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1. INTRODUCTION 

In this paper we give a survey of the results related to the strong metric 
dimension of graphs. The strong metric dimension (SMD) is a recently introduced graph 
invariant [11], connected to well known metric dimension [1,12] that has been widely 
investigated.  

Metric dimension of a graph can be defined as follows. Let G be a simple 
connected undirected graph G = (V, E), where V is a set of vertices, and E is a set of 
edges. The distance between vertices u and v, i.e. the length of a shortest u-v path is 
denoted by d(u,v). A vertex x of the graph G resolves two vertices u and v of G if d(x,u) 
≠ d(x,v). An ordered vertex set S = {x1, ..., xk} is a resolving set of G if for every two 
distinct vertices of G there exists a vertex of S which resolves them. For a given vertex t, 
the k-touple r(t,S) = (d(t, x1), ..., d(t, xk)) is called vector of metric coordinates of t with 
respect to S. By the definition of the resolving set, S is a resolving set if and only if all 
vectors r(t,S), t∈V, are mutually different. The metric basis of G is a resolving set of 
minimal cardinality. The cardinality of the metric basis, denoted by β(G), is called 
metric dimension of G.    

Strong metric dimension of G is a more restricted invariant than β(G). A vertex 
w strongly resolves two vertices u and v if u belongs to a shortest v-w path, or if v 
belongs to a shortest u-w path. A vertex set S of G is a strong resolving set of G if every 
two distinct vertices of G are strongly resolved by some vertex of S. The strong metric 
basis of G is a strong resolving set with minimal cardinality. Now, strong metric 
dimension of G, denoted by sdim(G), is defined as the cardinality of its strong metric 
basis. Notice that if a vertex w strongly resolves vertices u and v then, w also resolves 
these vertices. Indeed, if for example u belongs to a shortest v-w path, then d(w,u) < 
d(w,v) and, therefore d(w,u) ≠ d(w,v).  Hence, every strong resolving set is a resolving set 
and β(G) ≤ sdim(G). The problem of finding sdim(G) is called the strong metric 
dimension problem (SMDP). 
Example 1. For graph G1 on Fig. 1, set S1 = {A,B} is a resolving set since vectors of 
metric coordinates for the vertices of G1 with respect to S1 are different: r(A,S1)=(0,1); 
r(B,S1)=(1,0); r(C,S1)=(1,2); r(D,S1)=(2,1). On the other hand, singleton sets are not 
resolving sets. For example, {A} is not a resolving set since d(A,B) = d(A,C) = 1. 
Therefore, S1 is a metric basis of G1 and β(G1) = 2. Set S1 is also a strong resolving set of 
G1. Indeed, each pair of vertices which contain vertex A or vertex B is strongly resolved 
by A, i.e. B. Vertices C and D are strongly resolved by both A and B since C belongs to a 
shortest A-D path, and D belongs to a shortest B-C path. Hence, 2 = β(G1) ≤ sdim(G1) ≤ 
|S1| = 2, which implies sdim(G1) = 2. 
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Figure 1: Graph G1 from Example 1 
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Example 2. For graph G2 on Fig. 2, it is easy to check that {A,B} is a resolving set of 
minimal cardinality, while {A,B,E} is a strong resolving set of minimal cardinality. 
Therefore, β(G2)=2, sdim(G2) = 3. 
 

 
 

Figure 2: Graphs G2 and G3 

 
In the sequel, we introduce several definitions which will be used in the next sections. 
 Direct product of two graphs G1=(V1,E1) and G2=(V2,E2) is a graph G1 × G2 
such that V(G1 × G2) = V1 × V2,  and two vertices (a,b), (c,d) are adjacent in G1 × G2 if and 
only if {a,c} ∈ E1  and  {b,d} ∈ E2. 

