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1 INTRODUCTION

Several fundamental geometrical problems that arise in the processing of curves

and surfaces may be reduced computationally by isolating and approximating the

distinct real roots of univariate polynomials on finite intervals. Many different ap-

proaches for solving a polynomial equation exist [1]. We briefly mention the methods

based on deflation techniques [2]. Other ones proceed by subdividing the interval

into a sequence of intervals such that each one contains one and only one zero of

the polynomial [3]. In [7], the authors propose a method for finding real zeros

of a polynomial in Bernstein basis. In recent years univariate global optimization

problems have attracted common attention because they arise in many real-life ap-

plications and the obtained results can be easily generalized to multivariate case.

Let us mention the works for the Polynomial and Rational functions [13], [21], the

Lipschitz functions [15], and those in [9], [12], [20], [22]. Root-finding problem is

not an optimization problem, however we can exploit the idea of branch and bound

techniques in global optimization for finding zeros of a polynomial.

In this paper we propose two approaches for finding all real zeros of a polynomial

in a power basis:

1. A Bound and Reduce approach (BR):

The main idea consists in constructing quadratic underestimation and/or over-

estimation functions of the given polynomial f in a successive reduced interval

[ak, bk], in the way that the zeros of the quadratic function and the zeros of

the polynomial f are the same.

2. An adapted Branch and Bound method (BB):

The main idea is to localize the intervals containing the zeros of the polynomial

f by constructing quadratic underestimation and/or overestimation functions

[9, 10]. In fact, the minimum or the maximum respectively of the lower or

the upper bound function is used to subdivide the initial interval into two

sub-intervals on which the polynomial is less variying. The process is stoped

when the current interval has at most one zero.

Let Lfk and Ufk be a lower and a upper bound of f on [ak, bk]. The common

procedures of both approaches are:

� if Lfk(x) > 0, then f(x) > 0 ∀x ∈ [ak, bk]. This means that the polynomial

has no zero in this interval;
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Figure 1: The lower bound Lf(x) is strictly positive on [a, b], the polynomial f(x)

has no zero in this interval.

� if Ufk(x) < 0, then f(x) < 0 ∀x ∈ [ak, bk] and so the polynomial has no

zeros in this interval;

� if Lfk(x) or Ufk(x) has one or two roots on the current interval [ak, bk] which

are not the zeros of the polynomial, then these roots are used as ends to reduce

the current interval. By the way, when reducing the interval containing all the

zeros of f , we can locate all sub-intervals that contain the zeros of f . These

zeros are in fact the zeros of quadratic underestimating and/or overestimating

functions of f on these sub-intervals.

The performance of the proposed procedure depends on the quality of the chosen

lower and upper bounds of f . We introduce a quadratic lower bounding function

which is better than the well known linear underestimating of f by the theory of

approximation [6]. In the same way we introduce a quadratic upper bounding func-

tion of f .

The structure of the rest of the paper is as follows: Section 2 discusses the con-

struction of a lower and an upper bound of a polynomial. Section 3 describes an

Bound and Reduce (BR) algorithm to approximate the real zeros of a polynomial.

Section 4 describes a branch and bound algorithm (BB) and Section 5 presents

some numerical examples for ill-conditionned polynomials while Section 6 contains

some conclusions.



56 H. An Le Thi, M. Ouanes, A. Zidna / Computing Real Zeros

2 QUADRATIC BOUNDING FUNCTIONS

We now explain how to construct an upper bound of a function f which is

twice continuously differentiable on an interval [a, b]. We assume that there exists

a positive number K such that |f ′′(x)| ≤ K for all x ∈ [a, b].

For m ≥ 2, let {w1, w2, ......, wm} be the pairwise functions defined as in [6]:

wi(x) =


x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi

if xi ≤ x ≤ xi+1

0 otherwise.

We have

i=m∑
i=1

wi(x) = 1, ∀x ∈ [a, b] and wi(xj) = 0 if i ̸= j, 1, otherwise.

Let Lhf be the piecewise linear interpolant to f at the points x1, x2, ......, xm :

Lhf(x) =
i=m∑
i=1

f(xi)wi(x). (1)

The next result from [6] gives an upper and a lower bound of f on the interval [a, b],

(h = b− a) .

