This was  .ݔ into ݏ  ሻ takesݓsuch that ܲሺ  ࣥ ݐ݊݅
done by Nesterov and Todd [10] for self-scaled cones. This lemma plays a fundamental 
role in the design of interior-point algorithms for SCO. 
Lemma 4 (Lemma 3.2 in [4]) Let  ݔ, ݏ א ݓ Then, there exists a unique .ࣥ ݐ݊݅ א  ࣥ ݐ݊݅
such that  ݔ ൌ ܲሺݓሻ ݏ. Moreover, 

ݓ ൌ ܲ ቀ ݔ
భ
మቁ ቀܲ ቀݔ

భ
మቁ ቁݏ

ିభ
మ  ሾൌ ܲ ቀ ିݏభ

మቁ ቀܲ ቀݏ
భ
మቁ ቁݔ

భ
మሿ. 

The point ݓ is called the scaling point of ݔ and  ݏ. Hence, there exists ݒ א
 such that ࣥ ݐ݊݅

ݒ ൌ ܲ ൬ ିݓଵ
ଶ൰ ݔ ൌ ܲ ൬ݓ

ଵ
ଶ൰  ,ݏ
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which is the so-called Nesterov and Todd (NT)-scaling of ܴ.  We  say that two elements  
ݔ א ࣤ and ݕ א ࣤ  are similar, as denoted by  ݕ ~ݔ,  if and only if ݔ and  ݕ share the same 
set of eigenvalues. We say ݔ א ࣥ if and only if ߣ  0 and  ݔ א  if and only if ࣥ ݐ݊݅
ߣ  0,  for all ݅ ൌ 1, 2, ڮ ,  ,is positive semidefinite (positive definite) ݔ We also say  .ݎ
denoted as ݔ غ 0  ሺݔ ظ 0ሻ, if ݔ א ࣥ ሺݔ א  .ሻࣥ ݐ݊݅

In what follows, we list some lemmas, which will be used in the analysis later. 
Lemma 5 (Lemma 2.15 in [5]) If ݔ ל ݏ א ሻݔሺ ݐ݁݀ then ,ࣥ ݐ݊݅ ് 0. 
Lemma 6 (Lemma 2.13 in [5]) Let x, s א ࣤ  with trሺx ל sሻ ൌ 0. Then 

െ ଵ
ସ

צ x  s Fצ
ଶ e ع x ל s ع ଵ

ସ
צ x  s Fצ

ଶ e, 

צ        x ל s Fצ ଵ
ଶ√ଶ

צ x  s Fצ
ଶ. 

Lemma 7 (Proposition 21 in [12]) Let  ݔ, ,ݏ ݑ א  Then .ࣥ ݐ݊݅

ሺiሻ െ P ቀx
భ
మቁ s  Pሺs

భ
మሻ x . 

ሺiiሻ െ P ቀሺPሺuሻxሻ
భ
మቁ Pሺuିଵሻs  Pሺx

భ
మሻ s . 

Lemma 8 (Proposition 3.2.4 in [15])  Let  ݔ, ݏ א  ݔ be the scaling point of ݓ and ,ࣥ ݐ݊݅
and  ݏ. Then 

ሺP ቀx
భ
మቁ sሻ

భ
మ~Pሺw

భ
మሻ s. 

Lemma 9 (Lemma 30 in [12]) Let  ݔ, ݏ א  Then  .ࣥ ݐ݊݅

צ P ቀx
భ
మቁ s െ e צFצ x ל s െ e  .Fצ

Lemma 10 (Theorem 4 in [14])  Let ݔ, ݏ א  Then .ࣥ ݐ݊݅

λ୫୧୬ ൬P ൬x
ଵ
ଶ൰ s൰  λ୫୧୬ሺx ל sሻ. 

2.2 The problem background 

We consider the following symmetric cone optimization (SCO) problem 

min  ܿۃ,   ۄݔ

.ݏ ݔܣ  .ݐ ൌ ܾ,                     ሺܲሻ 

ݔ           א ࣥ, 

where ܿ and the rows of ܣ lie in ࣤ, and ܾ א ܴ, ,ݔۃ ۄݏ ൌ ݔሺݎݐ ל  ሻ  stands for the traceݏ
inner product in ࣤ.  Moreover, assume that ܽ is the ݅ െth row of ܣ, then ݔܣ ൌ ܾ means 
that 

,ܽۃ ۄ ݔ ൌ ܾ, ݅ ൌ 1, 2, ڮ , ݉.                        (1) 

The dual problem of (P) is as follows 
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max                    ݕ்ܾ  

.ݏ ݕ்ܣ  .ݐ  ݏ ൌ ܿ,                 ሺܦሻ 

ݏ                   א ࣥ, 

where  ݕ א ܴ and  ݕ்ܣ  ݏ ൌ ܿ means that 

∑ ݕ

ୀଵ ܽ  ݏ ൌ ܿ. (2) 

Throughout the paper, we assume that (P) and (D) satisfy the interior point 
condition (IPC), i.e., there exists ሺݔ, ,ݕ  ሻ  such thatݏ

ݔܣ ൌ ݕ்ܣ   ,ܾ  s ൌ ,ݔ   ,ܿ ݏ א  ,ࣥ ݐ݊݅

and the matrix ܣ is of rank ݉. The optimality conditions for (P) and (D) are given by the 
following system 

ݔܣ ൌ ܾ, ݔ א ࣥ 

y்ܣ  ݏ ൌ ݏ   ,ܿ א ࣥ (3) 

ݔ ל ݏ ൌ 0.              