Cartesian product of two graphs G1 and G2 is a graph G1 □ G2 such that  
V(G1 □ G2) = V1 × V2,  and two vertices (a,b), (c,d) are adjacent in G1 □ G2 if and only if 
either a=c and {b,d} ∈ E2, or b=d and {a,c} ∈ E1.  
 Corona product of graphs G1 and G2 is a graph G1 ☼ G2 obtained from G1 and 
G2 by taking one copy of G1 and |V1| copies of G2 and joining by an edge each vertex 
from the i-th copy of G2 with the i-th vertex of G1, i =1,..., |V1|.  
 Diameter diam(G) of graph G is defined as maxu,v∈V d(u,v). Graph G = (V, E) is 
2-antipodal if for each vertex v∈V there exists exactly one vertex w ∈V such that 
d(v,w)=diam(G). A vertex of graph is a simplicial vertex if the subgraph induced by its 
neighbors is a complete graph. Set σ(G) is the set of all simplicial vertices of G. Graph G 
is vertex-transitive graph if for any two vertices u and v, there is an automorphism 
f:V→V such that f(u) = v. A connected graph G is distance-regular if, for any vertices  
u,v of G and any integers i,j=0,1, ..., diam(G), the number of vertices at distance i from u, 
and distance j from v depends only on i, j and the distance between u and v, 
independently of the choice of  u and v. 

Vertex cover of graph G is a set C of vertices of G such that every edge of G is 
incident with at least one vertex of C. Vertex covering number of G, denoted by α(G), 
is the minimal cardinality of the vertex cover. Independence number in(G) of graph G 
is the largest cardinality of a set of vertices of G, where neither two of them are adjacent. 
Clique of graph G is a complete subgraph of G. Clique number ω(G) of graph G is the 
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maximal cardinality of a clique in G. A set X of vertices of G is the twin-free clique in G 
if the subgraph induced by X is a clique, and for each u,v ∈X there exists a vertex from V 
adjacent to u but not adjacent to v, or vice versa. Twin-free clique number ϖ(G) of G is 
the maximal cardinality of a twin-free clique in G. Matching in graph G is a subset of 
edges from E without common vertices. The size of a largest matching in G is the 
maching number of graph G, denotead by μ (G). 
 The paper is organized as follows. In Section 2, we give an overview of 
theoretical properties of the strong metric dimension, and summarize the existing explicit 
expressions for the strong metric dimension of some general classes of graphs, or the 
lower and upper bounds. The strong metric dimension of some special classes of graphs 
is presented in Section 3. Section 4 describes a mathematical programming model of the 
strong metric dimension problem. Section 5 is devoted to the existing metaheuristic 
approaches for solving the problem of determining the strong metric dimension. Finally, 
Section 6 contains concluding remarks.  
   

2. THEORETICAL RESULTS 

The concept of the metric dimension was motivated by the problem of 
determining the location of an intruder in a network [9,12]. Namely, if S is a resolving set 
of a graph G then, vertex u where intruder is located, is uniquely determined by metric 
coordinates of  u with respect to S. However, vectors of the metric coordinates with 
respect to S do not determine the graph G uniquely. 

For example, consider graphs G2 and G3 with V(G2)=V(G3) on Fig. 2. The set 
S={A,B} is a metric basis for both graphs and vertices have the same vectors of metric 
coordinates with respect to S. Nevertheless, graphs G2 and G3 are different. 

It was observed in [11] that if S is a strong resolving set of G then, set 
{r(v,S)|v∈V} uniquely determines graph G in the following sense. If G' is a graph with 
V(G')=V(G) such that S is a strong resolving set in G', and if for all vertices 
v∈V(G')=V(G) we have rG(v,S) = rG' (v,S) then, G=G'. Namely, by the definition of 
strongly resolved vertices, and using strong resolving set S and the corresponding vectors 
of metric coordinates, it is possible to reconstruct the distances between all vertices in G, 
which uniquely determines G.     

In [9], it has been proved that the strong metric dimension problem is closely 
related to well known NP-hard vertex covering problem (VCP). This connection is based 
on the concepts of the strong resolving graph GSR of graph G.  

Definition 1 [9]. Vertex u is maximally distant from vertex v if for all vertices 
w adjacent to u, it follows that d(w,v) ≤ d(u,v). 

