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Montréal, Canada
alain.hertz@gerad.ca

Bernard RIES
PSL, Université Paris-Dauphine
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Abstract: A graph G = (V,E) is r-equitably k-colorable if there exists a parti-
tion of V into k independent sets V1, V2, · · · , Vk such that | |Vi| − |Vj | | ≤ r for all
i, j ∈ {1, 2, · · · , k}. In this note, we show that if two trees T1 and T2 of order at
least two are r-equitably k-colorable for r ≥ 1 and k ≥ 3, then all trees obtained by
adding an arbitrary edge between T1 and T2 are also r-equitably k-colorable.
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1 INTRODUCTION

All graphs in this paper are finite, simple and loopless. Let G = (V,E) be a
graph. We denote by |G| its order, i.e, the number of vertices in G. For a vertex
v ∈ V , let N(v) denote the set of vertices in G that are adjacent to v. N(v) is called
the neighborhood of v and its elements are neighbors of v. The degree of vertex v,
denoted by deg(v), is the number of neighbors of v, i.e., deg(v) = |N(v)|. ∆(G)
denotes the maximum degree of G, i.e., ∆(G) = max{deg(v)| v ∈ V }. For a set
V ′ ⊆ V , we denote by G− V ′ the graph obtained from G by deleting all vertices in
V ′ as well as all edges incident to at least one vertex of V ′.

An independent set in a graph G = (V,E) is a set S ⊆ V of pairwise nonad-
jacent vertices. The maximum size of an independent set in a graph G = (V,E) is
called the independence number of G and denoted by α(G).

A k-coloring c of a graph G = (V,E) is a partition of V into k independent
sets which we will denote by V1(c), V2(c), · · · , Vk(c) and refer to as color classes.
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The cardinality of a largest color class with respect to a coloring c will be denoted
by Maxc. A graph G is r-equitably k-colorable, with r ≥ 1 and k ≥ 2, if there exists
a k-coloring c of G such that | |Vi(c)| − |Vj(c)| | ≤ r for all i, j ∈ {1, 2, · · · , k}. Such
a coloring is called an r-equitable k-coloring of G. A graph which is 1-equitably
k-colorable is simply said to be equitably k-colorable.

The notion of equitable colorability was introduced in [8] and has been studied
since then by many authors (see [2, 3, 4, 5, 6, 7, 9]). In [3], the authors gave
a complete characterization of trees which are equitably k-colorable. This result
was then generalized to forests in [2]. More precisely, for a forest F = (V,E), let
α∗(F ) = min{α(F −N [v])| v ∈ V and deg(v) = ∆(F )}
Theorem 1.1 ([2]) Suppose F = (V,E) is a forest and k ≥ 3 is an integer. Then

F is equitably k-colorable if and only if k ≥ d |F |+1
α∗(F )+2e.

This result can easily be generalized to r-equitable k-colorings.

Theorem 1.2 ([1]) Suppose F = (V,E) is a forest and r ≥ 1, k ≥ 3 are two

integers. Then F is r-equitably k-colorable if and only if k ≥ d |F |+r
α∗(F )+r+1e.

Proof: Suppose F is r-equitably k-colorable for r ≥ 1 and k ≥ 3. Let v be a
vertex in F such that deg(v) = ∆(F ) and α(F −N [v]) = α∗(F ). Clearly, for such
a coloring, there are at most α∗(F ) + 1 vertices in the color class that contains v.
It follows that all other color classes contain at most α∗(F ) + r + 1 vertices. Thus
|F | ≤ α∗(F ) + 1 + (k− 1)(α∗(F ) + r+ 1) = k(α∗(F ) + r+ 1)− r, and we therefore

have k ≥ d |F |+r
α∗(F )+r+1e.

Conversely, let k ≥ d |F |+r
α∗(F )+r+1e. Consider the forest F ′ = (V ′, E′) obtained

from F by adding r−1 new isolated vertices. Then |F ′| = |F |+ r−1 and α∗(F ′) =

α∗(F )+r−1. Thus k ≥ d |F |+r
α∗(F )+r+1e = d |F

′|+1
α∗(F ′)+2e. By Theorem 1.1, F ′ is equitably

k-colorable. Restricting the color classes to V gives an r-equitable k-coloring of F .
In this note, we are interested in a different sufficient condition for a tree

to be r-equitably k-colorable. More precisely, given a tree T = (V,E) and an edge
e ∈ E such that its removal from T creates two trees T1 and T2 of order at least two,
we show that if both T1 and T2 are r-equitably k-colorable, for r ≥ 1 and k ≥ 3,
then T is also r-equitably k-colorable. We also explain why |T1|, |T2| ≥ 2 and k ≥ 3
are necessary conditions.

