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Abstract: This research contributes to the improvement of the optimal headway solution 
for the transit performance functions (e. g., minimize total cost; maximize social welfare) 
derived from the traffic model proposed by Hendrickson. The purpose of this paper is 
threefold. First, we prove that that model has a unique solution for headway. Second, we 
offer a formulated approximation for headway. Third, numerical examples illustrate that 
our formulated approximation performs more accurately than the Hendrickson’s. 

Keywords: Analytical approach, headway of bus, stop-spacing, public transportation. 

MSC: 90B20. 

1. INTRODUCTION 
Researchers developed analytical traffic models to provide a simplified version 

for the real but too complicated real world situations. The formulated solution for 
analytical modes is a useful indicator to reveal relations among parameters and decision 
variables. From the explicit expression, researchers noticed which parameter has 
significant impact on the optimal solution; so, they could operate a comprehensive 
examination of the important parameters to obtain more representative mean and 
variance of the parameters. For examples, Golob et al. [6] examined an analysis of 
consumer preferences for a public transportation system to improve the quality of 
information about potential public transportation users, their needs and preferences. 
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Renault et al. [16] studied discounted and finitely repeated minority games with public 
signals to extend their previously undiscounted game in Renault et al. [15] to a 
discounted version and a finitely repeated version of the game. Otsubo and Rapoport [13] 
built a discrete version of Vickrey’s model of traffic congestion to present an algorithm 
for numerically computing a symmetric mixed-strategy equilibrium solution. Hill et al. 
[8] obtained a competitive game, that the maximal Nash-equilibrium payoff required 
quantum resources to attain its optimal alternative to illustrate that quantum entanglement 
can provide improved solutions. Pop and Sitar [14] examined a new efficient 
transformation to generalize vehicle routing problem into the classical vehicle routing 
problem so presenting a new integer programming formulation of the problem. For the 
green house gas emissions and cost, Traut et al. [17] developed optimal design and 
allocation of electrified vehicles, and dedicated charging infrastructure to maintain the 
life cycle with minimum cost. Coffelt and Hendrickson [4] examined a case study of 
occupant costs in roof management to construct occupant cost model to study the relation 
between maintenance and replacement costs. Jain and Saksena [10] studied a time 
minimizing transportation problem with fractional bottleneck objective function to derive 
an algorithm to find an initial efficient basic solution. An and Zhang [1] constructed a 
congestion traffic model with heterogeneous commuters. They proved the existence and 
uniqueness of a nontrivial Nash equilibrium to study the allocation of commuters 
between public transportation and private vehicles at the equilibrium under gasoline tax 
affects. However, none of them has provided a further study for Hendrickson [7]. We 
studied the analytical traffic model of Hendrickson [7] and found its contributions in 
public transportation operation and management; nevertheless, we also believed that  
some of his results required further investigation based on our following research. His 
paper analyzed performance functions with variables in riding and waiting times, 
transportation fare, frequency and service structure. He considered typical managerial 
decisions with respect to fare and frequency of service, and discussed the variation in 
user cost (especially wait cost and in-vehicle cost) resulting from the changes of supply. 
Various managerial strategies were explored such as maintaining service standards or 
constant load factors and maximizing service, profit, or net social benefits. An example 
of a peak-hour, radial transit route was used extensively to illustrate the impact of such 
decisions. However, only a degenerated model was explained with formulated solution 
for headway in Hendrickson [7] and it cannot be applied to deal with the general 
problem. The aim of this paper is to make a contribution in this area by presenting a more 
adequate solving method for the performance function and developing a proper solution 
to improve the accuracy of headway. In the analysis and evaluation of bus system 
operation performance, analytical optimization models are developed to optimize several 
related decision variables including route length, stop spacing, service headway. Previous 
studies of Chang and Schonfeld [3, 4] and Chien and Schonfeld [6] discussed the 
relationship between the aforementioned prevailing variables, and developed closed-form 
analytic solution. The studies mentioned above revealed that the accurate solution of 
headway is critical for model performance. Consequently, accurate solution of headway 
is significant for the performance function. From our previous review, no comprehensive 
treatment of this topic seems to exist. Moreover, simple results of Hendrickson [7] about 
travel time and volume relationships are often made erroneously and without rigorous 
examination. In this paper, we prove that the performance function of total costs have 
unique solution;also, we provide a formulated approximated solution for headway. From 
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the same numerical examples, our formulated approximated solution for headway gives 
more accurate results than the Hendrickson’s. Instead, we find the closed form of total 
costs and headway relationships, and we propose analytic functions to approximate the 
optimal headway. There are three papers published in Yugoslav Journal of Operations 
Research having similar analytical approach as ours. Wu et al. [18] investigated the 
Newton method for determining the optimal replenishment policy for EPQ model with 
present value, and their findings are more efficient than the bisection method. Lin et al. 
[11] constructed inventory models from ramp type demand to a generalized setting such 
that the optimal solution for replenishment policy is independent of demand type. Hung 
[9] developed continuous review inventory models with the present value of money and 
crashable lead time; he also obtained several lemmas and one theorem to estimate 
optimal solutions. 

