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Abstract: To solve a constrained optimization problem, equality constraints can be used 
to eliminate a problem variable. If it is not feasible, the relations imposed implicitly by 
the constraints can still be exploited. Most conventional constraint handling methods in 
Evolutionary Algorithms (EAs) do not consider the correlations between problem 
variables imposed by the constraints. This paper relies on the idea that a proper search 
operator, which captures mentioned implicit correlations, can improve performance of 
evolutionary constrained optimization algorithms. To realize this, an Evolution Strategy 
(ES) along with a simplified Covariance Matrix Adaptation (CMA) based mutation 
operator is used with a ranking based constraint-handling method. The proposed 
algorithm is tested on 13 benchmark problems as well as on a real life design problem. 
The outperformance of the algorithm is significant when compared with conventional 
ES-based methods. 
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1. INTRODUCTION 

Population based approaches inspired by nature have been widely applied in 
various scientific domains due to their global search ability and very precise 
approximation of the global solution [1]. 

Constrained optimization problems (COPs) of non-convex character 
requirescomplex optimization methods[2], [3]. While designing new algorithms, the focal 
point is the constraint handling strategy[4]–[6].The equality constraints in a COP impose 
a strict relation between problem variables. Mostly, they can be exploited to determine 
any unknown variable,in terms of other variables in the equation. However, 
sometimes,their direct use may be impossible or computationally expensive. Besides the 
fact that inequality constraints do not allow a direct elimination of the problem variables, 
they also establish relations between the unknowns in a less strict manner than the 
equality constraints [7].  

This paper is an extension of the work in [7], which relies on the idea of 
exploiting the imposed relations between problem variables in an indirect way even if 
they do not mostly allow a direct use. This idea has been overlooked by most 
conventional constrained optimization methods. To obtain the desired behavior, a 
simplified version of Covariance Matrix Adaptation (CMA) based mutation strategy[8] is 
employed along with a ranking mechanism proposed by Ho and Shimizu[5]. By using a 
correlated mutation strategy, we expect that the algorithm elicits the distribution of 
promising solutions along the constraint boundaries and generates the next candidate 
solutions accordingly.  

The remainder of the paper is organized as follows: in Section 2, the basics of 
the constrained optimization and related works are shortly discussed. Section 3 describes 
the proposed method in details while the results of the study will be demonstrated in 
Section 4. Lastly, Section 5 concludes the study. 

2. CONSTRAINED OPTIMIZATION 

2.1. Background 

An n dimensional COP consists of two parts: (i) objective function, (ii) 
inequality and equality constraints. Without loss of generality, it is formulated as: 

Minimize ݂ሺݔԦሻ, Ԧݔ ൌ ሾݔଵ, … , ௡ሿ்ݔ א  ܨ ك ܵ ك Թ௡,   (1) 

subject to 

  ݃௜ሺݔԦሻ ൑ 0, ݅ ൌ 1, … , ,ݎ ܽ݊݀ ௝݄ሺݔԦሻ ൌ 0, ݆ ൌ ݎ ൅ 1, … , ݉ (2) 

where ܵ ൌ ሼݔԦ א Թ௡|݈௞ ൑ ௞ݔ ൑ ,௞ݑ ݇ ൌ 1, … , ݊ሽ,ܨ ൌ ൛ݔԦ א ܵห݃௜ሺݔԦሻ ൑ 0 ܽ݊݀ ௝݄ሺݔԦሻ ൌ 0ൟ, 
Ԧݔ Ԧ is solution vectorݔ ൌ ሾݔଵ, … ,  ௡ሿ், r is the number of inequality, and m-r is the numberݔ
of equality constraints. The equality constraints are usually converted into inequalities by 
adding a small tolerance ߝ ൐ 0, and an equality constraint j is rephrased as ห ௝݄ሺݔԦሻห െ ߝ ൑
0. The same approach is used in this work, where ߝ௠௜௡ ൌ 1.0݁ െ 4. 

Accordingly, for any constraint i, the violationݒ௜ሺݔԦሻis defined as: 
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Ԧሻݔ௜ሺݒ ൌ ቊ ,൫0ݔܽ݉ ݃௜ሺݔԦሻ൯, ݂݅ 1 ൑ ݅ ൑ ݎ
,ሺ0 ݔܽ݉ |݄௜ሺݔԦሻ| െ ݎ ݂݅     ,ሻߝ ൅ 1 ൑ ݅ ൑ ݉

. (3) 

 
2.2. Related Work 

Various techniques have been proposed to deal with COPs. Extended surveys 
are given in [9], [10]. The constrained optimization evolutionary algorithms (COEAs) 
can be classified in the following four categories: feasibility maintenance, penalty 
function, separation of constraint violation and objective value, multi-objective 
optimization evolutionary algorithms (MOEA)[11]. 

