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Abstract: The present paper discusses enhanced flow in a capacitated indefinite 
quadratic transportation problem. Sometimes, situations arise where either reserve stocks 
have to be kept at the supply points say, for emergencies, or there may be extra demand 
in the markets. In such situations, the total flow needs to be controlled or enhanced. In 
this paper, a special class of transportation problems is studied, where the total 
transportation flow is enhanced to a known specified level. A related indefinite quadratic 
transportation problem is formulated, and it is shown that to each basic feasible solution 
called corner feasible solution to related transportation problem, there is a corresponding 
feasible solution to this enhanced flow problem. The optimal solution to enhanced flow 
problem may be obtained from the optimal solution to the related transportation problem. 
An algorithm is presented to solve a capacitated indefinite quadratic transportation 
problem with enhanced flow. Numerical illustrations are also included in support of the 
theory. Computational software GAMS is also used. 

Keywords: Capacitated transportation problem, enhanced flow, quadratic transportation problem, 
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1. INTRODUCTION 

A class of transportation problems where the objective function to be optimized 
is a product of two linear functions gives rise to an indefinite quadratic transportation 
problem, which was first studied by Arora and Khurana  [1]. Later, Khurana and Arora 
[8] studied linear plus linear fractional transportation problem with restricted and 
enhanced flow. 

Another important class of transportation problems consists of capacitated 
transportation problem. Many researchers, i.e. Bit et.al [6], Arora and Gupta [2-5], 
Dahiya et.al. [7], have contributed in this field. Sometimes, situations arise due to extra 
demand of the market that the total flow needs to be enhanced, compelling some factories 
to increase their production in order to meet the extra demand. The total flow from the 
factories in the market is now increased by an amount of the extra demand. This 
motivated us to study enhanced flow in a capacitated indefinite quadratic transportation 
problem. Khurana and Arora [9] studied enhanced flow in a fixed charge indefinite 
quadratic transportation problem. In this paper, we shall be discussing the case when the 
flow gets enhanced due to extra demand in the market for a capacitated indefinite 
quadratic transportation problem.  
 

2. PROBLEM FORMULATION 

Consider the problem of transporting goods from various sources to different 
destinations. Let cij be the cost of transportation of one unit from ith source to jth  
destination. While transporting goods, a part of the goods get damaged. Let dij  be the 
cost of one unit of the damaged goods. The quantity of damaged goods may be some 
fraction of the goods transported. We are interested in minimizing both the cost of 
transportation and the cost of damaged goods simultaneously. Moreover, in practical 
situations, the two costs, i.e. the cost of transportation and damage cost are always 
interdependent. Therefore, the objective function of the problem under consideration 
should be the product of two cost functions so that both of them are minimized 
simultaneously, and their interdependence is justified. The problem can then, be 
formulated as a capacitated indefinite quadratic transportation problem given by  

(P1): ij ij ij ij
i I j J i I j J

min c x d x
∈ ∈ ∈ ∈

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪
⎨⎜ ⎟⎜ ⎟⎬
⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑∑ ∑∑  

subject to  

ij i
j J

x a ; i I
∈

≥ ∀ ∈∑   (1) 

ij j
i I

x b ; j J
∈

≥ ∀ ∈∑   (2) 

ij i, j
i I j J i I j J

x P  where P max a b
∈ ∈ ∈ ∈

⎛ ⎞
= > ⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑   (3) 
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ij ij ijl x u≤ ≤ ; ( )i, j I J∀ ∈ ×   (4) 

I = {1, 2, … m} is the index set of m origins. 
J = {1, 2, …, n} is the index set of n destinations. 
xij = number of units transported from ith origin  to the jth destination . 
cij =  variable cost of transporting one unit of commodity from ith origin to the jth 

destination. 
dij = per unit damage cost or depreciation cost of commodity transported from ith 

origin to the jth destination. 
lij and uij are the bounds on number of units to be transported from ith origin to jth 

destination. 
In the problem (P1), we need to minimize the total transportation cost and 

depreciation cost simultaneously.  
In order to solve the problem (P1), we consider the following related problem 

(P2) with an additional supply point and an additional destination point. 

(P2): minimize the cost function ' '
ij ijij ij

i I j J i I j J

c y d y
′ ′ ′ ′∈ ∈ ∈ ∈

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪
⎨⎜ ⎟⎜ ⎟⎬
⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑∑ ∑∑   

subject to  

ij i
j J

y a ; i I
′∈

′ ′= ∀ ∈∑      

'
ij j

i I
y b ; j J

′∈

′= ∀ ∈∑        

( )ij ij ij l y u ; i,j IxJ≤ ≤ ∀ ∈       

m 1, j jij
i I

0 y u b ; j J+

∈

≤ ≤ − ∀ ∈∑     

i, n 1 iij
j J

0 y u a ; i I+ −

∈

≤ ≤ ∀ ∈∑      

m 1, n 1y 0+ + ≥  and integers. 