[6] For all x ∈ [a, b], we have |Lhf(x)− f(x)| ≤ 1
8Kh2, i.e.,

Lhf(x)−
1

8
Kh2 ≤ f(x) ≤ Lhf(x) +

1

8
Kh2.

In [9] the following quadratic lower bounding function of f is proposed:

Lf(x) := Lhf(x)−
1

2
K(x− a)(b− x) ≤ f(x), ∀x ∈ [a, b] .

It has been proved (see [9]) that this lower bound is better than the affine

minorization given in [6]:

Lf(x) ≥ Lhf(x)−
1

8
Kh2.

In a similar way, we now introduce a concave quadratic upper bounding function

of f :

For all x ∈ [a, b], we have

Lhf(x) +
1

8
Kh2 ≥ Uf(x) := Lhf(x) +

1

2
K(x− a)(b− x) ≥ f(x). (2)
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Proof. Let E(x) be the function defined on [a, b] by

E(x) = Lhf(x) +
1

8
Kh2 − Uf(x) (3)

=
1

8
Kh2 − 1

2
K(x− a)(b− x) (4)

=
K

2

[
x2 − (a+ b)x+ ab+

1

4
(b− a)2

]
. (5)

E is convex on [a, b] , and its derivative is equal to zero at x∗ = 1
2 (a+ b). Therefore,

for any x ∈ [a, b] we have

E(x) ≥ min{E(x) : x ∈ [a, b]} = E(x∗) = 0. (6)

Then, the first inequality in (2) holds. Consider now the function ϕ defined on [a, b]

by

ϕ(x) := Uf(x)− f(x) = Lh(x) +
1

2
K(x− a)(b− x)− f(x). (7)

It is clear that ϕ′′(x) = −K − f ′′(x) ≤ 0 for all x ∈ [a, b]. Hence ϕ is a concave

function, and for all x ∈ [a, b] we have

ϕ(x) ≥ min{ϕ(x) : x ∈ [a, b]} = ϕ(a) = ϕ(b) = 0. (8)

The second inequality in (2) is then proved.

3 BOUND AND REDUCE METHOD (BR)

In this section we describe a Bound and Reduce algorithm for approximating

the real zeros of a polynomial f(x) =
∑n

i=0 aix
i in an interval [a, b]. The initial

interval which contains all the zeros of f can be computed by using the Cauchy or

the Knuth method. Let K be a positive number such that |f ′′(x)| ≤ K, ∀x ∈ [a, b].

As described above, we construct upper bounds and lower bounds of f on successive

reduced intervals [ak, bk] of [a, b]. More precisely,

� If f(ak) > 0, we construct Lfk, a convex quadratic underestimating function

of f on the interval [ak, bk] defined by setting

Lfk(x) = f(ak)
bk − x

hk
+ f(bk)

x− ak
hk

− 1

2
K(x− ak)(bk − x). (9)

Clearly, if Lfk(x) has no roots in [ak, bk], then Lfk(x) > 0 ∀x ∈ [ak, bk] .

Consequently, f(x) > 0 ∀x ∈ [ak, bk] . Hence f(x) has no roots in [ak, bk] .
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Figure 2: Root finding by Bound and Reduce the interval. The roots of Lower

Bound function Lf(x), r0 and r1 approximate respectively the extremal root z0 and

z1 of the polynomial f(x).

� If f(ak) < 0, we construct Ufk, a concave quadratic overestimating function

of f on the interval [ak, bk] , by setting

Ufk(x) = f(ak)
bk − x

hk
+ f(bk)

x− ak
hk

+
1

2
K(x− ak)(bk − x). (10)

Similarly as in the above, if Ufk(x) has no roots in [ak, bk], then Ufk(x) < 0

∀x ∈ [ak, bk]. So f(x) has no roots in [ak, bk].

The recursive algorithm can be given as follows :

3.1 Convergence of the algorithm

The algorithm terminates if one of the following criteria is satisfied:

1. The length of the current interval [ak, bk] is less than ϵ ;

2. The lower or the upper bound of the polynomial has no zeros on the current

interval [ak, bk].
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Algorithm 1: Branch and reduced algorithm

Function S = ZeroPolynom(f, n, a, b, ϵ);

Data: f : the polynomial, n : the degree of the polynomial, a, b : the end of

the interval [a, b], ϵ : precision of the zeros

Result: S - the set of all found zeros of f

begin

Sk = ∅ is an intermediate set ;

if (b− a) < ϵ then S = ∅ return S;