2 A SUFFICIENT CONDITION

Consider a tree T and two integers r ≥ 1 and k ≥ 3. Let c be an arbitrary r-
equitable k-coloring of the vertex set of T such that |V1(c)| ≥ |V2(c)| ≥ · · · ≥ |Vk(c)|.
Then there may be vertices in T which are forced to be colored with color k. Indeed,
if for instance T is a star on (k − 1)r + k vertices, then the vertex v of degree
> 1 necessarily belongs to Vk(c) and actually Vk(c) = {v}. Furthermore, we have
|Vi(c)| = r + 1 for i ∈ {1, 2, · · · , k − 1}. It turns out that this is no longer true for
colors 1, 2, · · · , k − 1, as shown in the following property.
Lemma 2.1 Consider an r-equitably k-colorable tree T of order at least two, where
r ≥ 1 and k ≥ 3. Also, let ` be any element in {1, 2, · · · , k − 1}. Then, for any
vertex u in T , there exists an r-equitable k-coloring c of T with |Vi(c)| ≥ |Vj(c)| for
all 1 ≤ i < j ≤ k such that u /∈ V`(c).
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Proof: Suppose the lemma is false. We then clearly have |T | ≥ 3. Let c
be an r-equitable k-coloring of T with |Vi(c)| ≥ |Vj(c)| for all 1 ≤ i < j ≤ k.
Among all such colorings we choose one such that, for each t = 1, 2, · · · , k, there is
no r-equitable k-coloring c′ of T with |Vi(c)| = |Vi(c′)| for i = 1, 2, · · · , t − 1 and
maxki=t{|Vi(c′)|} < |Vt(c)|. In other words, Maxc = |V1(c)| is minimum among all
r-equitable k-colorings of T , |V2(c)| is mininum among all r-equitable k-colorings c′

of T with Maxc′ = Maxc, and so on.
Let ` ∈ {1, 2, · · · , k − 1} be an integer for which the lemma does not hold.

We define x = 1, y = 2, z = 3 if ` = 1, and x = ` − 1, y = `, z = ` + 1 if ` > 1.
Since we assume that the lemma is false, it follows that u ∈ V`(c), which means
that u ∈ Vx(c) if ` = 1 and u ∈ Vy(c) if ` > 1. Then |Vx(c)| > |Vy(c)|, otherwise
we could assign color x to all vertices in Vy(c) and color y to all vertices in Vx(c) to
obtain an r-equitable k-coloring c′ with u /∈ V`(c′), a contradiction. Similarly, we
must have |Vy(c)| > |Vz(c)| when ` > 1 since otherwise we could assign color y to
all vertices in Vz(c) and color z to all vertices in Vy(c), and thus the lemma would
hold.

We define F as the subgraph of T induced by Vx(c) ∪ Vy(c) ∪ Vz(c). If F
is disconnected, we add some edges to make F become a tree T ′ such that no two
adjacent vertices have the same color with respect to c; otherwise we set T ′ = F .
Let V ′ denote the vertex set of T ′. Moreover, for q = y or z, we denote q = y+z−q.
This implies that q = z if q = y and q = y if q = z. We start by proving the following
two claims.

Claim 1: There exists no r-equitable 3-coloring c′ of T ′ (using colors x, y, z)
with c′(u) = c(u), |Vx(c′)| = |Vx(c)| − 1, |Vq(c′)| = |Vq(c)|+ 1 and |Vq(c′)| = |Vq(c)|
for q = y or z.

Indeed, if such a coloring c′ exists, then the assumption on c implies |Vq(c′)| =
|Vx(c)| > |Vx(c′)|. Now we can obtain an r-equitable k-coloring c∗ of T by letting
Vx(c∗) = Vq(c

′), Vq(c
∗) = Vx(c′), and Vi(c

∗) = Vi(c
′) if i 6= x, q. We distinguish two

cases:

� If ` = 1, we have |V1(c∗)| > maxki=2{|Vi(c∗)|} and u /∈ V1(c∗).

� If ` > 1, we have q = y since otherwise |Vz(c′)| = |Vz(c)| + 1 = |Vx(c)| which
contradicts |Vx(c)| > |Vy(c)| > |Vz(c)|. Then |V1(c∗)| ≥ · · · ≥ |V`−1(c∗)| >
|V`(c∗)| ≥ |V`+1(c∗)| ≥ · · · ≥ |Vk(c∗)| and u ∈ V`−1(c∗).

