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Abstract:  Data envelopment analysis (DEA) is a linear programming approach for 
measuring relative efficiency of peer decision making units that have multiple inputs and 
outputs. DEA was developed without consideration of the decision maker’s preference 
structures. DEA and multiple objective linear programming are tools that can be used in 
management control and planning. This paper shows how a data envelopment analysis 
problem can be solved by transforming it into MOLP formulation. We use the goal 
programming method to reflect the decision making preferences in the process of 
assessing efficiency, such that the value judgments of the decision maker are considered. 
Therefore, the proposed method can find a solution that satisfies the decision maker’s 
goal levels. A case study is provided to illustrate how data envelopment oriented 
efficiency analysis can be conducted by using goal programming method. 
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1. INTRODUCTION 

Data envelopment analysis (DEA), originally presented by Charnes et al. 
(1978), is a well-known family of mathematical programming tools for assessing the 
relative efficiency of a set of comparable processing decision making units (DMUs). The 
number of applications of DEA is large, covering diverse fields such as finance, health, 
education, manufacturing, transportation, etc. Conventional DEA models do not consider 
decision maker's (DM) preferences, and do not present the decision maker the 
opportunity to include her/his judgments about the relative importance of inputs and 
outputs considered. To incorporate DM’s preference information in DEA, various 
techniques have been proposed such as the goal and target setting models of 
(Golany,1988; Thanassoulis and Dyson,1992; Athanassopoulis,1995,1998) and weight 
restrictions models, imposing bounds on individual weights(Dyson and 
Thanassoulis,1998), assurance region (Thompson et al.,1990), restricting composite 
inputs and outputs, weight ratios and proportions (Wong and Beasley,1990) and the cone 
ratio concept by adjusting the observed input–output levels or weights to capture value 
judgment to belong to a given closed cone (Charnes and Cooper ,1990; Charnes et 
al.,1994). Alternative approaches include (Thanassoulis and Allen, 1998) the model 
which adopts unobserved DMUs derived from pareto-efficient observed DMUs, and 
which incorporates value judgments; Zhu (1996) also integrates preference information 
into a modified DEA formulation, while Golany and Rol (1994), use hypothetical DMUs 
to represent preference information. However, all the above-mentioned techniques would 
require prior articulated preference knowledge from the DM, which in most cases can be 
subjective and difficult to obtain. In manufacturing or service organizations, decision 
making can become more complex and often inherently uncertain due to multiple 
attributes and conflicting objectives. Multiobjective programming methods such as 
multiple objectives linear programming (MOLP) are techniques used to solve such 
multiple criteria decision making (MCDM) problems. Many decision making problems 
can be formulated as multiobjectiveoptimization problems. There hardly exists the 
solution that optimizes all objective functions in multiobjective optimization problems, 
and then the concept of Pareto optimal solution (or efficient solution) is introduced 
(Sawaragi et al. 1985). Usually, a number of Pareto optimal solutions are considered as 
candidates of final decision making solution (Koopmans, 1951). Now, the main question 
is how decisionmakers choose the final solution from the set of Pareto optimal solutions. 
In order to solve this problem, interactive multiobjective optimization methods have been 
developed, see (Gal et al. 1999; Sawaragi et al. 1985; Wierzbicki et al. 2000). These 
methods find a decision making solution by processing the following two stages 
repeatedly: (1) solving auxiliary optimization problem to obtain a Pareto optimal solution 
closest to the given aspiration level, and (2) revising their aspiration levels by making 
trade-off analysis. An appealing method to incorporate preference information, without 
necessary prior judgment or target setting is the use of an interactive decision making 
technique that encompasses both DEA and MOLP. Golany (1988) first proposed an 
interactive model combining these approaches, where the DM allocates a set of level of 
inputs as resources to select the most preferred set of level of outputs from alternative 
points on the efficient frontier. Post and Spronk (1999) combined the use of DEA and 
interactive multiple goal programming where preference information are incorporated 
interactively with the DM by adjusting the upper and lower feasible boundaries of the 
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input and output levels. Then, Joro et al. (1998) showed that there are synergies from 
both DEA and MOLP, and showed that the DEA formulation is structurally similar to the 
reference point approach of the MOLP formulation. Halme et al. (1999); Joro et al. 
(2003); Korhonen (2002); Yang et al. (2009) investigated equivalence models and 
interactive trade-off analysis procedures in MOLP, such that DEA-oriented performance 
assessment and target setting can be integrated in a way that the decision makers’ 
preferences can be taken into account in an interactive fashion. In fact, they investigated 
three equivalence models between the output-oriented dual DEA model and the min-max 
reference point formulations, namely the super-ideal point model, the ideal point model, 
and the shortest distance model. Wang et al. (2009) and Hosseinzadeh Lotfi et al. (2010) 
proposed a method to establish an equivalence model between DEA and multiple 
objective linear programming, and showed how a DEA problem can be solved 
interactively without any prior judgments by transforming it into an MOLP formulation. 
Hosseinzadeh Lotfi et al. used Zionts–Wallenius (Z–W) method to reflect the DM’s 
preferences in the process of assessing efficiency.   

