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Abstract: A graph G = (V, E) is r-equitably k-colorable if there exists a parti-
tion of V' into k independent sets Vi, Va,---, Vi such that | |V;| — |V;] | < r for all
1,7 € {1,2,---,k}. In this note, we show that if two trees 77 and T» of order at
least two are r-equitably k-colorable for » > 1 and k > 3, then all trees obtained by
adding an arbitrary edge between T and T5 are also r-equitably k-colorable.
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1 INTRODUCTION

All graphs in this paper are finite, simple and loopless. Let G = (V, E) be a
graph. We denote by |G| its order, i.e, the number of vertices in G. For a vertex
v € V, let N(v) denote the set of vertices in G that are adjacent to v. N(v) is called
the neighborhood of v and its elements are neighbors of v. The degree of vertex v,
denoted by deg(v), is the number of neighbors of v, i.e., deg(v) = |[N(v)|. A(G)
denotes the mazimum degree of G, i.e., A(G) = max{deg(v)| v € V}. For a set
V' CV, we denote by G — V' the graph obtained from G by deleting all vertices in
V'’ as well as all edges incident to at least one vertex of V.

An independent set in a graph G = (V, E) is a set S C V of pairwise nonad-
jacent vertices. The maximum size of an independent set in a graph G = (V, F) is
called the independence number of G and denoted by a(G).

A k-coloring ¢ of a graph G = (V, E) is a partition of V into k independent
sets which we will denote by Vi(c), Va(c),- -+, Vi(c) and refer to as color classes.
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The cardinality of a largest color class with respect to a coloring ¢ will be denoted
by Max.. A graph G is r-equitably k-colorable, with » > 1 and k > 2, if there exists
a k-coloring ¢ of G such that | |Vi(c)| — |Vj(c)| | < rforalli,j € {1,2,---,k}. Such
a coloring is called an r-equitable k-coloring of G. A graph which is l-equitably
k-colorable is simply said to be equitably k-colorable.

The notion of equitable colorability was introduced in [8] and has been studied
since then by many authors (see [2, 3, 4, 5, 6, 7, 9]). In [3], the authors gave
a complete characterization of trees which are equitably k-colorable. This result
was then generalized to forests in [2]. More precisely, for a forest F' = (V) E), let
o*(F) = min{a(F — N[v])|v € V and deg(v) = A(F)}

Theorem 1.1 (/2]) Suppose F = (V,E) is a forest and k > 3 is an integer. Then

F is equitably k-colorable if and only if k > [aﬁ]ﬁ)iﬂ

This result can easily be generalized to r-equitable k-colorings.

Theorem 1.2 ([1]) Suppose F = (V,E) is a forest and r > 1,k > 3 are two
|F |+

integers. Then F' is r-equitably k-colorable if and only if k > [m .

Proof: Suppose F' is r-equitably k-colorable for » > 1 and k > 3. Let v be a
vertex in F' such that deg(v) = A(F) and a(F — N[v]) = a*(F). Clearly, for such
a coloring, there are at most o*(F') 4+ 1 vertices in the color class that contains v.
It follows that all other color classes contain at most o*(F') + r + 1 vertices. Thus
|IF|<a*(F)+1+ (k-1 (a*(F)+r+1)=k(a*(F)4+r+1)—r, and we therefore

have k Z [%]

Conversely, let k > (%] Consider the forest F' = (V', E’) obtained
from F by adding r — 1 new isolated vertices. Then |F’'| = |F|+r—1 and o*(F’) =

a*(F)+r—1. Thus k > [a(lgiiﬂ] = (a‘*l(m;lf)'}&] By Theorem 1.1, F” is equitably
k-colorable. Restricting the color classes to V' gives an r-equitable k-coloring of F'.
In this note, we are interested in a different sufficient condition for a tree
to be r-equitably k-colorable. More precisely, given a tree T' = (V, E') and an edge
e € E such that its removal from T creates two trees T7 and Ts of order at least two,
we show that if both 77 and T3 are r-equitably k-colorable, for r > 1 and k > 3,
then T is also r-equitably k-colorable. We also explain why |T}|, |T2| > 2 and k > 3

are necessary conditions.