Definition 2 [9]. The strong resolving graph GSR of G is a graph with the 
following properties: V(GSR) = V(G), and E(GSR) contains all mutually maximally distant 
pairs of vertices from G.    

Definition 3 [10] The boundary ∂G of graph G is defined as a set of all u in V 
for which there exists v ∈ V such that u,v are mutually maximally distant.  

It is easy to see that V(GSR) = ∂G. The following theorem connects SMDP and 
VCP: 

Theorem 3 [9]. For any connected graph G, sdim(G) = α(GSR). 
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Moreover, as can be seen from [9], there exist a polynomial time transformation 
of the VCP to the SMDP, which implies that the strong metric dimension problem is NP-
hard.  

Although the strong metric dimension problem is NP-hard in general, for some 
classes of graphs it can be solved in polynomial time. For example, this holds for 
distance hereditary graphs [7]. A graph G is distance hereditary if every connected 
induced subgraph H of G is isometric, i.e. for each u,v ∈ V(H), it follows  
dH(u,v) = dG(u,v). Note that trees are a special case of this class. In [7], an algorithm for 
finding the strong metric dimension of distance hereditary graphs with O(|V|⋅|E|) 
complexity is presented.  

A concise survey of theoretical results on the strong metric dimension is given 
in Table 1. The first column contains the definition of graph G, the second column lists 
the assumptions, the third column gives the exact value of the strong metric dimension of 
G , and the last column points to the references. In Table 1, the following definiton is 
used: 

 
Table 1: Strong metric dimension of some general classes of graphs 

G Assumptions sdim(G) ref. 
H□K H,K connected α(HSR× KSR) 

[10] 
 
 
 
 
 
 
 
 

H□K H,K connected |∂(H)|⋅|∂(K)| - in(HSR× KSR) 
H□K 

 
H,K connected, HSR,KSR vertex transitive min{|∂(H)|⋅sdim(K), 

|∂(K)|⋅sdim(H)} 
H□K H,K connected 2-antipodal |V(H)|⋅|V(K)|/2 
H□K 

 
H connected 2-antipodal, K connected 

with |∂(K)|=|σ(K)| 
|V(H)|⋅|σ (K)|/2 

 
H□K 

 
H,K connected, HSR,KSR regular, at least 

one is bipartite 
|∂(H)|⋅|∂(K)|/2 

 
H□T 

 
H connected 2-antipodal, T is a tree, l(T) 

-number of leaves in T 
|V(H)|⋅l(T) /2 

 
H□Kr 

 

H connected 2-antipodal, Kr complete 
graph on r vertices 

|V(H)|⋅r /2 
 

H□K 
 

H  distance regular,K connected, KSR 
regular bipartite 

|V(H)|⋅|∂(K)|/2 
 

H□K 
 

H,K connected, ∂(H)=σ(H), ∂(K)=σ(K) min{|∂(H)|⋅( |∂(K)|-1), 
|∂(K)|⋅(|∂(H)|-1)} 

H H connected, |H|≥2, diam(H)=2 |H| - ϖ(H) 

 [6] 
 
 

H☼K1  |H| - 1 

H☼K 
 

Gi subgraph corresponding to  
i-th copy of K, |H|=n sdim( ) 

 
Table 2, which is organized in a similar way as Table 1, contains the lower or 

upper bounds for the strong metric dimension of some general classes of graphs.  
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Table 2: Bounds for the strong metric dimension 
G Assumptions sdim(G) ref. 

H□K H,K connected ≤ min{|∂(H)|⋅sdim(K), |∂(K)|⋅sdim(H)} 

[10] 
 
 

H□K H,K connected ≥ sdim(H) ⋅ sdim(K) 
G  |σ(G)| -1 ≤ sdim(G) ≤ |∂(G)| -1 

H□K 
 

H,K connected, K2 
complete graph 

≥ μ( HSR) ⋅ sdim(H□K2) ≥ 2⋅μ(HSR) ⋅μ(KSR) 
 

H H connected, |H|≥2 ≤ |H| - ϖ(H) [6] 
 

In [10] is also proven that: 
• sdim(G) = 1 if and only if G ≅ Pn ; 
• sdim(H□K) = 2 if and only if H and K are both paths. 