In path-following IPMs one follows the central path that is given as the set of 
solutions (ߤ-centers) of the perturbed optimality conditions 

ݔܣ ൌ ܾ, 

y்ܣ  ݏ ൌ ܿ,   (4) 

ݔ ל ݏ  ൌ  .݁ ߤ

For each ߤ  0, the perturbed system (4) has a unique solution 
ሺݔሺߤሻ, ,ሻߤሺݕ ,ሻߤሺݕሻ and ሺߤሺݔ ሻሻ, and we callߤሺݏ  centers of problems (P) and-ߤ ሻሻ theߤሺݏ
(D) respectively. The set of ߤ-centers gives a curve called the central path of (P) and (D). 
If  ߤ ՜ 0, then the limit of the central path exists and since the limit points satisfy the 
complementarity condition, the limit yields an ߝ-approximate solution for (P) and (D) [4]. 

Similarly to the LO case [1], Wang and Bai [2] replace the standard centering 
equation ݔ ל ݏ ൌ ௦לby ߮ሺ௫ ݁ߤ

ఓ
ሻ ൌ ߮ሺ݁ሻ  where ߮ሺ. ሻ is the vector-valued function induced 

by the univariate  function ߮ሺݐሻ. Thus, the system (4) becomes 

ݔܣ ൌ ܾ, 

y்ܣ  ݏ ൌ ܿ,  (5) 

߮ ൬
ݔ ל ݏ

ߤ ൰ ൌ ߮ሺ݁ሻ. 

Applying Newton's method to system (5), then using Taylor's theorem to the 
third equation, lead to 

 
ݔ ߂ ܣ ൌ 0,  
ݕ Δ்ܣ  Δ ݏ ൌ 0, (6) 
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ݔ ל Δ ݏ  ݏ ל Δ ݔ ൌ ሺ߮ᇱሺߤ
ݔ ל ݏ

ߤ ሻሻିଵ ל ቆ߮ሺ݁ሻ െ ߮ ൬
ݔ ל ݏ

ߤ ൰ቇ . 

Due to the fact that  ܮሺݔሻܮሺݏሻ ്  ሻ, system (6) does not always have aݔሺܮሻݏሺܮ 
unique solution in ݅݊ݐ ࣥ.  It is well known that this difficulty can be resolved by 
applying a scaling scheme. This is given in the following lemma. 
Lemma 11 (Lemma 28 in [12]) Let ݑ א ݔ   Then .ࣥ ݐ݊݅ ל ݏ ൌ ݁ߤ ֞ ܲሺݑሻݔ ל ܲሺିݑଵሻݏ ൌ
 .݁ߤ
Replacing the third equation of the system (5) by 

߮ ቆ
ܲሺݑሻݔ ל ܲሺିݑଵሻݏ

ߤ ቇ ൌ ߮ሺ݁ሻ, 

and applying Newton's method to the result system lead us to the following system 

ݔ Δ ܣ ൌ 0,  

ݕ Δ்ܣ  Δ ݏ ൌ 0, 

ܲሺݑሻݔ ל ܲሺିݑଵሻΔ ݏ  ܲሺିݑଵሻݏ ל ܲሺݑሻΔ ݔ ൌ (7) 

ሺ߮ᇱߤ    ቆ
ܲሺݑሻݔ ל ܲሺିݑଵሻݏ

ߤ ቇሻିଵ ל ൭߮ሺ݁ሻ െ ߮ ቆ
ܲሺݑሻݔ ל ܲሺିݑଵሻݏ

ߤ ቇ൱. 

Let ݑ ൌ భିݓ
మ, where ݓ is the NT-scaling point of  ݔ and ݏ as defined in Lemma 

4. We define 

ݒ ൌ
ܲሺିݓଵ

ଶሻݔ
ߤ√

 ൌ
ܲሺݓ

ଵ
ଶሻݏ

ߤ√
                                                                                        ሺ8ሻ  

and 

ҧܣ ؔ ܲܣߤ√ ቀݓ
భ
మቁ , ݀௫ ؔ

ቆ௪షభ
మቇ௫

√ఓ
, ݀௦ ؔ

ቆ௪
భ
మቇୱ

√ఓ
 .  (9) 

This enables us to rewrite the system (7), considering  ߮ሺݐሻ ൌ  :as follows ,ݐ√

ҧ ݀௫ܣ ൌ 0, 

ҧ்ܣ ௬
ఓ

 ݀௦ ൌ 0, (10) 

݀௫  ݀௦ ൌ 2ሺ݁ െ :ሻݒ ൌ  .௩

The search directions ݀௫ and ݀௦ are obtained by solving (10) so that Δݔ and Δݏ 
are computed via (9). The new iterate is obtained by taking a full NT-step as follows 

:ାݔ ൌ ݔ  Δ ݔ, :ାݕ ൌ ݕ  Δ ݕ, :ାݏ ൌ ݏ  Δ ݏ. 