'
i ij

j J
a u ; i I

∈

= ∀ ∈∑   ,  ' '
m 1 ij n 1

i I j J
a u P b+ +

∈ ∈

= − =∑∑ ,  '
j ij

i I
b u ; j J

∈

= ∀ ∈∑ ,  

c′ij  = cij  , ∀i∈I, j∈J,   c′m+1,j  = c′i,n+1 = 0     ∀i∈I,   ∀j∈J,  c′m+1,n+1  = M 

d´ij = dij  ,  ∀i∈I, j∈J,  d′m+1,j  = d′i,n+1 = 0     ∀i∈I,   ∀j∈J  d´m+1,n+1 = M 

{ } { }I I m 1         J =J n+1′ ′= ∪ + ∪  
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3. PRELIMINARY RESULT 

Result 1: Let X = {xij} be a basic feasible solution of problem (P2) with basis 
matrix B. Then, it will be an optimal basic feasible solution if 

1 2 1 1 2ij 1 ij 2 ij ij ij ij 1ij ij ij ij ijR z (d z ) z (c z ) (c z )(d z ) 0 (i, j) N⎡ ⎤
⎢ ⎥⎣ ⎦

= θ − + − +θ − − ≥ ∀ ∈  

and 

2 1 2 2 1ij ij ij ij 1 ij 2 ij 2ij ij ij ij ijR (c z )(d z ) z (d z ) z (c z ) 0 (i, j) N⎡ ⎤
⎢ ⎥⎣ ⎦

= θ θ − − − − − − ≥ ∀ ∈  

such that  

1 1
iji ju v c+ =      (i, j) B∀ ∈    

2 2
iji ju v d+ =     (i, j) B∀ ∈     

1 1 1
i j iju v z+ =     1   2(i, j) N and N∀ ∈       

2 2 2
i j iju v z+ =    1   2(i, j) N and N∀ ∈  

z1 = value of ij ij
i I j J

c x
∈ ∈
∑∑  at the current basic feasible solution corresponding to 

the basis B 
z2 = value of ij ij

i I j J
d x

∈ ∈
∑∑  at the current basic feasible solution corresponding to 

the basis B.  
ijθ  = level at which a non basic cell (i,j) enters the basis replacing some basic 

cell of B. 
N1 and N2 denote the set of non basic cells (i,j) which are at their lower bounds and upper 

bounds, respectively. 

Note: 1 1 2 2
i j i ju , v , u , v  are dual variables, determined by using the above equations and 

taking one of the ui 
,s or vj

 ,s. as zero.  

Proof: Let z0 be the objective function value of the problem (P2). 

Let z0 =Z1Z2      

Let z
∧

 be the objective function value at the current basic feasible solution 

X
∧

={xij}, corresponding to the basis B obtained on entering the non- basic cell xij ∈N1 in 
to the basis which undergoes change by an amount ijθ and is given by min{uij – lij ; xij - 
lij  for all basic cells (i,j) with a (- θ ) entry  in the θ - loop; uij – xij for all basic cells (i,j) 
with a (+θ ) entry  in the θ -loop}. 
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Then, 
^

1 21 ij ij 2 ij ijij ijz z c z z d z⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡ ⎤= + θ + θ⎣ ⎦ ⎣ ⎦  

^
0 2 1 2 1 21 2 ij 1 ij 2 ij ij ij ij 1 2ij ij ij ij ijz z z z z (d z ) z (c z ) (c z )(d z ) z z⎡ ⎤

⎢ ⎥⎣ ⎦
− = +θ − + θ − +θ − − −            

2 1 1 2ij 1 ij 2 ij ij ij ijij ij ij ijz (d z ) z (c z ) (c z )(d z )⎡ ⎤
⎢ ⎥⎣ ⎦

= θ − + − +θ − −
 

This basic feasible solution will give an improved value of z if z
∧

 < z0 . It means 

if 2 1 1 2ij 1 ij 2 ij ij ij ijij ij ij ijz (d z ) z (c z ) (c z )(d z ) 0⎡ ⎤
⎢ ⎥⎣ ⎦

θ − + − +θ − − <  (5)  

Therefore, one can move from one basic feasible solution to another basic 
feasible solution on entering the cell (i,j) ∈  N1 in to the  basis for which  condition (5)  is 
satisfied. 