Thus, in both cases, c∗ is an r-equitable k-coloring of T such that |Vi(c∗)| ≥ |Vj(c∗)|
for all 1 ≤ i < j ≤ k and u 6∈ V`(c∗), a contradiction.

Claim 2: No leaf of T ′, except possibly u, is in Vx(c).
Indeed, assume T ′ has a leaf v 6= u in Vx(c) and let w be its unique neighbor

in T ′. We can change the color of v from x to c(w) to obtain an r-equitable 3-
coloring c′ of T ′ with c′(u) = c(u), |Vx(c′)| = |Vx(c)| − 1, |V

c(w)
(c′)| = |V

c(w)
(c)|+ 1

and |Vc(w)(c
′)| = |Vc(w)(c)|, contradicting Claim 1.

Let vecT be the oriented rooted tree obtained from T ′ by orienting the
edges from root u to the leaves. Let us partition the vertices in Vx(c) into subsets
U1, · · · , Up such that Uq (q = 1, 2, · · · , p) contains all vertices in Vx(c) having no

successor in Vx(c)−
⋃q−1
j=1 Uj . For a vertex v ∈ U1, let L(v) denote the set of leaves

in vecT having v as predecessor.
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If |L(v)| = 1 for some v ∈ U1, then let P = v → s1 → · · · → sa denote the
path from v to the leaf sa in L(v). If v = u (and hence ` = 1 since u ∈ Vx(c)) then
T ′ is a chain with only one vertex in Vx(c), which means that Vy(c) = Vz(c) = ∅
since |Vx(c)| > |Vy(c)| ≥ |Vz(c)|. Thus T ′ has only one vertex, namely u, and since
u ∈ V1(c) this implies that T has only one vertex, a contradiction. Hence v 6= u.
Let w be the predecessor of v in vecT :

� if c(w) = c(s1), we change the color of v to c(w) to obtain an r-equitable
3-coloring c′ of T ′ with c′(u) = c(u), |Vx(c′)| = |Vx(c)| − 1, |V

c(w)
(c′)| =

|V
c(w)

(c)|+ 1 and |Vc(w)(c
′)| = |Vc(w)(c)|, contradicting Claim 1;

� if c(w) 6= c(s1), we assign color c(s1) to v, color c(sj+1) to sj (j = 1, 2, ..., a−1),
and color x to sa; we obtain an r-equitable 3-coloring c′ of T ′ with |Vi(c′)| =
|Vi(c)| (i = x, y, z), c′(u) = c(u) and a leaf sa ∈ Vx(c′). But this contradicts
Claim 2.

We therefore conclude that |L(v)| ≥ 2 for all v ∈ U1. By denoting W1 =
⋃
v∈U1

L(v),
we get |W1| ≥ 2|U1|. For each set Uq, with q > 1, we will now construct a set Wq

containing vertices in Vy(c) ∪ Vz(c) that are successors of vertices in Uq but not
successors of vertices in Uq−1. So let v be any vertex in Uq (q > 1). If v has at
least 2 immediate successors in vecT , we add two of them to Wq. If v has a unique
immediate successor in vecT , then let P = v → s1 → · · · → sa → v′ denote a path
from v to a vertex v′ ∈ Uq−1. If a > 1, we add s1 and s2 to Wq. If a = 1 and s1
has an immediate successor w /∈ Vx(c), then we add s1 and w to Wq. Assume now
that a = 1 and all the immediate successors of s1 are in Vx(c). We will prove that
such a case is not possible.

� If v 6= u, then v has a predecessor w in vecT . We must have c(w) = c(s1),
otherwise we could assign color c(s1) to v to obtain an r-equitable 3-coloring
c′ of T ′ with c′(u) = c(u), |Vx(c′)| = |Vx(c)| − 1, |V

c(s1)
(c′)| = |V

c(s1)
(c)| + 1

and |Vc(s1)(c′)| = |Vc(s1)(c)|, contradicting Claim 1. But now we can assign

color c(s1) to v and assign color c(s1) to s1 to obtain an r-equitable 3-coloring
c′ of T ′ with c′(u) = c(u), |Vx(c′)| = |Vx(c)| − 1, |V

c(s1)
(c′)| = |V

c(s1)
(c)| + 1

and |Vc(s1)(c′)| = |Vc(s1)(c)|, contradicting Claim 1.