Approaches based on the maintenance of feasibility status of an individual aim 
to transfer the individual into the feasible domain. Repairing the infeasible individuals, 
and homomorphous mapping are two popular methods[12]. The methods based on 
penalty functions are the most popular approaches thanks to low complexity of 
implementation[4]. They rely on penalizing infeasible individuals. The third class 
separates the objective value and the constraint violation. Deb[13] suggested a constraint 
handling method with three rules, called as three feasibility rules, to determine the 
winner of the tournament among two individuals. Runarsson and Yao[6] developed 
stochastic ranking (SR) which is proved to be efficient and highly competitive with other 
methods[9].MOEA algorithms have been also widely applied in constrained optimization 
domain[14], where the constraints are handled as additional objectives to be optimized. 

3. PROPOSED ALGORITHM 

3.1. Ho and Schimizu’s Ranking Approach 

Among the constraint handling methods mentioned above, ranking based 
approaches are preferred thanks to the small number of control parameters required. 
Based on this fact, we employ a ranking based method by Ho and Shimizu 
[5]incorporated into an evolution strategy (ES).The method scales the objective function 
(1) and the constraint terms (2) to the same orders of magnitude so that the aggregation of 
both terms into one would be possible. 

While ranking an individual, ݔԦ, a COP has three numerical properties to be 
considered:(i) ݂ሺݔԦሻ, the objective function value; (ii) ݈݋݅ݒሺݔԦሻ ൌ ∑ Ԧሻ௠ݔ௜ሺݒ

௜ୀଵ , sum of the 
constraint violations; (iii) ݊݋ܿݒሺݔԦሻ, 0 ൑ Ԧሻݔሺ݊݋ܿݒ ൑ ݉, number of violated 
constraints[5].  

Since these three terms are of different order of magnitudes, a proper 
combination method must be employed. The issue is solved by [5] with a simple ranking 
method, where three independent ranking lists are created based on the three numerical 
properties, ݂ሺݔԦሻ,  Ԧሻ, respectively. For each numerical property, theݔሺ݊݋ܿݒ Ԧሻ, andݔሺ݈݋݅ݒ
individual having the smallest value is assigned a ranking of one while the ranking of the 
individual with the next smallest value is two, and so on. We refer Ho and Shimizu’s 
algorithm as three ranking lists-ES (3RL-ES).  

Kusakci and Can [7] propose the following ranking scheme: 
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ܴ ൌ ቐ
ܴ௩௜௢௟,                                no feasible solution exists

௙ܴ ൅  ܴ௩௜௢௟,                             the solution is infeasible 
௙ܴ ൅ .݈ܾ݁݅ݏ݂ܽ݁ ݏ݅ ݊݋݅ݐݑ݈݋ݏ ݄݁ݐ                                    ,1 

           (4) 

Equation (5) implies that the ranking of an individual is computed with R୴୧୭୪ if 
all individuals are infeasible. If there is at least one feasible individual, the ranking is 
done with ௙ܴ ൅  1, or  ௙ܴ ൅  ܴ௩௜௢௟, depending on the feasibility status of that particular 
individual. ௙ܴ ൅  1 implies that ܴ௩௜௢௟ ൌ 1 for a feasible solution [5]. 

3.2. Simplified Covariance Matrix Adaptation (CMA) 

Hansen and Ostermeier[8] suggested a mutation operator, CMA, which exploits 
the correlations between variables instead of gradient information to navigate the 
population in the search space. Given a population of μ individuals, CMA relies on eigen 
decomposition of covariance matrix C of these μ individuals. A comprehensive tutorial 
can be found in [15]. 

A positive definite matrix ࡯ א  Թ௡ൈ௡, has an orthonormal basis of eigenvectors, 
࡮ ൌ ሾ࢈૚, … , ሿ, with corresponding eigenvalues, ݀ଵ࢔࢈

ଶ, … , ݀௡
ଶ ൐ 0. Additionally, the 

eigendecomposition of ࡯ obeys ࡯ ൌ  is an orthogonal matrix, and the ࡮ where ,ࢀ࡮૛ࡰ࡮
columns of ࡮ form an orthonormal basis of eigenvectors. ࡰ ൌ ݀݅ܽ݃ሺ݀ଵ, … , ݀௡ሻ is a 
diagonal matrix with square roots of the eigenvalues of ࡯ as its diagonal elements[15]. 

If  denotes the covariance matrix of the population sampled over a multivariate 
normal distribution, ࣨሺxሬԦ୫ୣୟ୬, Cሻ, a new search point xሬԦ୧ is generated as:  

Ԧ௜ሺ݃ݔ ൅ 1ሻ ൌ Ԧ௠௘௔௡ሺ݃ሻݔ  ൅ ,ሺ0ࣨ ܦ ܤ ሺ݃ሻߪ   ሻ (5)ܫ

whereࣨሺ0, Iሻdenotes multivariate standard normal distribution with mean zero and 
standard deviation one.σሺgሻ ൐ 0 is ageneration specific step size. Based on equation (6), 
 new search points (individuals) are generated while best performing  individuals out 

of  are selected.  