For the analysis of the algorithm, we define a norm-based proximity measure 
,ݔሺ࣌ ;ݏ  ሻ  as followsߤ 

ሻݒሺߪ ؔ ,ݔሺߪ ;ݏ ሻߤ  ؔ Fצೡצ
ଶ

ൌצ ݁ െ ݒ  ி.                                                         (11)צ
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We can conclude that 

ሻݒሺߪ ൌ 0 ֞ ݒ ൌ ݁ ֞ ݀௫ ൌ ݀௦ ൌ 0 ֞ ݔ ל ݏ ൌ  (12)                                       .݁ߤ

Hence, the value of ߪሺݒሻ can be considered as a measure for the distance 
between the given triple ሺݔ, ,ݕ  .center-ߤ ሻ and theݏ

 
3. THE PREDICTOR-CORRECTOR ALGORITHM 

In this section, we propose a predictor-corrector algorithm based on NT-
directions obtained by Darvay's technique, which uses these directions in the both 
predictor- and corrector steps. Firstly, we define the ߬-neighborhood of the central path as 
follows 

ࣨሺ߬, :ሻߤ ൌ ሼሺݔ, ݔܣ|ሻݏ ൌ ܾ, ݕ்ܣ  ݏ ൌ ܿ, ,ݔ א ݏ ,ࣥ ݐ݊݅ ,ݔሺߪ ;ݏ ሻߤ   ߬ሽ,  

where ߬ is a threshold parameter. The framework of the algorithm is described 
as follows 

 
 
Algorithm: A predictor-corrector algorithm for SCO 
___________________________________________________________ 
Input: 

An accuracy parameter ߝ  0;  
barrier update parameter ߠ, 0 ൏ ߠ ൏ ଵ

ଶ
 ሺ ݂݀݁ܽߠ ݐ݈ݑ ൌ ହ

ଵ√
ሻ;  

proximity parameter ߬, 0<߬<1 (default ߬ ൌ ଵ
ଶ
ሻ; 

an initial point ሺݔ, ,ݕ ,ݔሺߪ  ሻ such thatݏ ;ݏ ሻߤ  ߬. 
begin: 

:ݔ ൌ ,ݔ :ݏ ൌ ,ݏ :ݕ ൌ ;ݕ :ߤ  ൌ  ;ߤ

While ݎݐሺݔ ל ሻݏ    do  ߝ
     begin: 

solve system (10) and via (9) to obtain ሺΔݔ, Δݕ, Δݏሻ; 
and let ሺݔ, ,ݕ :ሻݏ ൌ ሺݔ, ,ݕ ሻݏ  ሺΔݔ, Δݕ, Δݏሻ, ߤ ൌ  ;ߤ
solve system (13) and via (9)  to obtain (Δݔ, Δݕ, Δݏሻ; 

ሺݔ, ,ݕ :ሻݏ ൌ ሺݔ, ,ݕ ሻݏ  ,ݔሺΔߠ Δݕ, Δݏሻ; 

:ߤ ൌ ሺ1 െ   ;ߤሻߠ2

ݔ ൌ ,ݔ ݕ ൌ ,ݕ ݏ ൌ ,ݏ ߤ ൌ   ; ߤ
end 

 end 
 
 
If for the current point ሺݔ, ,ݕ ,ሻ in the neighborhood of the central path ࣨሺ߬ݏ ,ሻߤ

ל ݔሺݎݐ ሻݏ   then the algorithm performs centering and predictor steps. In centering ߝ
step, by solving the system (10) for the scaled-directions  ሺ݀௫, ݀௦ሻ,  that is 
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ҧ݀௫ܣ ൌ 0,  

ҧ்ܣ ୷
ఓ

 ݀௦ ൌ 0, (13) 
݀௫  ݀௦ ൌ 2ሺ݁ െ  ,ሻݒ

and using (9) for ሺΔݔ, Δݕ, Δݏሻ, we obtain 

ݔ ൌ ݔ  Δݔ, ݕ ൌ ݕ  Δݕ, ݏ ൌ ݏ  Δݏ. 