 
3. STRONG METRIC DIMENSION OF SOME SPECIAL CLASSES OF 

GRAPHS  

In Table 3, the strong metric dimension of some special classes of graphs is 
concisely presented. Here Cn, Kn, Pn denote the cycle, the complete graph, and the path 
on n vertices, respectively. Notation T represents a tree, with the number of leaves l(T). 
The Hamming graph Hn,k is the Cartesian product Kk□Kk□···□Kk, with n factors. 
Hypercube Qn is defined as Hn,2. The convex polytope Dn (n≥5) is defined as follows: 
V(Dn) = {ai, bi, ci, di | i = 0, 1, . . . , n-1},  E(Dn) = {(ai,ai+1), (ai,bi), (bi,ci), (bi+1,ci), (ci,di), 
(di,di+1) | i = 0, 1, . . . , n-1}, where indices are taken modulo n. Similarly, the convex 
polytope Tn (n ≥5) is defined as: V(Tn) = {ai, bi, ci, di | i = 0, 1, . . . , n-1},  E(Tn) = 
{(ai,ai+1), (ai,bi), (ai+1,bi), (bi,bi+1), (bi,ci), (ci,ci+1), (ci,di), (ci+1,di), (di,di+1) | i = 0, 1, . . . , 
n-1}, where indices again are taken modulo n. 
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Table 3: Strong metric dimension of some special graph classes 
G Assumptions sdim(G) ref. 

Qn  2n-1 [3] 
Hn,k  (n-1)�nk-1 [3,10] 

 
n1⋅ n2⋅ ... ⋅ nr -  

[10] 
 
 
 
 
 
 
 
 
 

Kn□Pr  n 
Cn□Pr  n 
Kn□Kr  min{n�(r-1), r�(n-1)} 
Kn□C2r  n � r 

Kn□C2r+1  min{n�(r+1), (n-1)�(2r+1)} 
T□Pr  l(T)
T□C2r  l(T) � r 

T□C2r+1  min{l(T)�(r+1), (2r+1)�( l(T)-1)} 
T□Kn  min{l(T)�(n-1), n�( l(T)-1)} 
T1□T2  min{l(T1)�( l(T2)-1), l(T2)�( l(T1)-1)} 
Cn□C2r  n � r 

[9] 
 
 

C2n+1□C2r+1  min{(2n+1)�(r+1), (n+1)�(2r+1)} 
C2n+1×C2n+1  (2n+1)�(n+1) 

Kn×Kr n,r ≥ 3 max{n�(r-1), r�(n-1)} 
Kn×Pr n ≥ 3,r ≥ 2 n � ⎡r/2⎤ 

[10] 
 
 
 

Kn×Cr 

 
 

 
 

n ≥ 3,r ≥ 4 
 

 

Convex 
polytopes  

Dn 
 

 
 

n ≥ 5  

[4] 
 
 
 

Convex 
polytopes  

Tn 

 
n ≥ 5  

 
4. INTEGER LINEAR PROGRAMMING FORMULATION 

The first integer linear programming (ILP) formulation of the strong metric 
dimension problem is given in [4]. It has been usefull for finding the strong metric 
dimension of some special classes of graphs in singular cases. For example, values 
sdim(D6)=13 and sdim(D8)=19 from Table 3 have been obtained using the ILP 
formulation. 
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Given a simple connected undirected graph G = (V,E), where V={1,2,..., n}, 
|E|=m, it is easy to determine the length d(u,v) of a shortest u-v path for all u,v ∈ V, using 
any shortest path algorithm. The coefficient matrix A can be defined as follows: 

 (1) 

where 1 ≤ u < v ≤ n, 1 ≤ i ≤ n. Variable yi described by (2) determines whether vertex i 
belongs to a strong resolving set S. 