;

Compute f(a);

if f(a) > 0 then

Construct Lfk, a quadratic lower bound of f on the interval [a, b];

Solve the equation Lfk(x) = 0;

if Lfk(x) has no root in [a, b] then

Sk = ∅;
end

else if Lfk has one root r1 ∈ [a, b], then

if |f(r1)| < ϵ, then Sk = Sk ∪ {r1};
;

Sk = Sk∪ZeroPolynom(f, n, r1 + ϵ, b, ϵ);

end

else if Lfk has two roots r1 ∈ [a, b] and r2 ∈ [a, b], then

if |f(r1)| < ϵ then Sk = Sk ∪ {r1};
if |f(r2)| < ϵ then Sk = Sk ∪ {r2};
Sk = Sk∪ RootPolynom(f, n, r1 + ϵ, r2 − ϵ, ϵ)

end

end

else
Construct Ufk a quadratic upper bound of f on the interval [a, b]

Solve the equation Ufk(x) = 0

if Ufk has no root in [a, b] then Sk = ∅;
;

else if Ufk has one root r1 ∈ [a, b] then

if |f(r1)| < ϵ then Sk = Sk ∪ {r1};
;

Sk = Sk∪ZeroPolynom(f, n, r1 + ϵ, b, ϵ);

end

else if Ufk has two roots r1 ∈ [a, b] and r2 ∈ [a, b] then

if |f(r1)| < ϵ then Sk = Sk ∪ {r1};
if |f(r2)| < ϵ then Sk = Sk ∪ {r2};
Sk = Sk∪ ZeroPolynom(f, n, r1 + ϵ, r2 − ϵ, ϵ)

end

end

S = Sk, return S;

end



60 H. An Le Thi, M. Ouanes, A. Zidna / Computing Real Zeros

For ϵ > 0, at least one of the two above conditions must be satisfied after a finite

number of iterations: if the second condition is violated during the algorithm, then

the first condition must be fulfilled after at most m = ⌊(b− a)
√

K
8ε⌋+ 1 iterations

(see [9]).

For ϵ = 0, we have the following result.

For hk = bk − ak, we have

lim
hk→0

(Ufk(x)− f(x)) = 0 and lim
hk→0

(f(x)− Lfk(x)) = 0.

Proof. As

0 ≤ Ufk(x)− f(x) ≤ 1

2
K(s− ak)(bk − s) ≤ 1

2
Khk

2,

it holds

lim
hk→0

(Ufk(x)− f(x)) = 0.

In the same way, if we have

0 ≤ f(x)− Lfk(x) ≤
1

2
K(s− ak)(bk − s) ≤ 1

2
Khk

2,

then

lim
hk→0

(f(x)− Lfk(x)) = 0.

The proof is complete.

4 BRANCH AND BOUND METHOD (BB)

In this section we describe the Branch and Bound algorithm for approximating

the real zeros of a polynomial in an interval [a, b]. The initial interval which contains

all the zeros of f can be computed by using the Cauchy or the Knuth method. Let

K be a positive number such that |f ′′(x)| ≤ K, ∀x ∈ [a, b].

As described above, we construct upper bounds and lower bounds of f on suc-

cessive sub-intervals [ak, bk] of [a, b].

The main idea is to subdivide the initial interval into sub-intervals which contains

at most one zero. At iteration k, for dividing T k = [ak, bk], one cane use its middle

point (the normal subdivision). Due to the efficiency of the w-subdivision intro-

duced in [9] we use this procedure in our BB algorithm (see Figure 3).

Using this idea, we divide [ak, bk] via xL
k the minimum of the lower bound or xU

k

the upper bound. This procedure seems to be efficient: we often obtain the exact
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Figure 3: Root finding by Branch and bound method. The mimimum s of the Lower

Bound function Lf(x) is used to subdivide the interval of the polynomial f(x).

evaluation when computing lower bound. The recursive algorithm can be given as

follows :

5 ILLUSTRATIVE EXAMPLES AND

COMPUTATIONAL RESULTS

Ill-conditioned dependance of the zeros on the coefficients occurs for many poly-

nomials having no multiple or clustered zeros, the well known example is the poly-

nomial
∏i=n

i=0 (x − i/n). For a large n, the zeros jump dramatically because of a

smaller perturbation of the coefficients [4]. Furthermore, it would not be appropri-

ate to ignore polynomials with multiple zeros like (x− 1/2)n since they frequently

appear in CAGD. We propose to compare the BR algorithm and the BB algorithm

with help of these polynomials. The numerical computations were implemented

with the IEEE754 double precision floating point arithmetic. The average relative

error of polynomial zeros is used, for the comparison.