In the predictor (affine-scaling) step, starting at the iterate ሺݔ, ,ݕ  ሻ andݏ
targeting at the ߤ-centers, the search directions ሺΔݔ,  Δݕ, Δݏሻ are the damped Newton 
directions, defined by 

ҧ݀௫ܣ
 ൌ 0, 

ҧ்ܣ ౦୷
ఓ

 ݀௦
 ൌ 0, (14) 

݀௫
  ݀௦

 ൌ െ2ݒ. 

We denote the iterates after a predictor step by ݔ ൌ ݔ  ,ݔΔߠ ݕ ൌ ݕ 
,ݕ Δߠ ݏ ൌ ݏ  ,ݏΔߠ ߤ ൌ ሺ1 െ ߠ where ,ߤሻߠ2 א ሺ0, ଵ

ଶ
ሻ.  The point ሺݔ, ,ݕ   ሻ willݏ

be in the ߬-neighborhood again. The algorithm repeats until the duality gap is less than 
the accuracy parameter ߝ. 

4. ANALYSIS 

In this section, we deal with the analysis of the previous algorithm. In the 
analysis of the affine-scaling step, we will give sufficient conditions for strict feasibility, 
and the effect on the proximity measure; the proximity measure does not exceed the 
proximity parameter. At the centering step, we describe the effects of a full Newton-step 
for the quantity of the proximity measure. 

Before dealing with the analysis of the steps, we prove a lemma which yields  
lower and upper bounds for the eigenvalues of ݒ. 
Lemma 12 Let ݔ, א ݏ ߤ and ࣥ ݐ݊݅  0. Assume that ߪ: ൌ  ሻ. Thenݒሺߪ

1 െ ߪ  ሻݒሺߣ   1  ,ߪ ݅ ൌ 1, 2, ڮ ,  .ݎ

Moreover, the following inequalities hold 

ߣ   ሺ1 െ ,ሻଶߪ צ    ݒ ிצ
ଶ  ሺ1ݎ   .ሻଶߪ

Proof  By the definition of ߪ (cf. 11), we have 

ଶߪ ൌצ ݁ െ ݒ ிצ
ଶ ൌ  ߣ



ୀଵ

ሺ݁ െ ሻଶݒ ൌ ሺ1 െ ሻሻଶݒሺߣ


ୀଵ

. 

This implies that 

|1 െ |ሻݒሺߣ  ,ߪ ݅ ൌ 1, 2, ڮ ,  ݎ

or equivalently 

1 െ ߪ  ሻݒሺߣ   1  ,ߪ ݅ ൌ 1, 2, ڮ ,  (15) .ݎ
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This proves the first part of the lemma. For the proof of the second part, by 
definition of Frobenius norm and (15), we have 

צ ݒ ிצ
ଶ ൌ  ሻଶݒሺߣ



ୀଵ

 ሺ1  ሻଶߪ


ୀଵ

ൌ ሺ1ݎ   ,ሻଶߪ

and 

ଶሻݒሺߣ ൌ ሻଶݒሺߣ  ሺ1 െ  .ሻଶߪ

This completes the proof.                 ז 
 

4.1 The affine-scaling step 

Next lemma gives a sufficient condition for yielding strict feasibility after an 
affine-scaling step. 
Lemma 13  Let ݔ, ݏ א ߤ and ࣥ ݐ݊݅  0 such that ߪ ൏ 1. Furthermore, let 0 ൏ ߠ ൏ ଵ

ଶ
. Let  

ݔ ൌ ݔ  ݏ and ݔ߂ߠ ൌ ݏ   denote the iterates after an affine-scaling step. Then ݏ߂ߠ
,ݔ ݏ א ,ߪሺܭ if ࣥ ݐ݊݅  ,ߠ ሻݎ  0, where 

,ߪሺܭ ,ߠ ሻݎ ൌ ሺ1 െ ሻଶߪ െ
ଶሺ1ߠݎ  ሻଶߪ

1 െ ߠ2 . 

Proof  Introduce a step length ߙ with ߙ א ሾ0, 1ሿ  and define 

ሻߙሺݔ ൌ ݔ  ,ݔΔߠߙ ሻߙሺݏ ൌ ݔ   .ݏΔߠߙ

Using (8) and (9), we have 

ሻߙሺݔ ൌ ݔ  ݔΔߠߙ ൌ ܲ ߤ√ ቀݓ
భ
మቁ ൫ݒ  ௫݀ ߠߙ

൯,  

ሻߙሺݏ ൌ ݏ  ݏΔߠߙ ൌ ܲ ߤ√ ቀିݓభ
మቁ ൫ݒ  ௦݀ ߠߙ

൯.                                          (16) 