It will be an optimal basic feasible solution if  
1 2 1 1 2ij 1 ij 2 ij ij ij ij 1ij ij ij ij ijR z (d z ) z (c z ) (c z )(d z ) 0; (i, j) N⎡ ⎤

⎢ ⎥⎣ ⎦
= θ − + − +θ − − ≥ ∀ ∈  

Similarly, when non basic variable xij ∈N2 undergoes change by an amount ijθ  then,  

z
∧

 - z0 1 2 2 1ij ij ij ij 1 ij 2 ijij ij ij ij(c z )(d z ) z (d z ) z (c z ) 0⎡ ⎤
⎢ ⎥⎣ ⎦

= θ θ − − − − − − <  

It will be an optimal basic feasible solution if 

2 1 2 2 1ij ij ij ij 1 ij 2 ij 2ij ij ij ij ijR (c z )(d z ) z (d z ) z (c z ) 0; (i, j) N⎡ ⎤
⎢ ⎥⎣ ⎦

= θ θ − − − − − − ≥ ∀ ∈  

 

4. THEORETICAL DEVELOPMENT: 

Definition: Corner feasible solution: A basic feasible solution {yij} i∈  I´, j ∈J´ to 

problem (P2) is called a corner feasible solution (cfs) if ym+1,n+1 = 0 

Theorem 1. A non corner feasible solution of problem (P2) cannot provide a basic 

feasible solution to problem (P1). 

Proof: Let {yij}I´ xJ´ be a  non corner feasible solution to problem (P2).Then,  ym+1,n+1 = 

λ  (> 0) 

Thus, i , n 1 i , n 1 m 1, n 1
i I i I

y y y+ + + +

′∈ ∈

= +∑ ∑  
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= i, n 1

i I

y +

∈

+ λ∑  

=  ij
i I j J

u P
∈ ∈

−∑∑      

Therefore, ( )i,n 1 ij
i I i I j J

y u P+
∈ ∈ ∈

= − + λ∑ ∑∑  

Now, for i∈I, 

'
ij i ij

j J j J

y a u
′∈ ∈

= =∑ ∑  

ij ij
i I j J i I j J

y u
′∈ ∈ ∈ ∈

=∑∑ ∑∑  

ij i,n 1 ij
i I j J i I i I j J

y y u+
∈ ∈ ∈ ∈ ∈

+ =∑∑ ∑ ∑∑  

( )ij ij ij
i I j J i I j J i I j J

y u P u
∈ ∈ ∈ ∈ ∈ ∈

+ − + λ =∑∑ ∑∑ ∑∑     

Therefore, ij

i I j J

y P
∈ ∈

= + λ∑∑  

This implies that total quantity transported from the sources in I to the destinations in J is 

P + λ > P, a contradiction to assumption that total flow is P and hence {yij}I´ xJ´  cannot 

provide a feasible solution to problem (P1). 

Lemma 1: There is a one –to-one correspondence between the feasible solution to 

problem (P1) and the corner feasible solution to problem (P2). 

Proof: Let {xij}I xJ be a feasible solution of problem (P1). 

So by relation (4), we have ij ijx u≤ which implies ij ij
j J j J

x u
∈ ∈

≤∑ ∑  (6) 

By relation (1) and (6), we get 

'
i ij ij i

j J j J

a x u a
∈ ∈

≤ ≤ =∑ ∑  

Similarly, '
j ij ij j

i I i I
b x u b

∈ ∈

≤ ≤ =∑ ∑  

Define {yij}I´ xJ´ by the following transformation 

 yij = xij  ,i∈I, j ∈  J (7) 
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i, n 1 ij ij
j J j J

y u x ; i I+

∈ ∈

= − ∀ ∈∑ ∑  (8) 

m 1, j ij ij
i I i I

y u x ; j J+

∈ ∈

= − ∀ ∈∑ ∑  (9) 

ym+1,n+1 = 0 (10) 

It can be shown that {yij} so defined is a cfs to problem (P2). 