In this paper, we propose an interactive model combining DEA and goal 
programming approaches where the DM allocate a set of level of inputs as resources and 
select the most preferred set of level of outputs from alternative points on the efficient 
frontier. We use an equivalence model between DEA and MOLP presented in Wong et 
al. (2009) and then, we show how a DEA problem can be solved interactively by 
transforming it into MOLP formulation. For this purpose, we use goal programming 
method to reflect the DM’s preferences in the process of assessing efficiency. The current 
article proceeds as follows. In section 2, we present the output oriented CCR model, 
multiobjective linear programming method, goal programming and the equivalence 
between DEA and MOLP. In section 3, we develop our method for using goal 
programming method to solve DEA problems with value judgments. A case study is 
considered in section 4 which illustrates the proposed method. Conclusions are given in 
section 5. 

PRELIMINARIES 

In this section, we briefly present some required concepts. 
Data envelopment analysis 

DEA is a post ante analysis based on the past performance cross-sectional view 
of several organizational units in a given single period, as measured by their multiple 
inputs and outputs. We classify the units into two groups, efficient and inefficient, in the 
pareto sense. DEA does not use common weights, as do Multiple Criteria Decision 
Theory models, which usually rank the elements based on the multiple criteria (inputs 
and outputs), and usually provide common weights. In DEA, the weights vary among the 
units: this variability is the essence of DEA. As a performance measurement and analysis 
technique, DEA is a nonparametric frontier estimation methodology based on linear 
programming for evaluating relative efficiency of a set of comparable DMU that share 
common functional goals. Assume that there are n DMUs, where each

,   ( 1,..., )jDMU j n=  uses m different inputs, ,   ( 1,..., )ijx i m= , to produce s different 
outputs, ,   ( 1,..., )rjy r s= . We assume that the data set are positive. We denote by 
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,   ( 1,..., )rjy r s= the level of the r-th output from unit j(j=1,. . . ,n), and by 
,   ( 1,..., )ijx i m=  the level of the i-th input to the j-th unit.  

The relative efficiency score of the oDMU obtained from the following model is 
called output-oriented CCR envelopment model. 
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Model (2.1) can be used to generate the efficiency score of oDMU . Also, we use 

the model (2.1) to generate composite input and composite output levels of a virtual 
DMU that the observed oDMU  wants to reach. In optimality, jλ  means that jDMU is 
used to construct the virtual DMU, that oDMU  should benchmark against it.  
 
Multi objective linear programming 

Managerial problems are seldom evaluated with a single or simple goal like 
profit maximization. Today's management systems are much more complex, and 
managers want to attain simultaneous goals, in which some of them conflict. In the other 
words, decisions in the real world contexts are often made in the presence of multiple, 
conflicting, and incommensurate criteria. Multi-criteria decision making (MCDM) refers 
to making decision in the presence of multiple and conflicting criteria. Problems for 
MCDM may range from our daily life, such as the purchase of a car, to those affecting 
entire nations, as in the judicious use of money for the preservation of national security.  
There are two types of criteria: objectives and attributes. Therefore, the MCDM problems 
can be broadly classified into two categories: 

• Multi-objective decision making (MODM) 
• Multi-attribute decision making (MADM) 

The main difference between MODM and MADM is that the former 
concentrates on continuous decision spaces, primarily on mathematical programming 
with several objective functions, the latter focuses on problems with discrete decision 
spaces. 