Since ܲ ቀݓ
భ
మቁ and ܲ ቀିݓభ

మቁ are automorphisms of  ݅݊ݐ ࣥ (Theorem III.2.1 in 
[3]), by (16),  ݔ and  ݏ belong to ݅݊ݐ ࣥ if and only if ݒ  ௫݀ ߠ

 and ݒ  ௦݀ ߠ
 belong to 

 Therefore, using the third equation of (14), we obtain .ࣥ ݐ݊݅

௫ݒ
ሺߙሻ ל ௦ݒ 

ሺߙሻ: ൌ ሺݒ  ௫݀ߠߙ
ሻ ל ሺݒ  ௦݀ ߠߙ

ሻ    

ൌ ଶݒ  ݒߠߙ ל ሺ݀௫
  ݀௦

ሻ  ଶ݀௫ߠ ଶߙ
 ל ݀௦

 

ൌ ଶݒ  ݒߠߙ ל ሺെ2ݒሻ  ଶ݀௫ߠଶߙ
 ל  ݀௦

 

ൌ ሺ1 െ ଶݒሻߠߙ2  ଶ݀௫ߠଶߙ
 ל  ݀௦

. 

From the above relation, we have 

௫ݒ
ሺߙሻ ל ௦ݒ 

ሺߙሻ
1 െ ߠߙ2 ൌ ଶݒ 

ଶߠଶߙ

1 െ ߠߙ2 ݀௫
 ל  ݀௦

.                                                           ሺ17ሻ 

It follows that 
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ߣ ቆ
௫ݒ

ሺߙሻ ל ௦ݒ 
ሺߙሻ

1 െ ߠߙ2 ቇ ൌ ߣ ቆݒଶ 
ଶߠଶߙ

1 െ ߠߙ2 ݀௫
 ל  ݀௦

ቇ          

 ଶሻݒሺߣ െ
ଶߠଶߙ

1 െ ߠߙ2 צ ሺ݀௫ߣ 
 ל  ݀௦

ሻ  .ஶצ

For each fixed  0 ൏ ߠ ൏ ଵ
ଶ
,  the function ݂ሺߙሻ ൌ ఈమఏమ

ଵିଶఈఏ
  for 0  ߙ  1 is a 

strictly increasing. Thus, we obtain 

ߣ ቀ௩ೣ
ሺఈሻל ௩ೞ

ሺఈሻ
ଵିଶఈఏ

ቁ  ଶሻݒሺߣ െ ఏమ

ଵିଶఏ
צ ൫݀௫ߣ 

 ל  ݀௦
൯  ஶ.  (18)צ

From Lemma 6, the third equation of (14) and Lemma 12, we get 

צ ൫݀௫ߣ 
 ל  ݀௦

൯ ஶצ ଵ
ସ

צ ݀௫
  ݀௦

 ிצ
ଶ ൌצ ݒ ிצ

ଶ  ሺ1ݎ   ሻଶ.  (19)ߪ

Now, using (18), (19) and Lemma 12, we obtain 

ߣ ቀ௩ೣ
ሺఈሻל ௩ೞ

ሺఈሻ
ଵିଶఈఏ

ቁ  ሺ1 െ ሻଶߪ െ ఏమሺଵାఙሻమ

ଵିଶఏ
ൌ ,ߪሺܭ ,ߠ  ሻ.  (20)ݎ

This implies that  ݀݁ݐሺݒ௫
ሺߙሻ ל ௦ݒ

ሺߙሻሻ  0 for 0  ߙ  1.  By Lemma 5, it 
follows that  ݀݁ݐ ቀݒ௫

ሺߙሻቁ ് 0 and ݀݁ݐ ቀݒ௦
ሺߙሻቁ ് 0, for 0  ߙ  1. Since  

௫ݒሺݐ݁݀
ሺ0ሻሻ ൌ ௦ݒሺݐ݁݀ 

ሺ0ሻሻ ൌ ሻݒሺݐ݁݀   0  and ݒ௫
ሺߙሻ, ௦ݒ

ሺߙሻ are linear functions of  ߙ, 
they do not change sign on [0, 1]. Thus, d݁ݐሺݒ௫

ሺߙሻሻ  and   ݀݁ݐሺݒ௦
ሺߙሻሻ stay positive for 

all 0  ߙ  1. Moreover, by Theorem 3, this implies that all the eigenvalues of ݒ௫
ሺߙሻ 

and ݒ௦
ሺߙሻ stay positive for all 0  ߙ  1. Hence, all the eigenvalues of ݒ௫

ሺ1ሻ  and  
௦ݒ

 ሺ1ሻ are positive. Therefore, ݒ  ௫݀ ߠ
 א ݒ and ࣥ ݐ݊݅  ௦݀ ߠ

 א  completing the ,ࣥ ݐ݊݅
proof.                    ז 

Following (8), we denote 

ݒ ൌ ሺ௪ሻ
భ
మ ௦

ඥఓ ,  (21) 

where, ݓ is the scaling point of ݔ and ݏ.  Using (16) with ߙ ൌ 1, (21) and 
lemmas 7 and 8, we have 

ሺݒሻଶ~
ܲሺݔሻ

ଵ
ଶ ݏ

ߤ   

  ൌ

ఓ

ۉ

ۈ
ۇ

൭ሺ௪ሻ
భ
మ൫௩ାఏௗೣ

൯൱

భ
మ

ሺ௪ሻషభ
మ൫௩ାఏௗೞ

൯

ی

ۋ
ۊ

ఓሺଵିଶఏሻ    (22) 



 B. Kheirfam / A Predictor-corrector path-following algorithm  46 

 ~
ܲ൫ݒ  ௫݀ߠ

൯
ଵ
ଶሺݒ  ௦݀ߠ

ሻ
1 െ ߠ2 . 