Relation (4) and (7) imply that i j i j i jl y u≤ ≤          for all  i∈I, j ∈J 

Relation (1) and (8) imply that i, n 1 ij i
j J

0 y u a ; i I+

∈

≤ ≤ − ∀ ∈∑  

Relation (2) and (9) imply that m 1, j ij j
i I

0 y u b ; j J+

∈

≤ ≤ − ∀ ∈∑  

Relation (10) implies that ym+1,n+1 ≥ 0 

Also for i∈I,  relation (7) and (8) imply that 

ij ij i,n 1 ij ij ij ij i
j J j J j J j J j J j J

y y y x u x u a+
′∈ ∈ ∈ ∈ ∈ ∈

= + = + − = =∑ ∑ ∑ ∑ ∑ ∑  

For i = m+1 

m 1, j ij m 1,n 1 ij ij
j J j J j J i I i I

y y y u x+ + +
′∈ ∈ ∈ ∈ ∈

⎛ ⎞= + = −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑  

= ij ij
i I j J i I j J

u x
∈ ∈ ∈ ∈

−∑∑ ∑∑  

= '
ij m 1

i I j J

u P a +
∈ ∈

− =∑∑  

Therefore, '
ij i

j J

y a ; i I
′∈

′= ∀ ∈∑  

Similarly, it can be shown that '
ij j

i I
y b ; j J

′∈

′= ∀ ∈∑    

Therefore, {yij}I´ xJ´ is a  cfs to problem (P2). 

Conversely, let {yij}I´ xJ´ be a  cfs to problem(P2).Define xij , i∈I, j ∈J by the following 

transformation. 

xij= yij   , i∈I, j ∈J (11) 

It implies that i j i j i jl x u≤ ≤ , i∈I, j ∈J 

Now for i∈I, the source constraints in problem (P2) imply 
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'
ij i ij

j J j J

y a u
′∈ ∈

= =∑ ∑  

ij i,n 1 ij
j J j J

y y u+
∈ ∈

+ =∑ ∑  

 i ij ij
j J j J

a y u
∈ ∈

⇒ ≤ ≤∑ ∑      (since i, n 1 ij i
j J

0 y u a ; i I+

∈

≤ ≤ − ∀ ∈∑ ) 

Hence,  ij i
j J

y a
∈

≥∑  , i∈I and subsequently ij i
j J

x a
∈

≥∑ , i∈I 

Similarly, for j ∈J,  ij j
j J

y b ; j J
∈

≥ ∀ ∈∑  and subsequently, ij j
i I

x b
∈

≥∑ ; j J∀ ∈  

For i= m+1 

'
m 1, j m 1 ij

j J i I j J

y a u P+ +
′∈ ∈ ∈

= = −∑ ∑∑  

 m 1, j ij
j J i I j J

y u P+

∈ ∈ ∈

⇒ = −∑ ∑∑    because ym+1,n+1 = 0  (12)   

Now, for j ∈J the destination constraints in problem (P2) give 

m 1, jij ij
i I i I

y y u+

∈ ∈

+ =∑ ∑  

Therefore, m 1, jij ij
i I j J j J i I j J

y y u+

∈ ∈ ∈ ∈ ∈

+ =∑∑ ∑ ∑∑  

 By relation (12), we have   m 1, jij ij
i I j J i I j J j J

y u y P+

∈ ∈ ∈ ∈ ∈

= − =∑∑ ∑∑ ∑   

ij

i I j J

x P
∈ ∈

⇒ =∑∑
 

Therefore, {xij}I xJ is a feasible solution to problem (P1). 

 

Remark 1: If problem (P2)  has a cfs ,then since c´
m+1,n+1=M and d´

m+1,n+1= M, it follows 

that non corner feasible solution can not be an optimal solution to problem (P1)  . 

 

Lemma 2: The value of the objective function of problem (P1) at a feasible solution   

{xij}I x J is equal to the value of the objective function of problem (P2) at its corresponding 

cfs {yij}I´xJ´ and conversely. 
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Proof: The value of the objective function of problem (P1) at a feasible solution {xij}I x J 

is 

ij ij ij ij
i I j J i I j J

ij ij ij ij
i I j J i I j J

z c x d x

   = c y d y

∈ ∈ ∈ ∈

′ ′ ′ ′∈ ∈ ∈ ∈

⎡ ⎤⎛ ⎞⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞

′ ′⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑∑ ∑∑

∑∑ ∑∑
 because 

'
ij,ij

'
ij,ij

ij ij,

' '
i,n+1 m+1, j

' '
i,n+1 m+1, j

m 1,n 1

c = c i I, j J

d = d i I, j J

x = y i I, j J
c = c = 0; i I, j J

d = d = 0; i I, j J

y 0+ +

⎧ ⎫∀ ∈ ∈
⎪ ⎪

∀ ∈ ∈⎪ ⎪
⎪ ⎪

∀ ∈ ∈⎪ ⎪
⎨ ⎬

∀ ∈ ∈⎪ ⎪
⎪ ⎪∀ ∈ ∈⎪ ⎪
⎪ ⎪=⎩ ⎭

 

= the value of the objective function of problem (P2) at the corresponding cfs {yij}I´xJ´ 

The converse can be proved in a similar way. 