Multi-objective decision making is known as the continuous type of the MCDM. 
The main characteristics of MODM problems are that decision makers need to achieve 
multiple objectives while these multiple objectives are non-commensurable and conflict 
with each other. 

An MODM model considers a vector of decision variables, objective functions, 
and constrains. Decision makers attempt to maximize (or minimize) the objective 
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functions. Since this problem has rarely a unique solution, decision makers are expected 
to choose a solution from among the set of efficient solutions (as alternatives). Generally, 
the multiple objective decision making problem can be formulated as follows: 
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where 1,..., kf f are n conflicting objective functions and X is non-empty feasible region. 
Model (2.2) is called MODM problem. If all objective functions and all constraints in 
above MODM problem are in linear form, we have MOLP problem. 
 
Goal Programming  

Goal programming (GP) is now an important area of multiple criteria 
optimization. The idea of goal programming is to establish a goal level of achievement 
for each criterion. Goal programming method requires the decision maker to set goals for 
each objective that he/she wishes to obtain. A preferred solution is then defined as the 
one which minimizes the deviations from the set goals. Then GP can be formulated as the 
following achievement function. 
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The DMs for their goals set some acceptable aspiration levels,  ( 1,..., )ib i k= , 
for these goals, and try to achieve a set of goals as closely as possible. The purpose of GP 
is to minimize the deviations between the achievement of goals, ( )if x , and these 
acceptable aspiration levels, ( 1,..., )ib i k= .Also, ,i id d− + are, respectively, under- and 
over-achievement of the i th goal. 
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Equivalence between DEA and MOLP 

In a DEA model, an efficiency score is generated for a DMU by maximizing 
outputs with limited inputs, or minimizing inputs with desired or fixed outputs, or 
simultaneously maximizing outputs and minimizing inputs. Either way, this can be 
regarded as a kind of multiple objective optimization problem. In this section, the 
theoretical considerations of combining MOLP and DEA are presented. Suppose an 
optimization problem has s objectives reflecting the different purposes and desires of the 
decision maker. Such a problem can be represented in a general form as follows: 
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In order to reach to a special nondominated extreme point, the MOLP 

formulation (2.4) can bewritten in a weighted minimax approach as follows: 
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The weighted minimax formulation is a special case of the reference point 

approach with *
rf  as the ideal point, and calculates the minimum of the maximum 

distance between *
rf , the maximum value of objective r , and ( )rf λ , the observed value 

of objective r . 

If we define 
1
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n

r j rj
j
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= =∑ Wong et al. (2009) show that output-

oriented CCR model (2.1) can be equivalently rewritten as a following MOLP 
formulation. 
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USING GOAL PROGRAMMING METHOD TO SOLVE DEA 

PROBLEMS WITH VALUE JUDGMENTS 

In this section we use goal programming method to design a procedure for 
searching for mostpreferred solution thatmaximizes the decision maker’s implicit utility 
function. This method isdesign to derive the decision maker towards his most preferred 
solution, or at least, to a goodsolution, in the sense that it is acceptable by the DM. 
The proposed method has twostages. 

First, we calculate the relative efficiency score of the oDMU by using the 
output-oriented CCR envelopment model (2.1). After this, we can identifythe composite 
inputs and composite outputsthat the observed oDMU should benchmark against. Let 

* *( , )oλ ϕ be optimal solution of model(2.1)in evaluating oDMU . Therefore by this optimal 
solution the output targets for oDMU are defined as 1( ,..., )sy y and calculated as follows: 

*
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Similarly we can consider the input targets. However, the decision maker may 
not satisfywith theidentified composite inputs or composite outputs as target of oDMU . 
Nonetheless, thegenerated DEA efficiencyresults do not consider the value judgments of 
the decision maker. 