Using Lemma 10, (22) and (20) with ߙ ൌ 1,  we obtain 

ሻଶሻݒ ሺሺߣ ൌ ሺܲߣ ቆ
ݒ  ௫݀ߠ



√1 െ ߠ2
ቇ

ଵ
ଶ

ቆ
ݒ  ௦݀ߠ



√1 െ ߠ2
ቇሻ 

 ሺቀ௩ାఏௗೣߣ


√ଵିଶఏ
ቁ ל ቀ௩ାఏௗೞ



√ଵିଶఏ
ቁሻ (23) 

 ,ߪሺܭ  ,ߠ   .ሻݎ

In the following lemma, we investigate the effect on the proximity measure of 
an affine-scaling step, and the update of the parameter ߤ. 
Lemma 14 Let ߪ: ൌ ,ݔሺߪ ;ݏ ሻߤ  ൏ 1, ߤ ൌ ሺ1 െ where 0൏  ,ߤሻߠ2 ߠ ൏ ଵ

ଶ
, ,ߪሺܭ ,ߠ ሻݎ  0  

and  let  ݔ, ݔ ,. denote the iterates after an affine-scaling step, i.eݏ ൌ ݔ    and ݔ߂ߠ
ݏ ൌ ݏ   Then .ݏ߂ߠ

:ߪ ൌ ,ݔሺߪ ;ݏ ሻߤ  
߷ሺߪሻ െ ,ߪሺܭ2√ ,ߠ ሻݎ

1  ඥܭሺߪ, ,ߠ ሻݎ
, 

where ܭሺߪ, ,ߠ  ሻ  is defined as in Lemma 13, andݎ

߷ሺߪሻ ൌ ൫1  √2൯ߪଶ  2൫1 െ √2൯ߪ  √2. 

Proof  From Lemma 13, we deduce that the affine-scaling step is strictly feasible. Using 
(22), (23),  (17) with ߙ ൌ 1 and Lemma 9, we have 

:ߪ ൌ ,ݔሺߪ ;ݏ ሻߤ  ൌצ ݁ െ ݒ                                              ிצ

ൌצ ൫݁  ሺݒሻ൯ିଵ ל ሺ݁ െ ሺݒሻଶሻ                                 ிצ


1

1  ሻݒሺߣ צ ݁ െ ሺݒሻଶ                                     ிצ

   
1

1  ሻݒሺߣ צ ݁ െ ܲ ቆ
ݒ  ௫݀ߠ



√1 െ ߠ2
ቇ

ଵ
ଶ

ቆ
ݒ  ௦݀ߠ



√1 െ ߠ2
ቇ  ிצ

 ଵ
ଵାఒሺ௩ሻ צ ݁ െ ቀ௩ାఏௗೣ



√ଵିଶఏ
ቁ ל ቀ௩ାఏௗೞ



√ଵିଶఏ
ቁ   ிצ


1

1  ඥܭሺߪ, ,ߠ ሻݎ
צ ݁ െ ଶݒ െ

ଶߠ

1 െ ߠ2 ݀௫
 ל ݀௦

     ிצ

       
1

1  ඥܭሺߪ, ,ߠ ሻݎ
ሺצ ݁ െ ଶݒ ிെצ

ଶߠ

1 െ ߠ2 צ ݀௫
 ל ݀௦

  .ிצ

On the other hand, by Lemma 12, we have 
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צ ݁ െ ଶݒ צிൌצ ݁ െ ݒ  ݒ െ ଶݒ                                  ிצ

צ ݁ െ ݒ ிצ צ ݒ െ ଶݒ  ி    (24)צ

 ߪ  ሻݒ௫ሺߣ צ ݁ െ ݒ     ிצ

  ߪ  ሺ1     .ߪሻߪ

Moreover, by Lemma 6, the third equation of (14) and Lemma 12, we get 

צ ݀௫
 ל ݀௦

 ிצ ଵ
ଶ√ଶ

צ ݀௫
  ݀௦

 ிצ
ଶ ൌ √2 צ ݒ ிצ

ଶ  ሺ1ݎ2√   ሻଶ. (25)ߪ

Finally, using  (24)  and  (25) 

ߪ 
ߪ2  ଶߪ  ଶߠ2√

1 െ ߠ2 ሺ1ݎ  ሻଶߪ

1  ඥܭሺߪ, ,ߠ ሻݎ
 ൌ

߷ሺߪሻ െ ,ߪሺܭ2√ ,ߠ ሻݎ
1  ඥܭሺߪ, ,ߠ ሻݎ

. 