Lemma 3: There is a one –to-one correspondence between the optimal solution to 

problem (P1) and optimal solution among the corner feasible solution to problem (P2). 

Proof: Let ij I J{x } ×  be an optimal solution to problem (P1) yielding objective function 

value z0 and ij I J{y } ′ ′× be the corresponding cfs to problem (P2). Then by Lemma 2, the 

value yielded by ij I J{y } ′ ′× is z0 If possible, let ij I J{y } ′ ′× be not an optimal solution to 

problem (P2). Therefore, there exists a cfs '
ij{y } to problem (P2) with the value z1 <  z0 . 

Let '
ij{x }be the corresponding feasible solution to problem (P1).Then by lemma 2, 

z1= ' '
ij ijij ij

i I j J i I j J
c x d x

∈ ∈ ∈ ∈

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪
⎨⎜ ⎟⎜ ⎟⎬
⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑∑ ∑∑  which is less than z0 , a contradiction to the assumption 

that ij I J{x } × is an optimal solution to problem (P1). Hence, ij I J{y } ′ ′×  must be an optimal 
solution to problem (P2). Similarly, it can be proved that an optimal corner feasible 
solution to problem (P2) will give an optimal solution to problem (P1). 
 

Theorem 2: Optimizing problem (P2) is equivalent to optimizing problem (P1) provided 
problem (P1) has a feasible solution. 
Proof: As problem (P1) has a feasible solution, by lemma 1, there exists a cfs to problem 
(P2).Thus by remark 1, an optimal solution to problem (P2) will be a cfs. Hence, by 
lemma 3, an optimal solution to problem (P1) can be obtained. 
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5. ALGORITHM 

Step 1: Given a capacitated fixed charge indefinite quadratic transportation 
problem (P1) with enhanced flow form a related transportation problem (P2) by 
introducing  a dummy source and a dummy destination with  

'
i ij

j J
a u ; i I

∈

= ∀ ∈∑   ,  ' '
m 1 ij n 1

i I j J

a u P b+ +
∈ ∈

= − =∑∑ ,  '
j ij

i I
b u ; j J

∈

= ∀ ∈∑ ,        

 c′ij  = cij  , ∀i∈I, j∈J,   c′m+1,j  = c′i,n+1 = 0     ∀i∈I,   ∀j∈J,  c′m+1,n+1  = M 

d´ij = dij  ,  ∀i∈I, j∈J,  d′m+1,j  = d′i,n+1 = 0     ∀i∈I,   ∀j∈J  d´m+1,n+1 = M 

Step 2: Find an initial basic feasible solution to (P2) with respect to variable 
cost only. Let B be its corresponding basis. 

Step 3 : Calculate ijθ ,(cij-z1
ij) , (dij – z2

ij), z1, z2 for all non basic cells such that 

1 1
iji ju v c+ =      (i, j) B∀ ∈    

2 2
iji ju v d+ =     (i, j) B∀ ∈   

1 1 1
i j iju v z+ =     1   2(i, j) N and N∀ ∈  

2 2 2
i j iju v z+ =    1   2(i, j) N and N∀ ∈   

z1 = value of ij ij
i I j J

c x
∈ ∈
∑∑  at the current basic feasible solution corresponding to 

the basis B 
z2 = value of ij ij

i I j J

d x
∈ ∈
∑∑  at the current basic feasible solution corresponding to 

the basis B. 
ijθ = level at which a non basic cell (i,j) enters the basis replacing some basic 

cell of B. 
N1 and N2 denote the set of non basic cells (i,j) which are at their lower bounds 

and upper bounds, respectively. 
Note: 1 1 2 2

i j i ju , v , u , v  are the dual variables which are determined by using the 
above equations and taking one of the ui 

,s or vj
 ,s. as zero. 

Step 4:  Find 1
ij 1R (i, j) N∀ ∈  and 2

ij 2R (i, j) N∀ ∈  where 

1 2 1 1 2ij 1 ij 2 ij ij ij ij 1ij ij ij ij ijR z (d z ) z (c z ) (c z )(d z ) ;(i, j) N⎡ ⎤
⎢ ⎥⎣ ⎦

= θ − + − +θ − − ∈    and 

2 1 2 2 1ij ij ij ij 1 ij 2 ij 2ij ij ij ij ijR (c z )(d z ) z (d z ) z (c z ) ; (i, j) N⎡ ⎤
⎢ ⎥⎣ ⎦

= θ θ − − − − − − ∀ ∈  

N1 and N2 denote the set of non basic cells (i,j), which are at their lower bounds 
and upper bounds, respectively. 
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Step 4: If 1
ij 1R 0 (i, j) N≥ ∀ ∈  and 2

ij 2R 0 (i, j) N≥ ∀ ∈  then, the current solution is 
optimal to (P2) and subsequently to (P1). Go to step 5. Otherwise, some (i,j) ∈N1 for 
which 1

ijR 0< or some (i,j) ∈N2 for which  2
ijR 0<  will enter the basis. Go to step 2. 