In order to incorporate such value judgments into DEA model we can transform 
it into MOLP model(2.7). Then the goal programming method will be used to search for 
the most preferred solution alongthe efficient frontier for each DMU. 
Suppose a set of priority goal rules on outputs is introduced by decision maker. Without 
loss ofgenerality, consider the outputs 1, ..., p will be targeted at below a value of 1y ,...,y p

, respectivelyand the levels of outputs 1,...,   p q+ will be improved to above a value of 

1y ,...,yp q+ , respectivelyand finally the level of outputs 1,...,   q s+ will be maintain at 
their current levels 1y ,...,yq s+ , i.e. ,   1,..., .r ry y r q s= = +  
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Therefore, we have a multiple objectives decision making problem as follows: 
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Now we use the equivalence MOLP model (2.7) to allow us to incorporate the 

DMs preferences into our model and generate solutions according to the above 
preferences, and for performing this purpose we employ the goal programming method. 

We set 1y ,...,yn as target levels for the above goals (objectives), that is: 
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Now, we introduce deviation variables rd + and rd − , where rd − and rd + are both 

nonnegative real umbers,but can't be positive at the same time, i.e. 0r rd d+ − = . It is 
desirable that the deviation variables rd − and rd + are kept to be small as possible, which 
leads to the following goal programming model: 
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where{ },{ }A B and { }C indicate fixed index sets independent of  j , such that 

{ } {1,..., }A p= ,{ } { 1,..., }B p q= + and { } { 1,..., }C q s= + . 
 
Theorem 3.1.Model (3.3) is always feasible. 
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then it is obvious that ˆ ˆˆ( , , )d dλ − + is a feasible solution for model (3.3).         
In model (3.3) if * 0d = then all goals are achieved, and the decision maker is 

fully satisfied with the obtained solution. Otherwise if * 0d ≠ then some of his/her wishes 
goal rules are not satisfied. In order to remove this difficulty, the decision maker has two 
following ways.  

• Method 1: The decision maker must sacrificesome of the unimportant goal rules 
to improve important goal rules. 

• Method 2: This method requires that the decision maker, in addition to setting 
the goals for the 
objectives, also be able to give an ordinal ranking of the objectives. 
We follow the second method. Without loss of generality, suppose that the 

following goal rules arenecessary, that is, they must be hold. 
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where ,    A A B B′ ′⊆ ⊆ and C C′ ⊆ . Therefore we set these goals in rank order one and 
other goals in the second rank order. Hence the goal programming formulation of the 
problem is as follows: 
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where{ } { } { },   { } { } { }A A A B B B′′ ′ ′′ ′= − = − and { } { } { }C C C′′ ′= − . The 'iP  sispreemptive 
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 Next 
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most important goals of DM are satisfied, and then it is try to satisfythe other goal rules 
as much as possible. 
 

A CASE STUDY 

In this section we evaluate 7 branches of retail bank industry to demonstrate the 
proposed approach to search for the most preferred solution on the efficient frontier. The 
data set is obtained from Wong et al. (2004). Each branch uses three inputs in order to 
produce three outputs. The labels of inputs and outputs are presented in Table 1.  
 
Table 1: The labels of inputs and outputs 
  Input  Output 
1  The number of branches (‘000)  Total revenue 
2  The number of ATM’s (‘000)  Corporate image 
3  The number of staff (‘0,000)  Customer satisfaction 
 
The data set for these 7 branches is given in Table 2. 
 
Table 2: The data set of the example 
DMU  Input 

1 
 Input 

2 
 Input 

3 
 Output 

1 
 Output 

2 
 Output 

3 
1  2  2.18  2.35  10.57  3.4  6.79 
2  1.95  3.19  8.43  13.35  6.66  2.55 
3  0.80  2.1  3.21  8.14  1.92  9.17 
4  1.75  4  13.30  23.67  8.47  5.82 
5  2.5  4.30  9.27  14.01  3.44  6.57 
6  1.73  3.3  7.7  12.04  2.53  4.86 
7  0.65  1.53  2.67  7.36  1.26  7.28 
 
 