Let z1, z2,. . . , zk be the exact polynomial zeros and z̄1, z̄2, . . . , z̄k be the zeros

determined with an experimental method. The relative error ξi on the zero zi is

determined as follows:

ξi = Min0≤j≤k
|zi − z̄j |

|zi|
. (11)
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Algorithm 2: Branch and Bound algorithm

Function S = ZeroPolynom(f, n, a, b, ϵ);

Data: f : the polynomial, n : the degree of the polynomial, a, b : the end of

the interval [a, b], ϵ : precision of the zeros

Result: S - the set of all found zeros of f

begin

Sk = ∅ is an intermediate set;

if (b− a) < ϵ then S = ∅ , return S;

;

Else Compute f(a);

if |f(a)| < ϵ then Sk = Sk ∪ {a};
;

if f(a) > 0 then

Construct Lfk, a quadratic lower bound of f on the interval [a, b];

Calculate xL
k = minLfk(x) on [a, b];

if |Lfk(xL
k )| < ϵ then Sk = Sk ∪ {xL

k };
;

else if Lfk(x
L
k ) > 0 then Sk = ∅;

;

else

Subdivide the interval [a, b] into [a, xL
k ] and [xL

k , b];

Sk = Sk∪ZeroPolynom(f, n, a, xL
k , ϵ);

Sk = Sk∪ZeroPolynom(f, n, xL
k , b, ϵ);

end

end

else

Construct Ufk, a quadratic upper bound of f on the interval [a, b];

Calculate xU
k = maxUfk on [a, b];

if |Ufk(x
U
k )| < ϵ then Sk = Sk ∪ {xU

k };
;

else if Lfk(x
U
k ) < 0 then Sk = ∅;

;

else

Subdivide the interval [a, b] into [a, xU
k ] and [xU

k , b];

Sk = Sk∪ZeroPolynom(f, n, a, xU
k , ϵ);

Sk = Sk∪ZeroPolynom(f, n, xU
k , b, ϵ);

end

end

S = Sk, return S;

end
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Table 1: Computed zeros of the polynom P1 having zeros uniformily distributed.

Zeros of the polynom Zeros found with BR method Zeros found with BB method

0.100000000 0.100000000665435 0.100000000315568

0.200000000 0.199999999854139 0.199999999731046

0.300000000 0.300000000538633 0.299999999069959

0.400000000 0.400000000151056 0.400000000461224

0.500000000 0.500000000567752 0.500000000755813

0.600000000 0.600000000255243 0.600000000017924

0.700000000 0.700000000353192 0.700000000555602

0.800000000 0.800000000850357 0.800000000051541

0.900000000 0.899999999124374 0.899999999448404

Relative Error 0.000000001 0.000000001

Time (seconde) 0.020000000 0.000000000

This definition is meaningful, for it takes into account the possible missed zeros.

The average relative error is given by:

ξ =
1

n

n∑
i=1

ξi. (12)

1. Polynomials of the form
∏i=n

i=0 (x− i/n).

The experimental result shows that up to n = 20, the proposed algorithm

found every zero. Beyond n = 20, the method start to fail and the results

deteriorate. This is due to successive division operations performed by the

algorithm in the power basis. For n = 9, we construct the polynomial P (x)

by multipliying the monomials (x− 1/10) . . . (x− 9/10).

P1(x) = −0.000362880+ 0.010265760 ∗ x1 − 0.117270000 ∗ x2 +0.723680000 ∗
x3 − 2.693250000 ∗ x4 + 6.327300000 ∗ x5 − 9.450000000 ∗ x6 + 8.700000000 ∗
x7 − 4.500000000 ∗ x8 + 1.000000000 ∗ x9.

The roots of the polynom P1(x) are presented in the table 1. The roots are

found with an excellent precision (about 10−9).

As we can see, the BR algorithm is slower than the BB algorithm and the

average relative error of the two algorithms are equivalent.
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Table 2: Computed zeros of a polynom P2 having arbitrary zeros in [0, 1].