� If v = u, then ` = 1 since u ∈ Vx(c). By assigning color c(s1) to u and
color c(s1) to s1, we obtain an r-equitable 3-coloring c′ of T ′ with |Vx(c′)| =
|Vx(c)| − 1, |V

c(s1)
(c′)| = |V

c(s1)
(c)|+ 1 and |Vc(s1)(c′)| = |Vc(s1)(c)|. It follows

from the assumptions on c that |V
c(s1)

(c′)| = |Vx(c)| > |Vc(s1)(c)| = |Vc(s1)(c′)|.
Thus the lemma would hold, a contradiction.

In summary, we have |Wq| ≥ 2|Uq|. Since all sets Wq are disjoint, we have

|Vy(c)|+ |Vz(c)| ≥
p∑
q=1

|Wq| ≥
p∑
q=1

2|Uq| = 2|Vx(c)|.

Hence |Vy(c)| or |Vz(c)| is larger than or equal to |Vx(c)|, a contradiction.
Lemma 2.1 allows us to show our main result.

Theorem 2.2 Let T1 and T2 be two trees or order at least two. If both T1 and T2
are r-equitably k-colorable for r ≥ 1 and k ≥ 3, then a tree T obtained by adding an
arbitrary edge between T1 and T2 is also r-equitably k-colorable.
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Proof: Consider an r-equitable k-coloring c of T1 and an r-equitable k-coloring
c′ of T2 such that |Vi(c)| ≥ |Vj(c)| and |Vi(c′)| ≥ |Vj(c′)| for all 1 ≤ i < j ≤ k. Let u
be a vertex in T1 and v a vertex in T2, and let T be the tree obtained by adding an
edge which joins u and v. According to Lemma 2.1, we may assume that v /∈ V1(c′).
Hence v ∈ Vk−`+1(c′) for some ` ∈ {1, 2, · · · , k − 1} and it follows from Lemma 2.1
that we may assume that u /∈ V`(c). We can therefore construct a k-coloring c∗ of
T such that Vi(c

∗) = Vi(c) ∪ Vk−i+1(c′), i = 1, 2, · · · , k. For i > j, we have :

|Vi(c∗)| − |Vj(c∗)| = |Vi(c)|+ |Vk−i+1(c′)| − (|Vj(c)|+ |Vk−j+1(c′)|)
= (|Vi(c)| − |Vj(c)|) + (|Vk−i+1(c′)| − |Vk−j+1(c′)|).

Since Vj(c) ≥ |Vi(c)| and |Vk−j+1(c′)| ≤ |Vk−i+1(c′)|, we have :
� |Vi(c∗)| − |Vj(c∗)| ≥ |Vi(c)| − |Vj(c)| ≥ −r;
� |Vi(c∗)| − |Vj(c∗)| ≤ |Vk−i+1(c′)| − |Vk−j+1(c′)| ≤ r.

This proves that the considered k-coloring c∗ of T is r-equitable.
Note that the condition k ≥ 3 in Theorem 2.2 is necessary. Indeed, if both

T1 and T2 are isomorphic to a star on 3 vertices (with u being the vertex of degree
two in T1 and v a leaf in T2) then clearly T1 and T2 are 1-equitably 2-colorable. But
by adding an edge which joins u and v, we obtain a tree T which is not 1-equitably
2-colorable.

Note also that the condition in Theorem 2.2 on the number of vertices in each
tree is necessary. Indeed, if T1 is an r-equitably k-colorable tree for some k ≥ 3 and
r ≥ 1, and if T2 contains a single vertex v, then the tree T ′ obtained by adding an
edge which joins v and a vertex u of T1 is possibly not r-equitably k-colorable. For
example, if u is the vertex of degree four in the star T1 on five vertices, and if we add
a neighbor v (the single vertex in T2) to u, we obtain a star T ′ on six vertices. While
T1 and T2 are clearly 1-equitably 3-colorable, T ′ is not 1-equitably 3-colorable. It is
however not difficult to prove that if T is an r-equitably k-colorable tree for some
k ≥ 2 and r ≥ 1, then the tree T ′ obtained by adding a new vertex v and making
it adjacent to some vertex u of T is (r + 1)-equitably k-colorable. Indeed, given an
r-equitable k-coloring c of T , we can extend it to a k-coloring c′ of T ′ by assigning
any color j 6= c(u) to v with j ∈ {1, 2, · · · , k}. If |Vj(c)| ≥ |Vi(c)| for all i 6= j, then
c′ is (r + 1)-equitable, otherwise c′ is r-equitable.
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