Step 5: Find the optimal cost Z= z1
 z2  

  

6. NUMERICAL ILLUSTRATION 

Illustration 1. Consider a 2 x 3 capacitated  indefinite quadratic  transportation 
problem with enhanced flow. Table 1 gives the values of cij, dij,  ai ,bj for i=1,2 and 
j=1,2,3 

 
Table 1: Cost matrix of problem (P1) 

 D1 D2 D3 ai 
 O1 2        

3              
3  
4 

1    
5 

40 

O2 1          
4 

2         
4 

2  
6 

30 

bj 20 10 30  
 

Note: values in the upper left corners are cij 
,s and values in the lower left corners 

are dij 
,s for i=1,2,3.and j=1,2,3. 

1≤ x11 ≤ 20 , 2 ≤ x12 ≤ 10 , 0 ≤ x13 ≤ 20 ,0≤ x21 ≤  10 , 2 ≤ x22 ≤ 20 , 1 ≤ x23 ≤ 30  

Let the enhanced flow be P = 80, where 
2 3

i j
i 1 j 1

P 80 max a 70, b 60
= =

⎛ ⎞
= > = =⎜ ⎟

⎝ ⎠
∑ ∑  .  

Introduce a dummy origin and a dummy destination in Table 1 with ci4 = 0 = d i4  
for all i = 1,2  and c3j = 0 = d3jfor all j = 1,2,3 . c34 = d34  = M  where M is a large positive 
number. Also, we have 0≤ x14 ≤ 10 , 0≤ x24 ≤ 30 , 0 ≤ x31 ≤ 10 , 0 ≤ x32 ≤ 20 , 0 ≤ x33 ≤ 20 
In this way , we form the problem (P2). Now, we find an initial basic feasible solution of 
problem (P2), which is given in table 2 below. 
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Table 2: Initial basic feasible solution of problem (P2) 

 D1 D2 D3 D4 '
ia  

1
iu  2

iu  

 O1 2        

     20  

3              

3  

      2 

4 

1    

     20  

5 

0 

       8 

0 

50 0 0 

O2 1          

      10 

4 

2         

      8 

4 

2  

      20 

6

0 

       22 

0

60 0 0 

O3 0 

 

0 

0 

       20  

0 

0 

      10 

0 

M 

 

M 

30 -2 -6 

'
jb  

30 30 50 30    

1
jv  1 2 2 0    

2
jv  4 4 6 0    

 

Note: Entries of the form a  and b  represent non  basic cells which are at their 
lower and upper bounds, respectively. Entries in bold are basic cells. 
 z1 = 132 , z2 = 360  

Table 3: Computation of 1
ijR , 2

ijR  

NB O1D1 O1D2 O1D3 O3D1 O3D2 

ijθ  0 6 2 10 10 

1
ij ijc z−  1 1 -1 1 0 

      
2

ij ijd z−  -1 0 -1 2 2 

          
1
ijR   2160  6440  

         
2
ijR     0    988  -2640 
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Since 2
ijR 0<  for O3D2 therefore, O3D2 will enter in to the basis. Continuing like 

this, we get the optimal solution of problem (P2), which is shown below in table 4 
 

Table 4: Optimal solution of problem (P2) 

 D1 D2 D3 D4 1
iu  2

iu  

 O1 2        

     20  

3              

3  

      2 

4 

1    

     20  

5 

0 

       8 

0 

0 0 

O2 1          

      10 

4

2         

      18 

4 

2  

      10 

6

0 

       22 

0

0 0 

O3 0 

 

0 

0 

       10 

0 

0 

      20  

0 

M 

 

M 

-2 -4 

1
jv  

1 2 2 0   

2
jv  4 4 6 0   

z1 = 132, z2 = 340 

Table 5: Computation of 1
ijR , 2

ijR  

NB O1D1 O1D2 O1D3 O3D1 O3D3 

ijθ  0 8 2 2 10 

1
ij ijc z−  

1 1 -1 1 0 

2
ij ijd z−  

-1 0 -1 0 -2 

        
1
ijR   2720  680  

2
ijR     0    948  2640 

 