The result of output-orientated CCR model is shown in Table 3 which is 
maximizing the amount bywhich outputs must be proportionally increased for the 
observed DMU to be efficient. For example,the efficiency score for branch 6 is 
1.4578069, implying that it is operating as an inefficient branch withrespect to all 7 
branches. The composite outputs that the observed DMUs should benchmark againstare 
shown in Table 4. For example the vector of composite outputs for 6DMU is (17.55, 
5.11, 9.74)and shows that 6DMU must improves its output levels from current level 
(12.04,2.53,4.86) to level (17.55,5.11,9.74). As can be seen in Table 3, 1 4,DMU DMU
and 7DMU are reference sets for 6DMU . 
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Table 3: DEA efficiency result. 
DMU  Efficiency 

1λ   
2λ   

3λ   
4λ   

5λ   
6λ   

7λ  
1  1 1  0  0  0  0  0  0 
2  1 0  1  0  0  0  0  0 
3  1 0  0  1  0  0  0  0 
4  1 0  0  0  1  0  0  0 
5  1.61 0.61  0  0  0.42  0  0  0.88 
6  1.46 0.29  0  0  0.31  0  0  0.71 
7  1 1  0  0  0  0  0  1 
 

However the DM may not be satisfied with this identified target for output 
levels of 6DMU , because he/she wishes to attain certain goal levels as output targets. 
These certain goal levels are identified by DM according to his/her priority. Therefore we 
must found a solution such that his/her goal levels are satisfied. 
 
Table 4: The composite outputs for DMUs. 
DMU  Composite output 

1 
 Composite output 

2 
 Composite output 3 

1  10.57  3.40  6.79 
2  13.35  6.66  2.55 
3  8.14  1.92  9.17 
4  23.67  8.47  5.82 
5  22.59  6.68  12.75 
6  17.55  5.11  9.74 
7  7.36  1.26  7.28 
 
 

However the DEA efficiency results generated do not consider the value 
judgments of the DM. Hence, we use goal programming method to design a procedure 
for searching for most preferred solution, that maximizes the DMs implicit utility 
function, in the sense that it is acceptable by the DM. 

Consider 6DMU and suppose that, the decision maker is not satisfied with the 
identified composite outputs as target of 6DMU . In order to derive the most preferred 
solution a set of priority goal rules will be introduced. We consider two cases: 

• The case when the satisfactory solution is found 
In this case, suppose that the decision maker gives the set of priority goal rules 
as follows: 
The first rule is revenue will be targeted at least 16, the second rule is corporate 
image will betargeted at least 4.5 and the final rule is to improve the level of 
customer satisfaction to above avalue of 10.5. Now we apply the goal 
programming method to incorporate the DM's preferencesinto our model and 
generate solutions according to the above preferences. Therefore we solvethe 
following goal programming model: 
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*
1 2 3

1 2 3 4 5 6 7 1 1

1

= min                                                                                               
. .

    10.57 + 13.35 + 8.14 +23.67 + 14.01 +12.04 +7.36 + 16,

    3.4 +

d d d d
s t

d dλ λ λ λ λ λ λ

λ

− − −

− +

+ +

− =

2 3 4 5 6 7 2 2

1 2 3 4 5 6 7 3 3

1 2 3 4 5 6 7

1 2

 6.66  + 1.92  + 8.47 +3.44 +2.53 +1.26 +  = 4.5,

    6.79 + 2.55 +9.17 +5.82 +6.57 +4.86 +7.28 + =10.5,
    2 +1.95 + 0.8 +1.75 +2.5 +1.73 + 0.63 1.73,
    2.18 +3.19

d d

d d

λ λ λ λ λ λ

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

λ λ

− +

− +

−

−
≤

3 4 5 6 7

1 2 3 4 5 6 7

+2.1 +4 +4.3 +3.3 +1.53 3.3,
    2.35 +8.43 +3.21 +13.3 +9.27 +7.7 +2.67 7.7,

    , , 0,  1,...,7,   1, 2,3.j r rd d j r

λ λ λ λ λ
λ λ λ λ λ λ λ

λ − +

≤
≤

≥ = =

(4.1) 

 
By solving model (4.1) the following solution is obtained 
 

*

1 2 3 4

5 6 7

0,
0,   0,   0.723093334528948750,  0.348715380081326076,
0,   0,   0.252707501414317248,

d
λ λ λ λ
λ λ λ

=
= = = =
= = =

 

 
And the proposed composite outputs for 6DMU is as 
 

1

2

3

16.00,
4.66,
10.50.

y
y
y

=⎧
⎪ =⎨
⎪ =⎩

 

 
With this solution all the conditions are met, and the decision maker is fully 

satisfied with the indifference tradeoffs between the objectives, the procedure will 
terminate and the most preferred solution is found. 