 
2. REVIEW OF HENDRICKSON’S MODEL 

To be compatible with Hendrickson [7], we used the same assumptions and 
notation: 
d  route length 
h  scheduled inter-vehicle headway 
k  constant parameter 
n  number of potential stops on a route 
q  patron arrival rate along a route per unit time 
Q  expected volume carried by a single vehicle )hqQ( =  
r  expected riding time 
s  expected number of stops as a function of potential stops and volume 
v  average vehicle cruising velocity (apart from patron stops) 
w  expected waiting time 
σ  standard derivation of inter-vehicle headways at a stop 
( )nt h  expected vehicle travel time over a route with headway h  

pt  average patron boarding and unloading time 

st  average extra time required to decelerate and accelerate for a patron stop 

fC  fixed cost per vehicle dispatch on a route (including mileage-related costs) 

hC  cost per unit time of operating a vehicle 

bC  cost of a vehicle run on a route ( )( )b f h nC C C t h= +  

rC  average value of patron’s riding time per unit time 

wC  average value of patron’s waiting time per unit time 

 
The total system operating costs may be expressed as a fixed charge per vehicle 

dispatch plus an hourly charge. In this case, the total system operating costs per patron 
are: 
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( ) b
r w

C
C h C r C w

hq
= + +                        (1) 

with 
( )
2

nt h
r = , ( )n s p

dt h t s t qh
v

= + + , 1
q h

ns n e
−⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 if not all stops are made, or 

s n=  if all stops are made, 
2
hw =  for random patron arrivals, or 

2

21
2
hw

h
σ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 with 

some variation (Osuna and Newell [12]), and ( )fb h
n

CC C
t h

hq hq hq
= + . 

Therefore, we face the following minimizing problem: 

( )
2

1
2 2 2

q h fhr n
s p w

CCC d hC h t n e t qh C
hq v h hq

σ−⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= + + − + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

  (2) 

In Hendrickson [7], by conviction or for analytical convenience, he only 
considered the special case with s n=  and w hk= , then 

( )
2

fhr
s p w

CCC dC h t n t qh C kh
hq v hq

⎛ ⎞⎛ ⎞= + + + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 .          (3) 

For simplicity, we assume that 0 2
r

s h p
C da t n C t

v
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

, 1 2 r p w
qa C t C k= +  and 

2
fh

s

CC da t n
q v q
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

, then we can rewrite Eq. (3) as  

( ) 2
0 1

a
C h a a h

h
= + + .                         (4) 

Hence, it is not surprising that for this special case Hendrickson derived that the 

minimum value occurs at 

1
2

* 2

1

a
h

a
⎛ ⎞

= =⎜ ⎟
⎝ ⎠ ( )

1
2

20.5

f h s

r p w

dC C t n
v

C t q C kq

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟+
⎜ ⎟
⎝ ⎠

. However, he did not 

examine the general case. In this paper, we prove that the generalized total costs, Eq. (2) 
still has one critical point and that this point is the minimum solution. 