2 A SUFFICIENT CONDITION

Consider a tree T and two integers r > 1 and k > 3. Let ¢ be an arbitrary r-

equitable k-coloring of the vertex set of T such that |Vi(c)| > |Va(c)| = -+ > |Vi(c)|.
Then there may be vertices in 7" which are forced to be colored with color k. Indeed,
if for instance T is a star on (k — 1)r + k vertices, then the vertex v of degree
> 1 necessarily belongs to Vi (c) and actually Vi(c) = {v}. Furthermore, we have
[Vi(e) =r+1forie{1,2,---,k—1}. Tt turns out that this is no longer true for
colors 1,2,---,k — 1, as shown in the following property.
Lemma 2.1 Consider an r-equitably k-colorable tree T of order at least two, where
r>1and k > 3. Also, let £ be any element in {1,2,--- k — 1}. Then, for any
vertex u in T, there exists an r-equitable k-coloring ¢ of T with |V;(c)| > |V;(c)| for
all1 < i< j <k such that u ¢ Vi(c).
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Proof: Suppose the lemma is false. We then clearly have |T'| > 3. Let ¢
be an r-equitable k-coloring of T with |Vi(c)| > |Vj(c)| for all 1 < i < j < k.
Among all such colorings we choose one such that, for each t = 1,2, -, k, there is

no r-equitable k-coloring ¢’ of T with |V;(c)| = |V;(¢/)| for i = 1,2,---,t — 1 and
max?_ {|Vi(¢)|} < |Vi(c)|. In other words, Maz. = |Vi(c)| is minimum among all
r-equitable k-colorings of T', |V5(c)| is mininum among all r-equitable k-colorings ¢’
of T with Max. = Max., and so on.

Let £ € {1,2,---,k — 1} be an integer for which the lemma does not hold.
We definez =1, y=2, z=3ifl=1,ande=0—-1, y=¥¢ z=0+1if ¢ > 1.
Since we assume that the lemma is false, it follows that u € Vp(c), which means
that v € V;(c) if £ =1 and u € V,(c) if £ > 1. Then |V,(c)| > |V,(c)|, otherwise
we could assign color z to all vertices in V;,(c) and color y to all vertices in V;(c) to
obtain an r-equitable k-coloring ¢’ with u ¢ V;(c’), a contradiction. Similarly, we
must have |V (c)| > |V;(c)| when £ > 1 since otherwise we could assign color y to
all vertices in V,(c) and color z to all vertices in V;(¢), and thus the lemma would
hold.

We define F' as the subgraph of T induced by V(c) UV, (c) U V,(c). If F
is disconnected, we add some edges to make F become a tree T’ such that no two
adjacent vertices have the same color with respect to ¢; otherwise we set 7" = F.
Let V’/ denote the vertex set of T”. Moreover, for ¢ = y or 2, we denote ¢ = y+2 —q.
This implies that ¢ = z if ¢ = y and § = y if ¢ = z. We start by proving the following
two claims.

Claim 1: There exists no r-equitable 3-coloring ¢’ of T' (using colors z,y, z)
with ¢ (u) = (), V()] = Va(©)l = 1, V()] = [Vyle) | + 1 and |Vy(c')] = |Vale)]
forq=vy or z.

Indeed, if such a coloring ¢’ exists, then the assumption on ¢ implies |V, (¢')| =
|[Vi(c)] > |Vu(c')]. Now we can obtain an r-equitable k-coloring ¢* of T by letting
Va(c*) = Vy(d), Vo(c*) = Vi(c), and Vi(c*) = Vi(d) if i # z, q. We distinguish two
cases:

e If /=1, we have |Vi(c*)| > max’_,{|V;(c*)|} and u ¢ Vi(c*).

e If / > 1, we have ¢ = y since otherwise |V,(¢')| = |V.(c)| + 1 = |Vy(c)| which
contradicts [Vz(c)| > |Vy(c)| > |Vi(c)|. Then |Vi(c*)| > --- > |Vi—i1(c)| >
Ve(e)| 2 [Vepa () = -+ = [Va(e™)| and u € Vi (¢7).