 We got the desired.     ז 

 
4.2 The corrector step 

The next lemma gives a condition for strictly feasibility of full Nesterov and 
Todd step (NT-step). 
Lemma 15 (Lemma 4.2 in [2]) Let ߪ: ൌ ሻݒሺߪ ൏ 1. Then the full NT-step is strictly 
feasible. 

The second lemma is devoted to the proximity measure of the iterates obtained 
by a full NT-step. 
Lemma 16 (Lemma 4.4 in [2]) Let ߪሺݒሻ ൏ 1. Suppose that the iterates ݔା and ݏା are 
produced by a full NT-step, i.e., ݔା ൌ ݔ  ାݏ  and ݔ߂ ൌ ݏ   Then .ݏ߂

,ାݔሺߪ ;ାݏ ሻߤ  
ଶߪ

1  √1 െ ଶߪ
.  

Thus, ߪሺݔା, ;ାݏ ሻߤ    ଶ,  which shows the quadratical convergence of theߪ
algorithm. 

The following lemma gives an upper bound of the duality gap after a full NT-
step. 
Lemma 17 (Lemma 4.5 in [2]) After a full NT-step, then 

ାݔሺݎݐ  ל ାሻݏ    .ݎߤ

4.3 The iteration bound 

The following lemma gives an upper bound of the duality gap after the main 
iteration. 
Lemma 18 Let ݔ, ݏ א ,ࣥ ݐ݊݅ ߤ  0  such that ߪ: ൌ ,ݔሺߪ ;ݏ ሻߤ  ൏ 1,  and  0 ൏ ߠ ൏ ଵ

ଶ
. If 

  are the iterates obtained after the affine-scaling step of the algorithm, thenݏ  andݔ

ݔሺݎݐ ל ሻݏ  ሺ1 െ ߠ2  ݔሺݎݐଶሻߠ2 ל ሻݏ   ሺ1 െ ݔሺݎݐሻߠ ל ሻݏ ൏
ߤݎ

1 െ ߠ2 . 
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Proof   Letting ߙ ൌ 1 in (16) and (17), we obtain 

ݔሺݎݐ  ל ሻݏ  ൌ ሻݓሺܲߤሺඥݎݐ
ଵ
ଶሺݒ  ௫݀ߠ

ሻ ל ඥߤ ܲሺݓሻିଵ
ଶሺݒ  ௦݀ߠ

ሻ 

ൌ ݎݐ ߤ ቀ൫ݒ  ௫݀ ߠ
൯ ל  ൫ݒ  ௦݀ߠ

൯ቁ  (26) 

ൌ ሺሺ1ݎݐ ߤ െ ଶݒሻߠ2  ଶ ݀௫ߠ
 ל ݀௦

ሻ  

ൌ ሺ1 ߤ െ ଶሻݒሺݎݐሻߠ2  ൫݀௫ݎݐ ଶߠߤ
 ל ݀௦

൯.  

From the third equation of (14), we get 

൫݀௫ݎݐ
 ל ݀௦

൯ ൌ ଶሻݒሺݎݐ2 െ ௗೣצ
צಷ

మ ାצௗೞ
צಷ

మ

ଶ
  ଶሻ. (27)ݒሺݎݐ 2

Now, using (26) and (27), we obtain 

ݔሺݎݐ ל ሻݏ   ሺ1 െ ߠ2  ݔሺݎݐ ଶሻߠ2 ל  .ሻݏ

This proves the first inequality. If 0 ൏ ߠ ൏ ଵ
ଶ
  then ଵ

ଶ
൏ 1 െ ߠ ൏ 1, we get 

1 െ ߠ2  ଶߠ2 ൌ 1 െ ሺ1ߠ2 െ ሻߠ ൏ 1 െ  .ߠ

This proves the second inequality. Since ݔ and ݏ are obtained by a full NT-step 
of the algorithm, by Lemma 16, we have ݎݐሺݔ ל ሻݏ   Therefore .ߤݎ

ሺ1 െ ݔሺݎݐሻߠ ל ሻݏ  ሺ1 െ ߤݎሻߠ ൌ
ሺ1 െ ߤݎሻߠ

1 െ ߠ2 ൏
ߤݎ

1 െ ߠ2 , 

and the proof is completed.     ז 
 
4.4 Fixing the parameter 

In the following subsection, we want to fix the parameters ߬ and ߠ,  which 
guarantee that after a main iteration, the proximity measure will not exceed the proximity 
parameter got before. 

Let ሺݔ, ,ݕ ݔ ሻ be the iterate at the start of a main iteration withݏ א   and ࣥ ݐ݊݅
ݏ א ߪ such that  ࣥ ݐ݊݅ ൌ ,ݔሺߪ ;ݏ ሻߤ   ߬.  After a corrector step, by Lemma 16, one has 

,ାݔሺߪ ;ାݏ ሻߤ  
ଶߪ

1  √1 െ ଶߪ
. 