Zeros of the polynom Zeros found with BR method Zeros found with BB method

0.020600000000000 0.020599999759396 0.020600000869723

0.056600000000000 0.056600000103261 0.056600000165920

0.079900000000000 0.079900000770853 0.079899999736290

0.210000000000000 0.210000000484068 0.209999999687340

0.397300000000000 0.397300000026743 0.397299999510668

0.446600000000000 0.446599999948637 0.446600000693173

0.577600000000000 0.577600000509391 0.577599999576455

0.955100000000000 0.955100000384805 0.955099999443358

0.979100000000000 0.979100000180963 0.979099999479073

0.983500000000000 0.983499999757962 0.983500000935180

Relative Error 0.000000003 0.000000006

Time (seconde) 0.020000000 0.000000000

2. Polynomials of the form
∏i=n

i=0 (x− αi) with 0 < αi < 1.

The numbers αi are randomly chosen in [0, 1]. For n = 10, we have the poly-

nom :

P2(x) = 0.000001844∗x0−0.000171607∗x1+0.005343025∗x2−0.076828641∗
x3 + 0.577913722 ∗ x4 − 2.479205141 ∗ x5 + 6.376540019 ∗ x6 − 9.980342796 ∗
x7 + 9.283051040 ∗ x8 − 4.706300000 ∗ x9 + 1.000000000 ∗ x10

As in the previous experience our methods found all the zeros with high

accuracy (about 10−9). This experience (and the previous) shows that the

manner in which the zeros are distributed (at random or uniformly) has no

influence on the performance of the method. Only the density has an effect

on their stability as we can see in the next experience.

3. Polynomials of the form
∏i=n

i=1 (x− 1/2i).

For n = 8, the polynom is given by:

P3(x) = 0.000000000∗x0+−0.000000007∗x1+0.000001257∗x2+−0.000090483∗
x3+0.002991959∗x4+−0.046327114∗x5+0.329437256∗x6+−0.996093750∗
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Table 3: Computed zeros of the polynom P3 having zeros 1/2, 1/4, 1/8, ...1./256

Zeros of the polynom Zeros found with BR method Zeros found with BB method

0.500000000000000 0.499999999976857 0.500000000692734

0.250000000000000 0.249999999424596 0.249999999331309

0.125000000000000 0.124999999051953 0.125000000435511

0.062500000000000 0.062500000947371 0.062499999276549

0.031250000000000 0.031249999046515 0.031250000902864

0.015625000000000 0.015625000953089 0.015624999929206

0.007812500000000 0.007812500953198 0.007812500729477

0.003906250000000 0.003906250953166 0.003906250723726

Relative Error 0.000000060 0.000000041

Time (seconde) 0.050000000 0.010000000

x7 + 1.000000000 ∗ x8.

The zeros of the polynom are presented in the table 3. The two algorithms

find all the zeros and confirms the results of the above experiences. As we can

see, the average relative error is about 10−8. However the computation time

of the two methods increases in comparison with the two above experiences.

This is due to the density of the zeros.

4. Polynomials of the form (x− 1/3)n(x− 1/2)(x− 2/3).

For these polynomials, the multiplicity n of the value 1/3 varies from 2 to 9.

For any n, the zero 1/3 is found as a simple zero. For n = 3, 4, 9, the results

are summarized in the following tables :

For n = 3, we have the polynom : P4(x) = −0.012345679 ∗x0+0.154320988 ∗
x1−0.759259259∗x2+1.833333333∗x3−2.166666667∗x4+1.000000000∗x5.

The zero 1/3 is found with a good precision (about 10−6).

For n=4, the Polynom is : P5(x) = 0.004115226−0.063786008∗x1+0.407407407∗
x2−1.370370370∗x3+2.555555556∗x4−2.500000000∗x5+1.000000000∗x6.

In this case, the BR method misses the zero 1/3, consequently, the average

relative error increases abnormally. The BB method finds this zero twice. The
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Table 4: Zeros of the polynom P4 with BR and BB algorithm. The multiplicity of

1/3 is n = 3

Multiplicity of 1/3 Zeros found with BR method Zeros found with BB method.