Thus, in both cases, ¢* is an r-equitable k-coloring of T such that |V;(c*)| > |V;(c*)|
forall 1 <i<j<kandué¢gVp(c*), a contradiction.

Claim 2: No leaf of T', except possibly u, is in Vy(c).

Indeed, assume T” has a leaf v # w in V,(¢) and let w be its unique neighbor
in T7'. We can change the color of v from x to ¢(w) to obtain an r-equitable 3-
coloring ¢’ of T" with ¢ (u) = c(u), Vo ()| = [Va(c)| = 1, Vi ()] = V(o) + 1
and |V, (¢')] = [Ve(w)(c)], contradicting Claim 1.

Let vecT be the oriented rooted tree obtained from T’ by orienting the
edges from root u to the leaves. Let us partition the vertices in V,,(¢) into subsets
Ur,---,Up such that U, (¢ = 1,2,---,p) contains all vertices in V,(c) having no
successor in V(c) — j;i Uj. For a vertex v € Uy, let L(v) denote the set of leaves
in vecT having v as predecessor.
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If |[L(v)| = 1 for some v € Uy, then let P =v — s1 — --- — s, denote the
path from v to the leaf s, in L(v). If v = u (and hence £ = 1 since u € V,(c)) then
T’ is a chain with only one vertex in V(c), which means that V,(c) = V.(¢c) = 0
since [Vz(c)| > |Vy(c)| > |V.(c)|. Thus T” has only one vertex, namely u, and since
u € Vi(c) this implies that T has only one vertex, a contradiction. Hence v # w.
Let w be the predecessor of v in vecT":

o if ¢(w) = c(s1), we change the color of v to c(w) to obtaln an r-equitable
3-coloring ¢ of TV with /(u) = c(u), |Va(d)| = |Va(c)| — 1, \V(w)( ) =
|VC(T)(C)| + 1 and |V (¢')| = [Ve(w)(c)|, contradicting Claim 1;

o if c(w) # c(s1), we assign color ¢(s1) to v, color ¢(s;41) to s; (j =1,2,...,a—1),
and color = to s,; we obtain an r-equitable 3-coloring ¢’ of 7" with |V;(¢)| =
[Vi(e)| (i = x,y, 2), ¢'(u) = ¢(u) and a leaf s, € V,(¢). But this contradicts
Claim 2.

We therefore conclude that |L(v)| > 2 for all v € Uy. By denoting Wy =, ¢y, L(v),
we get |Wh| > 2|Uz|. For each set U,, with ¢ > 1, we will now construct a set W,
containing vertices in V,(c) U V.(c) that are successors of vertices in U; but not
successors of vertices in Uy_1. So let v be any vertex in U, (¢ > 1). If v has at
least 2 immediate successors in vecT’, we add two of them to W. If v has a unique
immediate successor in vecT, then let P =v — s — -+ — s, — v/ denote a path
from v to a vertex v’ € Uy—1. If a > 1, we add s; and sy to W,. If a = 1 and s,
has an immediate successor w ¢ V. (c), then we add s; and w to W,. Assume now
that ¢ = 1 and all the immediate successors of s are in V,(c). We will prove that
such a case is not possible.

e If v # u, then v has a predecessor w in vecT. We must have c(w) = c(s1),
otherwise we could assign color ¢(s1) to v to obtain an r-equitable 3-coloring
¢ of T with c/(u) = c(u), |Vm(c')‘ = |Vw(c)| 1, |V(sl)( )| |V(S1 ( )| +1
and [Vi(s,)(c')] = |Visy)(c)|, contradicting Claim 1. But now we can assign

color ¢(s1) to v and assign color ¢(s1) to s to obtain an r-equitable 3-coloring
¢ of T" with ¢(u) = c(u), |[Va(c)| = [Va(o)| = 1, [Virry ()] = V(o) + 1
and [Vi(s,)(¢')| = [Ve(s,) (€)], contradicting Claim 1.

o If v = u, then £ = 1 since u € V,(¢). By assigning color ¢(s1) to u and
color ¢(s1) to s1, we obtain an r-equitable 3-coloring ¢’ of 7" with |V, (/)| =
Va(@)] = 1, [Varas ()] = [Virag(€)] + 1 and [Vigay)(€)] = [Vigony ) 1t follows
from the assumptions on c that |V(S )( ) =1Val(e)| > Ve (@) = Voo ()]
Thus the lemma would hold, a contradiction.