 



 J.P.C. Chuang, P. Chu/ Improving The Public Transit System For Routes  241 

3. OUR IMPROVEMENT FOR THE GENERAL MODEL 

From Eq. (2), with w hk= , where 
2

2

1 1
2

k
h
σ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 when 
h
σ  is a constant, we 

know that 

( ) 2

2

1
2

2

r p f h h s
w

q h r s h s h sn

qC t C dC nC td C h kC
dh q qv qh

qC t C t nC t
e

h qh

−

⎛ ⎞
= + − + +⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠

.   (5) 

Motivated by Eq. (5), we assume ( )G h  as ( ) ( )2 dC h
G h h

dh
=  then 

( ) 2

2

2

2

r p fh
w s

h

q h rn
h s

h

qC t CC dG h kC h nt
q C v

qC ne C t h h
C q

−
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We obtain that ( )0 f hC dC
G

q qv
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 and ( )lim
h

G h
→∞

= ∞ . Next, we find the 

criterion to insure that ( )G h  is an increasing function for 0h > . 
We know that  

( ) ( )
2

2  
2

q h
n

r p w r s r s h s

dG h q qqC t kC h he qC t C t h C t
dh n n

− ⎛ ⎞
= + + − −⎜ ⎟

⎝ ⎠
.         (7) 

Hence, to prove that 
( )

0
dG h

dh
>  is equivalent as to show that 

( )
2

2  
2

q h
n

r p w r s r s h s
q qqC t kC e qC t C t h C t
n n

+ + > + .                (8) 

Since the parameters in Eq. (8) have their practical meaning, therefore, we quote 
the data from Hendrickson [7], then 30hC = , 5rC = , 10wC = , the value of n are 10 or 

20, the range of pt  from 5.4  second to 5  second, 12st =  second, and the range for q  

from 86  to 213 passengers per hour. As a result, we know that 5rC =  and 3
2

hC
n

=  or 

3, and then it follows  
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r s h s
qqC t C t
n

> .                          (9) 

By the Taylor’s series expansion, we have 
q h
n qe h

n
>  and the definition of k, we 

know that 12 >k , so the following are equivalent: 

(a) ( )
2

2
2r p w r s

q qqC t kC h C t h
n n

+ > ,  

(b) 2
2r p w r s
qqC t kC C t+ > ,  

and  

(c) 2 122 5 or 4.5
2 2

w s
p

r

kC t
q t q

C
⎛ ⎞ ⎛ ⎞> > − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

31 or 
2

q ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

Hence, we consider 2 or 4
3

q> , per second, that means, 7200 or 4800 q> , per 

hour. From the range of q  from 86  to 213, per hour; therefore, we can say that 

( ) ( )
2

2  2
2

q h
n

r p w r p w r s
q qqC t kC e qC t kC h C t h
n n

+ > + > .            (10) 

Combining Eq. (9) and (10), we obtain 
( )

0
dG h

dh
>  so ( )G h  is an increasing 

function for 0h > , from ( )0 0G <  to ( )lim
h

G h
→∞

= ∞ . Hence, there is a unique point, say 

*h , such that ( )* 0G h =  and *h  is the unique positive solution for 
( )

0
dC h

dh
= . 

Therefore, *h  is the minimum point for the total costs. We summarize our results in the 
following Theorem. 

Theorem 1. From the practical point of view, the following two inequalities: h
r

C
C

n
>  

and ( )
2

2  
2

q h
n

r p w r s
qqC t kC e C t h
n

+ >  are satisfied. Moreover, 
( )

0
dC h

dh
=  has a unique 

positive solution.  
Hence, the total costs have a unique minimum solution. 
 

4. THE CONVEXITY PROPERTY OF THE PERFORMANCE 
FUNCTION 

Next, for the convexity property of ( )G h , we consider that 
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( ) ( )
2 2 2

2 2
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2
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d G h Cq h qh qhqC t kC qt e C
n n ndh n

− ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
. (11) 

We show that from the practical point of view, 
( )2

2 0
d G h

dh
> . 

First, we observe that the following are equivalent: (a) 2 2r p w r sqC t kC qC t+ > , 

and (b) ( ) ( )2
2 2 24 5 or 4.5w

s p
r

kC
q t t q

C
> > − = − ( )19.5or  19q= . So, we consider 

that 2
19

 or 4
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q> , per second, that means, 18378
19

 or 3369
13

q> , per hour. Hence, 

from the practical point of view, the range of q  from 86  to 213 , we still imply 

2 2r p w r sqC t kC qC t+ > .                       (12) 

By Eq. (11), we get that 
( )2

2 0
d G h

dh
>  is equivalent to 

( )
2 2
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By the Taylor’s series expansion, we have 
2