 (2) 

The ILP model of the strong metric dimension problem can now be formulated as: 

 (3) 

subject to: 

 (4) 

yi ∈{0,1}    1 ≤ i ≤ n. (5) 

The objective function (3) represents the cardinality of a strong resolving set S,  
and constraints (4) ensure that each pair of vertices u,v ∈ V is strongly resolved by at 
least one vertex i∈S. Constraints (5) represent binary nature of decision variables yi. Note 

that ILP model (3)-(5) has only n variables and linear constraints.    

 
5. METAHEURISTIC APPROACHES 

In this section, we give an overview of the three existing heuristics based on 
meta-heuristic approaches proposed for solving SMDP: Electromagnetism-like approach 
- EM [5], Genetic algorithm - GA [2], and Variable neighborhood search - VNS [8]. 

The electromagnetism-like (EM) metaheuristic is a population-based algorithm 
for global optimization, which is also used for combinatorial optimization as a stand-
alone approach or as an accompanying algorithm for other methods. The population 
contains Npop real vectors pk, k = 1, 2, ... , Npop, of length n, transformed into the SMDP 
feasible solutions. In the first iteration, real vectors pk are randomly generated from a set 
[0,1]n. For each pk, the corresponding strong resolving set S is initially established by 
rounding in the following way: if i-th coordinate of pk is greater or equal than 0.5 then, S 
contains the vertex i. If set S is not a strong resolving set then, it is repaired by adding 
randomly new vertices from V \ S, until S becomes a strong resolving set. The objective 
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function value is the cardinality of S. After the objective function is computed, its 
possible improvement is tried by a local search procedure, which removes some elements 
of S in such a way that S remains a strong resolving set. Next, a scaling procedure is 
applied, which additionally moves points towards solutions obtained by the local search. 
Afterwards, the calculation of charges and forces using EM attraction-repulsion 
mechanism is applied, resulting in moving towards a local minimum. A detailed 
description of EM for SMDP can be seen in [5]. 

In [2], a genetic algorithm (GA) for SMDP is presented. The GA uses a binary 
encoding of the individuals, where each solution S (i.e. a candidate for a strong resolving 
set) is represented by a binary string of length n. Digit 1 at the i-th position of the string 
denotes that the vertex i belongs to S, while 0 shows the opposite. In case when S is not a 
strong resolving set, the same reparation technique as in EM is applied. The objective 
function value is again the cardinality of S. The population of the first generation is 
randomly generated, providing the maximal diversity of the genetic material. In order to 
prevent undeserved domination of some individuals in the current population, an elitist 
strategy is used. Duplicated individuals are removed from the current population by 
setting their fitness to zero. The fine-grained tournament selection, the one-point 
crossover and the simple mutation are implemented. The run-time performance of GA is 
improved by a caching technique. 

The variable neighborhood search (VNS) approach for the SMDP [8] is based 
on the idea of decomposition. The initial set S is obtained by a simple procedure, which 
starts from the empty set and adds randomly chosen vertices from V until S becomes a 
strong resolving set. For a given strong resolving set S, the last element is deleted to 
obtain set S'. Here the objective function value is computed as the number of pairs of 
vertices from V which are not strongly resolved with respect to S'. In other words, unlike 
the EM and GA, VNS objective function measures the infeasibility of set S'. In case 
when the objective value is equal to zero, S := S' is a new strong resolving set with 
smaller cardinality, and new S' is generated. The neighborhood Nk(S') contains all sets 
obtained from S' by deleting k of its elements and replacing them by k elements from V \ 
S'. A local search procedure tries to improve randomly generated S'' ∈ Nk(S') by 
interchanging one element from set S'' with one element of its complement, and updates S 
whenever a new strong resolving set with smaller cardinality is generated.  