0.333329111317813 0.333332132529702

n=3 0.500000000550211 0.499999999572852

0.666666666945224 0.666666666134202

Relative Error 0.000007600 0.000002162

Time (seconde) 0.040000000 0.010000000

Table 5: Zeros of the polynom P5 with BR and BB algorithm. The multiplicity of

1/3 is n = 4

Multiplicity of 1/3 Zeros found with BR method Zeros found with BB method

0.500000000813783 0.333298858981134

n=4 0.666666666228435 0.333603393113499

0.499999999585050

0.666666665802389

Relative Error 0.333333335 0.000068949

Time (seconde) 0.020000000 0.000000000

average relative error is about 10−5.

For n = 9, we have the polynom : P6(x) = −0.000016935 ∗ x+ 0.000516520 ∗
x1 − 0.007138140 ∗ x2 + 0.058984911 ∗ x3 − 0.323731139 ∗ x4 + 1.238683128 ∗
x5 − 3.370370370 ∗ x6 + 6.518518519 ∗ x7 − 8.777777778 ∗ x8 + 7.833333333 ∗
x9 − 4.166666667 ∗ x10 + 1.000000000 ∗ x11.

The zero 1/3 is found by the two methods as the graph of the polynom f

crosses the x-axis. The average relative error of the two methods is about

10−2.

5. Zeros of Laguerre Polynomials.

For α ≥ 0, the generalized Laguerre polynomials of order n, denoted by Lα
n,

are given by the recurrence

(n+ 1)Lα
n+1(x) = (2n+ α+ 1− x)Lα

n(x)− (n+ α)Lα
n−1(x) (13)
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Table 6: Zeros of the polynom P6 with BR and BB algorithm. The multiplicity of

1/3 is n = 9

Multiplicity of 1/3 Zeros found with BR method Zeros found with BB method

0.319624464534332 0.343752181314919

n=9 0.500000000812627 0.500000000335154

0.666666667070851 0.666666667207756

Relative Error 0.033649042 0.025573536

Time (seconde) 0.020000000 0.000000000

Table 7: Computed zeros of the Laguerre polynom of degree n = 10

Zeros of the polynom Zeros found with BR method Zeros found with BB method

0.137793470540 0.137793731205827 0.137793487093318

0.729454549503 0.729453277475226 0.729454566889281

1.808342901740 1.808342741998582 1.808342880722087

3.401433697855 3.401433565079064 3.401433705686546

5.552496140064 5.552497088211168 5.552496160310486

8.330152746764 8.330152247669790 8.330152735747728

11.843785837900 11.843783590823241 11.843785821366534

16.279257831378 16.279257793680930 16.279257837310475

21.996585811981 21.996585929553266 21.996585792878673

29.920697012274 29.920697472096251 29.920697001378144

Relative Error 0.000000042 0.000000017

Time (seconde) 0.010000000 0.010000000

and the initial condition Lα
0 (x) = 1 Lα

1 (x) = 1+α−x. It is well known that

Lα
n(x) has n real and simple zeros, which are all in the interval (0, n + α +

(n−1)
√
n+ α]. The generalized Laguerre polynomials satisfy the monotonoc-

ity and interlacing properties of zeros which means that zeros of Lα
n−1(x)

and zeros of Lα
n(x) separate each other. This propertie may be used for the

approximation of the zeros of the Laguerre polynomials by a fixed point iter-

ation. Table 7 summarize the result of the computed zeros for the Laguerre

polynomials of order n = 10 and α = 0. In [16], the first fifteen zeros of

Laguerre polynomials are given.
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6 CONCLUSION

We propose two approaches for finding all real zeros of a polynomial f(x) of

degree n. The methods are based on the Branch and Bound method by the com-

putation of some lower and upper bounds of f(x) and on successive reduction or

subdivision of the initial interval. Facing ill-conditionned polynomial, the experi-

mental results show the efficiency of the two algorithms. Simple zeros are found

with good accuracy (relative error magnitude = 10−9). Multiple zeros can be found

as simple zero. In the multiple zeros case, the BB algorithm is more efficient than

the BR algorithm. For high multiplicity, the two algorithms provide bad results,

though the BB algorithm behaves a bit better than the BR algorithm. The average

relative error in this case is about 10−2. As the computations are performed in a

finite precision arithmetic and rounding errors affect the coefficients of polynomials

of high degree, our results deteriorate beyond n = 20. But, it has been shown

[5, 11] that the Bernstein basis minimizes the condition number which measures

the sensibility of the zeros through the coefficients perturbation. Our target is to

use this base to improve the stability of the proposed algorithm.
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