2
21

2

q h
n q qe h h

n n
> + + . Hence, from 

the practical point of view, we prove that  

( )
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2
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2

2 1  
2

2 1 1 0
2

r p w

h
s r

qh q hqC t kC
n n

Cq h qh qhqt C
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. (14) 

We rewrite the left hand side of Eq. (14) as 

( )( ) ( )
2 2

2 2 2 2
2

2

r p s w h s w r p s

h
w r p s r

q h qh qqC t t kC C t kC qC t t
n nn

C
kC qC t qt C

n

⎛ ⎞+ + + + + −⎜ ⎟
⎝ ⎠

⎛ ⎞
+ + + −⎜ ⎟
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.  (15) 

Combining Eq. (9) and (12), we derive that Eq. (15) is positive, hence by Eq. 

(14), from the practical point of view, we prove that 
( )2

2 0
d G h

dh
>  and ( )G h  is a concave 

up function. We summarize the results in the next Theorem. 
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Theorem 2. From the practical point of view, the following two inequalities: h
r

C
C

n
>  

and ( )2 2 0w r p skC qC t t+ − >  are satisfied. It is legitimate to use the Newton’s method to 

locate the solution for ( ) 0G h =  that is 
( )

0
dC h

dh
= . 

 
5. THE FORMULATED APPROXIMATION FOR HEADWAY 

Here, we consider a formulated approximation for *h . From Eq. (5) and (6), and 

the Taylor’s series expansion for 
q h

ne
−

, then we have 

( ) 2

2 2
f r ph s h

w r

C qC tdC qt C
G h kC C h

q qv n
⎛ ⎞ ⎛ ⎞⎛ ⎞

=− + + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 those terms with order than 

2h . 
Hence, our formulated approximation for *h  is constructed as 

( ) ( )

1
2

2 20.5 0.5

f h

h
r p w r s

dC C
vh

CC t q C kq C t q
n

⎛ ⎞
⎜ ⎟+
⎜ ⎟=
⎜ ⎟⎛ ⎞+ + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

.            (16) 

In the numerical examples, we demonstrate that our formulated approximation 
is a very good estimation for *h .  

 
6. NUMERICAL EXAMPLES AND SENSITIVE ANALYSIS 

Since ( )G h  is a concave up function for 0h > , so the Newton’s method is 

suitable to locate *h . We examine the same numerical example as Hendrickson [7]. The 
data of parameters are listed below: 30hC = , 5rC = , 10wC = , the value of n are 10 or 

20, the range of pt  from 4.5  second to 5  second, 12st =  second, and the range for q  

from 86  to 213  passengers per hour. Moreover, 8d = , 32v = , 0.35
h
σ

= , 

2

2

1 1 0.56125
2

k
h
σ⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

 and 0fC = . Our first example uses the data of 20n = , 

4.5 1
3600 800pt = =  and 86q = . For simplicity, we assume that the solution of 
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( ) 0d C h
dh

=  is *h , and then the formulated approximation of Hendrickson [7] is 

expressed as 

( )

1
2

1 20.5

f h s

r p w

dC C t n
vh

C t q C kq

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟=

⎜ ⎟+
⎜ ⎟
⎝ ⎠

, 

and our formulated approximation is expressed as  

( ) ( )

1
2

2
2 20.5 0.5

f h

h
r p w r s

dC C
vh

CCt q C kq C t q
n

⎛ ⎞
⎜ ⎟+
⎜ ⎟=
⎜ ⎟⎛ ⎞+ + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

.  

From the comparison of headway as optimal headway * 0.119h = , 
Hendrickson’s approximated headway 1 0.137h = , and our approximated headway 

2 0.116h = , we can say that our formulated approximation is a better estimation for *h . 

Moreover, the comparison of total costs as optimal total costs ( )* 2.240C h = , 

Hendrickson’s approximated total costs ( )1 2.255C h = , and our approximated total costs 

( )2 2.240C h = , we can say that our formulated approximation is a very good estimation 
for total costs. Next, we examine the sensitive analysis of our numerical example. In each 

example, we only change one parameter of 20n = , 1
800pt =  and 86q =  by 10n = , 

5pt =  or 213q = . We list them in Table 1 for headway, and Table 2 for total costs. To 
be more accurate, in Tables 1 and 2, the expression for the results is calculated to the 
sixth decimal place. 