Experimental results and comparison of the previous three approaches are 
presented on two different ORLIB classes of graph instances: crew scheduling, and graph 
coloring. The GA tests were performed on an AMD Sempron 1.6 GHz with 256 MB 
memory [2], under Linux (Knoppix 5.0) operating system, while the EM and VNS are 
tested on an Intel Pentium IV 2.5 GHz with 4 GB memory [5,8]; all presented running 
times are in seconds. All three methods have been run 20 times for all instances, and the 
results are summarized in Table 4 and Table 5. Sign “-” denotes that the running time 
exceeds 5 hours. The tables are organized as follows:  
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Table 4: Results on Crew scheduling OR-LIB instances 
Inst. n m EM GA VNS 

best t best t best t 
csp50 50 173 29 123 29 27 29 0.35 

csp100 100 715 62 889 61 528 61 4.90 
csp150 150 1355 106 3152 98 3166 98 25 
csp200 200 2543 154 6768 144 8048 142 83 
csp250 250 4152 181 13214 178 17060 172 198 
csp300 300 6108 - - - - 224 464 
csp350 350 7882 - - - - 237 817 
csp400 400 10760 - - - - 288 1363 
csp450 450 13510 - - - - 316 2097 
csp500 500 16695 - - - - 367 3474 
 

 
• The first three columns contain the test instance name, the number of nodes and 

edges, respectively; 
• The fourth and fifth columns contain the best EM solution, and the average 

running time (named best and t) obtained in 20 runs; 
• Results related to GA and VNS are presented in the same way, in the last four 

columns. 
 

As can be seen from Table 4 and Table 5, VNS approach outperforms EM and GA 
meta-heuristics both in the solution quality and running times. Moreover, VNS finds 
solutions of large-scale instances in the cases when EM and GA fail (csp300-csp500, 
gcol21-gcol30). 

 
6. CONCLUSIONS 

The existing results from the literature devoted to the strong metric dimension 
can be divided into two groups. The first group contains theoretical results related to both 
general properties and the explicit values of strong metric dimension for some special 
classes of graphs. The second group of papers introduces metaheuristic approaches for 
solving the strong metric dimension problem. In this survey, we unify these two aspects 
in order to give a complete overview of the related literature.   
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Table 5: Results on Graph coloring OR-LIB instances 
Inst. n m EM GA VNS 

best t best t best t 
gcol1 100 2487 93 1106 91 173 91 10.8 
gcol2 100 2487 93 1104 91 183 91 10.8 
gcol3 100 2482 93 1107 91 199 91 10.8 
gcol4 100 2503 93 1101 91 173 91 10.8 
gcol5 100 2450 92 1109 91 166 91 11.0 
gcol6 100 2537 93 1080 91 195 91 10.5 
gcol7 100 2505 92 1091 91 171 91 10.8 
gcol8 100 2479 92 1123 90 177 90 10.8 
gcol9 100 2486 92 1099 91 178 91 10.9 

gcol10 100 2506 93 1099 91 168 91 10.8 
gcol11 100 2467 92 1111 91 169 91 10.9 
gcol12 100 2531 93 1076 91 166 91 10.7 
gcol13 100 2467 93 1107 91 171 91 10.9 
gcol14 100 2524 93 1088 91 170 91 10.7 
gcol15 100 2528 92 1084 91 183 91 10.6 
gcol16 100 2493 93 1100 91 174 91 10.8 
gcol17 100 2503 93 1102 91 173 91 10.8 
gcol18 100 2472 93 1115 91 173 91 10.8 
gcol19 100 2527 93 1089 91 163 91 10.6 
gcol20 100 2420 93 1127 91 176 91 11.1 
gcol21 300 22482 - - - - 288 906 
gcol22 300 22569 - - - - 288 902 
gcol23 300 22393 - - - - 289 908 
gcol24 300 22446 - - - - 288 915 
gcol25 300 22360 - - - - 288 907 
gcol26 300 22601 - - - - 288 912 
gcol27 300 22327 - - - - 288 913 
gcol28 300 22472 - - - - 288 902 
gcol29 300 22520 - - - - 288 974 
gcol30 300 22543 - - - - 288 964 
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