In summary, we have |W,| > 2|U,|. Since all sets W, are disjoint, we have

P

Vo (@l + V()] 2 D [Wol =D 2|Ug| = 2|V (o)]-

Hence |V, (c)| or |V.(c)| is larger than or equal to |V;(c)|, a contradiction.
Lemma 2.1 allows us to show our main result.

Theorem 2.2 Let T7 and Ty be two trees or order at least two. If both Ty and Ts
are r-equitably k-colorable for r > 1 and k > 3, then a tree T' obtained by adding an
arbitrary edge between Ty and Ts is also r-equitably k-colorable.
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Proof:  Consider an r-equitable k-coloring ¢ of T and an r-equitable k-coloring
¢’ of Ty such that |Vi(c)| > |V;(c)| and |V;(c')| > |V;(¢/)| forall 1 <i < j <k. Let u
be a vertex in T7 and v a vertex in 75, and let T' be the tree obtained by adding an
edge which joins u and v. According to Lemma 2.1, we may assume that v ¢ V;(c').
Hence v € Vi_s41(c) for some £ € {1,2,---,k — 1} and it follows from Lemma 2.1
that we may assume that u ¢ Vy(c). We can therefore construct a k-coloring ¢* of
T such that V;(c¢*) = Vi(¢) U Vi_ijy1(¢)), = 1,2, -, k. For i > j, we have :

Vi(e)| = [Vi(e)] Vi)l + [Vi—isa ()] = (IVi(0) + [Vi—j1(d)])

(Vi) = Vi (@) + (Ve—isa ()] = [Vi—ja ()))-

Since Vj(c) > |Vi(e)] and [Vi—j1+1(¢')| < |Vk—it1(c)|, we have :
o [Vi(e)| = |Vj(e)| = [Vile)| = [Vj(e)| = =
o [Vi(e)] = V()] < Ve—iva ()] = Vijra () < 7.
This proves that the considered k-coloring ¢* of T is r-equitable.

Note that the condition & > 3 in Theorem 2.2 is necessary. Indeed, if both
T) and Ty are isomorphic to a star on 3 vertices (with v being the vertex of degree
two in T} and v a leaf in T») then clearly T7 and T5 are 1-equitably 2-colorable. But
by adding an edge which joins v and v, we obtain a tree T" which is not 1-equitably
2-colorable.

Note also that the condition in Theorem 2.2 on the number of vertices in each
tree is necessary. Indeed, if T3 is an r-equitably k-colorable tree for some k£ > 3 and
r > 1, and if T contains a single vertex v, then the tree T' obtained by adding an
edge which joins v and a vertex u of T7 is possibly not r-equitably k-colorable. For
example, if u is the vertex of degree four in the star T3 on five vertices, and if we add
a neighbor v (the single vertex in T5) to u, we obtain a star 7" on six vertices. While
T; and Ty are clearly 1-equitably 3-colorable, T” is not 1-equitably 3-colorable. It is
however not difficult to prove that if T is an r-equitably k-colorable tree for some
k > 2 and r > 1, then the tree T’ obtained by adding a new vertex v and making
it adjacent to some vertex u of T'is (r + 1)-equitably k-colorable. Indeed, given an
r-equitable k-coloring ¢ of T', we can extend it to a k-coloring ¢’ of T’ by assigning
any color j # c(u) to v with j € {1,2,---,k}. If [V}(c)| > |Vi(c)| for all i # j, then
¢ is (r 4+ 1)-equitable, otherwise ¢’ is r-equitable.
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