Table 1. Sensitive analysis for headway 

n  pt  q  *h  1h  2h  
*

1
*

2

h h
h h
−
−

 

20 1/800 86 0.119015 0.137050 0.116889 8.48 
20 1/800 213 0.072080 0.084286 0.068425 3.34 
20 1/720 86 0.118724 0.136703 0.116616 8.53 
20 1/720 213 0.071676 0.083794 0.068091 3.38 
10 1/800 86 0.121452 0.129636 0.118908 3.21 
10 1/800 213 0.075111 0.079727 0.070984 1.12 
10 1/720 86 0.121144 0.129308 0.118621 3.24 
10 1/720 213 0.074663 0.079261 0.070611 1.14 
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Table 2. Sensitive analysis for total costs 

n  pt  q  ( )*C h  ( )1C h  ( )2C h  
( ) ( )
( ) ( )

*
1

*
2

C h C h

C h C h

−

−
 

20 1/800 86 2.240247 2.254633 2.240482 61.23 
20 1/800 213 1.762656 1.774166 1.763935 9.00 
20 1/720 86 2.247964 2.262370 2.248196 61.97 
20 1/720 213 1.772139 1.783685 1.773389 9.24 
10 1/800 86 2.210908 2.213929 2.211227 9.49 
10 1/800 213 1.719236 1.720875 1.720709 1.11 
10 1/720 86 2.218697 2.221727 2.219012 9.61 
10 1/720 213 1.728941 1.730598 1.730385 1.15 

From Table 1, the range 
*

1
*

2

h h
h h
−
−

 for 
*

1
*

2

h h
h h
−
−

 (the relative ratio between the 

approximated errors for headway of Hendrickson divided by ours) is from 8.53 to 1.12 
with mean 4.06. As a result, we may conclude that our formulated approximation is 

better than the Hendrickson’s. From Table 2, the range 
( ) ( )
( ) ( )

*
1

*
2

C h C h

C h C h

−

−
 for 

( ) ( )
( ) ( )

*
1

*
2

C h C h

C h C h

−

−
 (the relative ratio between the total costs of Hendrickson divided by 

ours) is from 61.97 to 1.11 with mean 20.35. Therefore, we may imply that our 
approximated total costs are also superior to the Hendrickson’s. 

Comparing Hendrickson’s headway approximation 1h  and our headway 
approximation 2h , we know that in 1h , the term st  is in the numerator and in 2h , the 
term st  disappears in the formula in the denominator. Also, the term 

( )( ) 20.5 r h pC C n t q−  is added to the optimal 2h  in the part of denominator. Apparently, 
the different results reflect implicitly the optimal cost affects. The optimal solution 1h  
indicates that 1h  increase with st increases, but it can result in wrong deterministic 
analysis under real conditions. Namely, when the increment of average extra time 
required decelerating and accelerating for a patron stop will erroneously enable us to 
make a large headway decision. The optimal solution 2h  indicates that if 2h  increases, 
decreases should vary with tp increases, that is to say, the increase of the average patron 
boarding and unloading time will reduce headway for decision. 

Comparing Hendrickson’s headway approximation 1h  and our headway 

approximation 2h , we know that in 1h , the term st  is in the numerator and in 2h , the 

term st  is in the denominator. From practical sense, if st  increases, then the headway h  
should be decreased for the operation management. Meanwhile, according to the 
aforementioned numerical examples, the  results demonstrate that our approximation is 



 J.P.C. Chuang, P. Chu/ Improving The Public Transit System For Routes  247 

more exact than that of Hendrickson Therefore, our approximation is physically more 
reasonable than that of Hendrickson. We conclude that the better approximation headway 
model should have the term st , average extra time for a patron stop, in the denominator 
and not in the numerator. 

 
7. CONCLUDINS 

This paper makes a rigorous investigation into how to obtain the optimal 
headway solution in the analytical model for the transit systems. A new approximation 
headway solution and its implications are presented. Based on the same numerical 
example comparison for fixed-route public transit system, the results indicate that the 
new approximation headway solution are more practical and accurate for cost function 
so, better than that of Hendrickson. The present paper can be of assistance in improving 
the solution of performance function. 
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