 
• The case when the satisfactory solution is not found 

In this case, suppose that the decision maker gives the set of priority goal rules 
as follows: 
The first rule is revenue will be targeted at least 19, the second rule is corporate 
image be maintain at its current target at level 4.5 and the final rule is to 
improve the level of customersatisfaction to above a value of 11. Now we apply 
the goal programming method to incorporatethe DM's preferences into our 
model and generate solutions according to the above preferences. 
Therefore we solve the following goal programming model: 
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(4.2) 

 
The optimal objective of model (4.2) is * 1.689d = and shows that the decision 

maker is not satisfied with this solution. Now we asked the decision maker to give an 
ordinal ranking of the goals. Suppose the third rule, i.e. improve the level of customer 
satisfaction to above a value of 11, is necessary and we set this goal in rank order one and 
other goals in the second rank order. 
Hence the goal programming formulation of the problem is as follows: 

*
1 1 2 2 2 3

1 2 3 4 5 6 7 1 1

1 2

= min  {P ( ), ( )}                                                                         
. .

    10.57 + 13.35 + 8.14 +23.67 + 14.01 +12.04 +7.36 + 19,

    3.4 + 6.66

d d P d d d
s t

d dλ λ λ λ λ λ λ

λ λ

− − + −

− +

+ +

− =

3 4 5 6 7 2 2

1 2 3 4 5 6 7 3 3

1 2 3 4 5 6 7

1 2 3

 + 1.92  + 8.47 +3.44 +2.53 +1.26 +  = 4.5,

    6.79 + 2.55 +9.17 +5.82 +6.57 +4.86 +7.28 + =11,
    2 +1.95 + 0.8 +1.75 +2.5 +1.73 + 0.63 1.73,
    2.18 +3.19 +2.1 +4

d d

d d

λ λ λ λ λ

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

λ λ λ λ

− +

− +

−

−

≤

4 5 6 7

1 2 3 4 5 6 7

+4.3 +3.3 +1.53 3.3,
    2.35 +8.43 +3.21 +13.3 +9.27 +7.7 +2.67 7.7,

    , , 0,  1,...,7,   1,2,3.j r rd d j r

λ λ λ
λ λ λ λ λ λ λ

λ − +

≤

≤

≥ = =

(4.3) 

model (4.2) is  
By solving model (4.3) the following solution is obtained 

*

1 2 3 4

5 6 7

1.689,
0.0688498032220683232,   0,   0,  0.323011448665779688,
0,   0,   1.21428864987762841,

d
λ λ λ λ
λ λ λ

=
= = = =
= = =

 

And the proposed composite outputs for 6DMU  is as 

1

2

3

17.31,
4.50,
11.19.

y
y
y

=⎧
⎪ =⎨
⎪ =⎩
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With this solution the decision maker is satisfied with the indifference tradeoffs between 
theobjectives, the procedure will terminate and the preferred solution is found. 
 
 

CONCLUSION 

DEA is a well-known family of mathematical programming tools for assessing 
the relative efficiencythat was developed without consideration of the decision 
maker’spreference structures. DEA andmultiple objective linear programming (MOLP) 
are tools that can be used in management controland planning. In this paper we use the 
equivalence relationship between the output oriented CCRenvelopment and MOLP 
(Wong et al., 2009) and show how a DEA problem can be solved by transforming it 
intoMOLP formulation. We use the goal programming method to reflecting the DMs 
preferences in theprocess of assessing efficiency. The case study illustrated how this 
hybrid method can be implementedto support integrated efficiency analysis and target 
setting.For this reason, we used a data set from Wong et al. 2004. These data analyzed in 
two different cases: (a) The case when the satisfactory solution is found and (b) The case 
when the satisfactory solution is not found. The analysis showed that by using a proposed 
method we can attain a certain goal levels as output targets. Therefore, the presented 
method can consider the value judgments of the DM and also can find a solution such 
that the DM’s goal levels are satisfied.  
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