It can be easily verified that the right-hand side of the above inequality is a 
monotonically increasing with respect to ߪ, which implies that 

,ାݔሺߪ ;ାݏ ሻߤ  
߬ଶ

1  √1 െ ߬ଶ
ൌ 1 െ ඥ1 െ ߬ଶ ൌ  .ሺ߬ሻݓ

Following the predictor step and a $\mu$-update, by Lemma 14, one has 

ߪ  దሺఙሻି√ଶሺఙ,ఏ,ሻ
ଵାඥሺఙ,ఏ,ሻ

,  (28) 
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where  ܭሺߪ, ,ߠ  ሻ defined as in Lemma 13. It is easily verifiable that the right-hand sideݎ
of (28) is a monotonically increasing one with respect to ߪ, which means that 

߷ሺߪሻ െ ,ߪሺܭ2√ ,ߠ ሻݎ

1  ඥܭሺߪ, ,ߠ ሻݎ


߷ሺݓሺ߬ሻሻ െ ,ሺ߬ሻݓሺܭ2√ ,ߠ  ሻݎ
1  ඥܭሺݓሺ߬ሻ, ,ߠ ሻݎ

. 

To keep  ߪ  ߬, it suffices that 

߷ሺݓሺ߬ሻሻ െ ,ሺ߬ሻݓሺܭ2√ ,ߠ ሻݎ
1  ඥܭሺݓሺ߬ሻ, ,ߠ ሻݎ

 ߬. 

At this stage, if we set ߬ ൌ ଵ
ଶ
  and  ߠ ൌ ହ

ଵ√
,  the inequality above certainly 

holds.  This means, that ݔ, ݏ א ,ݔሺߪ and ࣥ ݐ݊݅ ;ݏ ሻߤ   ଵ
ଶ
  are maintained during the 

algorithm. Thus the algorithm is well-defined. Moreover, one has 

,ߪሺܭ ,ߠ ሻݎ ൌ ሺ1 െ ሻଶߪ െ
ଶሺ1ߠݎ  ሻଶߪ

1 െ ߠ2                                 

 ൫1 െ ሺ߬ሻ൯ଶݓ െ
ଶ൫1ߠݎ  ሺ߬ሻ൯ଶݓ

1 െ ߠ2  0.4151, 

by Lemma 13, one conclude that the predictor step is strictly feasible. 
 

4.5 Complexity bound 

The next lemma gives an upper bound for the number of iterations produced by 
our algorithm. 
Lemma 19 Let ݔ and ݏ be strictly feasible, ߤ ൌ ௧ሺ௫బל௦బሻ


  and ߪሺݔ, ;ݏ ሻߤ  ൏ ߬. 

Moreover, let ݔ and ݏ be iterates obtained after ݇ iterations. Then  ݎݐሺݔ ל ሻݏ   for ߝ

݇  1  ቜ
1

ߠ2 log
ݔሺݎݐ ל ሻݏ 

ߝ
ቝ . 

Proof   It follows from Lemma 18 that 

ݔሺݎݐ ל ሻݏ  ൏
ߤݎ

1 െ ߠ2 ൌ ሺ1ݎ െ ߤሻିଵߠ2 ൌ ሺ1 െ ݔሺݎݐሻିଵߠ2 ל  .ሻݏ 

 Then the inequality ݎݐሺݔ ל ሻݏ   holds if ߝ

 ሺ1 െ ݔሺݎݐሻିଵߠ2 ל ሻݏ    .ߝ

Taking logarithms, we obtain 

ሺ݇ െ 1ሻ logሺ 1 െ ሻߠ2  log ݔሺݎݐ ל ሻݏ    .ߝ

Since  logሺ1  ሻߠ  ,ߠ ߠ  െ1, we observe that the above inequality holds if 

െ2ߠሺ݇ െ 1ሻ  log ݔሺݎݐ ל ሻݏ   log  .ߝ

This implies the result.                                            ז 
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Theorem 20 Let ߬ ൌ ଵ
ଶ
 and ߠ ൌ ହ

ଵ√
 , then the algorithm is well defined and the 

algorithm requires at most 

ࣩ ቆ√ݎ log
ݔሺݎݐ ל ሻݏ

ߝ ቇ, 

iterations. The output is a primal-dual pair ሺݔ, ݔሺݎݐ ሻ satisfyingݏ ל ሻݏ   .ߝ
Proof   Since ߬ ൌ ଵ

ଶ
  and  ߠ ൌ ହ

ଵ√
,  the proof follows from Lemma 19.             ז 

 
5. CONCLUSION 

We have introduced a predictor-corrector path-following algorithm for SCO. 
We showed that this algorithm can solve SCO problems in polynomial-time, and that it 
can derive the iteration bound for the algorithm with small-update method. 
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