Since 1
ijR  ≥ 0  1( i, j) N∀ ∈  and   2

2ijR 0 (i, j) N≥ ∀ ∈ , the solution in table 4 
is an optimal solution of (P2) and hence yields an optimal solution of (P1).Therefore 
minimum cost = (132 x 340) = 44880. 
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Computing Software 

We used the software Gams to solve the above numerical and obtained the same 
solution in 0.07 seconds. The solution shows the minimum variable cost = 44880. The 
summary of the results obtained on GAMS is as follows. 
MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           5     SINGLE EQUATIONS           32 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES           13 

NON ZERO ELEMENTS            55     NON LINEAR N-Z              6 

DERIVATIVE POOL              10     CONSTANT POOL              17 

CODE LENGTH                  26     DISCRETE VARIABLES         12 

GENERATION TIME      =        0.047 SECONDS      4 Mb WEX240-240 Dec 18, 2012 

EXECUTION TIME       =        0.047 SECONDS      4 Mb WEX240-240 Dec 18, 2012 

GAMS Rev 240 WEX-WEI 24.0.1 x86_64/MS Windows          03/07/13 00:35:23 Page 5 

G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 

Solution Report     SOLVE transportation Using RMIQCP From line 53 

S O L V E      S U M M A R Y 

     MODEL   transportation      OBJECTIVE z 

     TYPE    RMIQCP              DIRECTION MINIMIZE 

     SOLVER CONOPT              FROM LINE 53 

 

**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      2 Locally Optimal            

**** OBJECTIVE VALUE            44880.0000 

 RESOURCE USAGE, LIMIT          0.000      5000.000 

 ITERATION COUNT, LIMIT         7    2000000000 

 EVALUATION ERRORS              0             0  

The model has 13 variables and 32 constraints 

 with 55 Jacobian elements, 6 of which are nonlinear. 

The Hessian of the Lagrangian has 6 elements on the diagonal, 

15 elements below the diagonal, and 6 nonlinear variables. 
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 ** Optimal solution. There are no superbasic variables. 

  CONOPT time Total                            0.002 seconds 

   of which: Function evaluations             0.001 = 50.0% 

             1st Derivative evaluations       0.000 = 0.0% 

  

**** REPORT SUMMARY:        0     NONOPT 

                             0 INFEASIBLE 

                             0 UNBOUNDED 

                             0     ERRORS 

GAMS Rev 240 WEX-WEI 24.0.1 x86_64/MS Windows          02/25/13 08:28:08 Page 6 

G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 

E x e c u t i o n 

----    54 VARIABLE x.L   

 

            1           2           3           4 

 

1      20.000       2.000      20.000       8.000 

2      10.000      18.000      10.000      22.000 

3                   10.000      20.000 

Illustration 2: Consider a 5× 6 capacitated indefinite quadratic problem with 
the following data. 
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Table 6: Cost matrix of problem (P1) 

 D1 D2 D3 D4 D5 D6
 ai 

 O1 2       10 

      

3        1    

3        20 

       

4 2 

1        10   

      

5         3  

3       10 

        

2         1   

7          5 

 

5          2 

6         5 

 

4         3 

50 

O2 1        5  

       

4        0 

2        10 

       

4           1 

2          5  

       

6          2 

3        10 

        

2          1 

6         20 

 

3           2 

7       30 

 

4        1 

75 

O3 6      10 

 

3        0 

7       20     

        

4        1 

4         10 

       

5         2 

5        40 

 

6         0 

3         50 

 

2           1 

8        30 

 

7        2 

140 

O4 7      20 

 

6       1 

8      10 

 

5         1 

9       10 

 

8        1 

10      20 

 

6         1 

6         40 

 

7           1 

5       40 

 

3        1 

90 

O5 8       10 

 

7         1 

6       20 

 

4         2 

4      30 

 

5       1 

5         30 

 

3         2 

3       20 

 

1         1 

1       25 

 

1        2 

110 

bj 25 60 55 90 125 100  

 

 

Note: The entries in the upper left corner of each cell shows cij and entries in the 
lower left corner of each cell show dij . Lower bounds and upper bounds in each cell are 
shown in the lower and upper right corners of each cell. 

Let the enhanced flow be P = 600 where 

 
5 6

P 600 max a 465, b 455i ji 1 j 1

⎛ ⎞
⎜ ⎟= > = =∑ ∑
⎜ ⎟= =⎝ ⎠

.In order to solve this problem, form the related 

transportation problem which is as follows: 
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Table7: Related problem (P2) 

 D1 D2 D3 D4 D5 D6 D7
 

'
ia  

 O1 2       

10 

      

3        1   

3        20 

       

4

 

2 

1        10   

      

5         3  

3       10 

        

2         1  

7          5 

 

5          2 

6         5 

 

4         3 

0         

10 

 

0         0 

60 

O2 1        5  

       

4        0 

2        10 

       

4           

1

2          5 

       

6          2 

3        10 

        

2          1 

6         

20 

 

3

7       30 

 

4        1 

0         5 

 

0        0 

80 

O3 6      10 

 

3        0 

7       20     

        

4        1 

4         

10 

       

5 2

5        40 

 

6         0 

3         

50 

 

2

8        

30 

 

7 2

0       20 

 

0         0 

160 

O4 7      20 

 

6       1 

8      10 

 

5         1 

9       10 

 

8        1 

10      20 

 

6         1 

6         

40 

 

7

5       40 

 

3        1 

0        50 

 

0         0 

140 

O5 8       

10 

 

7

6       20 

 

4         2 

4      30 

 

5       1 

5         

30 

 

3 2

3       20 

 

1         1 

1       25 

 

1        2 

0         25 

 

0          0 

135 

O6 0       

30 

 

0 0

0       20  

 

0       0  

0        10 

 

0        0 

0        20 

 

0        0 

0        10 

 

0        0 

0       20 

 

0       0 

M 

 

M 

95 

'
jb  

55 80 65 110 135 130 95  

 

Solving this problem on GAMS we obtain the following report summary. 

MODEL STATISTICS 

BLOCKS OF EQUATIONS           5     SINGLE EQUATIONS           98 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES           43 
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NON ZERO ELEMENTS           199     NON LINEAR N-Z             30 

DERIVATIVE POOL              10     CONSTANT POOL              20 

CODE LENGTH                 119     DISCRETE VARIABLES         42 

GENERATION TIME      =        0.297 SECONDS      4 Mb WEX240-240 Dec 18, 2012 

EXECUTION TIME       =        0.297 SECONDS      4 Mb WEX240-240 Dec 18, 2012 

GAMS Rev 240 WEX-WEI 24.0.1 x86_64/MS Windows          03/06/13 23:35:37 Page 5 

G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 

Solution Report     SOLVE transportation Using RMIQCP From line 62 

S O L V E      S U M M A R Y 

     MODEL   transportation      OBJECTIVE z 

     TYPE    RMIQCP              DIRECTION MINIMIZE 

     SOLVER CONOPT              FROM LINE  62 

 

**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      2 Locally Optimal            

**** OBJECTIVE VALUE          3979596.0000 

 

 RESOURCE USAGE, LIMIT          0.047     50000.000 

 ITERATION COUNT, LIMIT        11    2000000000 

 EVALUATION ERRORS              0             0 

CONOPT 3         Dec 18, 2012 24.0.1 WEX 37366.37409 WEI x86_64/MS Windows     

         The model has 43 variables and 98 constraints 

    With 199 Jacobian elements, 30 of which are nonlinear. 

    The Hessian of the Lagrangian has 30 elements on the diagonal, 

    435 elements below the diagonal, and 30 nonlinear variables. 

  

 ** Optimal solution. There are no superbasic variables. 

  CONOPT time Total                            0.031 seconds 

   of which: Function evaluations             0.000 =  0.0% 

             1st Derivative evaluations       0.000 = 0.0% 

 **** REPORT SUMMARY:        0     NONOPT 
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                             0 INFEASIBLE 

                             0 UNBOUNDED 

                             0     ERRORS 

GAMS Rev 240 WEX-WEI 24.0.1 x86_64/MS Windows          03/06/13 23:35:37 Page 6 

G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 

E x e c u t i o n 

----  63 VARIABLE x.L          

 

1           2            3                   4           5           6 

 

1      10.000      20.000      10.000      10.000       2.000       5.000 

2       5.000      10.000       5.000      10.000      18.000      30.000 

3      10.000      20.000      10.000      40.000      50.000      10.000 

4       3.000      10.000       1.000       1.000      35.000      40.000 

5       1.000       9.000      30.000      30.000      20.000      25.000 

6      26.000      11.000       9.000      19.000      10.000      20.000 

 

+           7 

 

1       3.000 

2       2.000 

3      20.000 

4      50.000 

5      20.000 

 

CONCLUSION  

In order to solve a capacitated indefinite quadratic transportation problem, a 
related transportation problem is formed and it is shown that the optimal solution to 
enhanced flow problem may be obtained from the optimal solution to the related 
transportation problem. 
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