The covariance matrix, ࡯ሺࢍሻ, is updated with a learning rate, 0 ൑ cୡ୭୴ ൑ 1 as: 

ࢍሺ࡯ ൅ ૚ሻ ൌ ሺ1 െ ܿ௖௢௩ሻ࡯ሺࢍሻ ൅ ܿ௖௢௩
ଵ

ఙሺ௚ሻమ ∑ ௜ߙ
ఓ
௜ୀଵ Ԧ௜ݕԦ௜ݕ

்  (6) 

where ݕሬሬሬԦ௜ ൌ – Ԧ௜ݔ ݅ ,௜ߙ Ԧ௠௘௔௡ሺ݃ሻ andݔ ൌ 1, … ,  are positive recombination weights. For ,ߤ
α୧, Hansen [15] suggests that ߙ௜ ൐ ∑ ௜ାଵ andߙ ௜ߙ

ఓ
௜ୀଵ ൌ 1, where fitter individuals are 

given more weight. The parameter ܿ௖௢௩ is called learning rate and defines the extent of 
the information retention between two generations. A reasonable choice forܿ௖௢௩ is 
2/ሺnଶ ൅ √2ሻ[15]. 

The population mean ݔԦ௠௘௔௡ሺ݃ ൅ 1ሻ in next generation is updated as: 

Ԧ௠௘௔௡ሺ݃ݔ ൅ 1ሻ ൌ  ∑ Ԧ௜ݔ௜ߙ
ఓ
௜ୀଵ .  (7) 

An updating scheme similar to (8) for step size is written as [7]; 
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ሺ݃ߪ ൅ 1ሻ ൌ ሺ1 െ ܿ௖௢௩ሻ ߪሺ݃ሻ  ൅ ܿ௖௢௩
ଵ

ఙሺ௚ሻ
ฮݔԦ௠௘௔௡ሺ݃ ൅ 1ሻ –  Ԧ௠௘௔௡ሺ݃ሻฮ (8)ݔ

whereฮxሬԦ୫ୣୟ୬ሺg ൅ 1ሻ – xሬԦ୫ୣୟ୬ሺgሻฮ stands for Euclidean norm of the difference of the 
population means in adjacent generations. Namely, the new step size is estimated based 
on the ratio between the changeof population means over the previous step size. 

3.3. Why CMA can be a promising Mutation Operator for COPs? 

In CMA, the contour lines of the density function of ࣨሺ࢞ഥ,  ሻ form an (hyper-)࡯
ellipsoid while the principal axes of the ellipsoid correspond to the eigenvectors of ࡯, and 
the squared axes lengths correspond to the eigenvalues. In this section, the merit of the 
described mutation strategy is discussed.  

In general, the purpose of employing a mutation operator is to introduce some 
random information. However, CMA relies exactly on the opposite idea of 
derandomizing the mutations in a way that the search is guided to more promising 
directions. Thus, an improvement is more likely based on an individual generated by 
CMA than the one generated by an uncorrelated simple mutation operator. 

Yu and Gen [11] demonstrate this idea by a 2-dimensional example where CMA 
is compared with an uncorrelated mutation operator. Given the standard deviations in 
each direction,ߪ௫భ ൌ 1, and ߪ௫మ ൌ 1/3, the main part of the possible sampling region is 
the ellipse with the solid line in Figure 1. If the global optimal solution lies at the point 
shown by the square in the figure, then the simple mutation method has little chance to 
catch it due to the limitations of sampling region. To achieve this goal, we can enlarge 
the standard deviations, e.g., ߪ௫భ ൌ 3 and ߪ௫మ ൌ 1. However, now the ellipse with dashed 
line is rather large so that the chance of sampling the square is still quite small. On the 
other hand, if we can generate the mutation ellipsoid based on the covariance matrix, the 
probability of sampling the optimal point is quite high with the correlated normal 
distribution oriented toward the square in Figure 1. 
 

 

Figure 1: A demonstration of benefit of CMA in a 2-dimensional problem[11] 
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Similarly, the covariance matrix can capture the relation between variables 
imposed by a constraint and simulate the constraint boundary. Having this in mind, this 
property can be exploited while generating new individuals if CMA is combined with a 
proper constraint handling method.  

A short literature survey reveals that CMA has been extensively employed in 
different subdomains of EC[16]–[18] 

3.3. Main Steps of the proposed Algorithm 

The proposed algorithm is a ሺߤ,  ሻ-ES with a ranking based constraint handlingߣ
strategy formulated in (5). Adaptive tolerance adjustment scheme for equality constraints 
proposed by[4] is incorporated into the ranking method. The algorithm employs a 
simplified CMA strategy formulated in (6)-(9). We name the proposed algorithm as 
Adaptive 2 Ranking Lists-ES (A2RL-ES). 

The algorithm has two main stages: (i) initialization, and (ii) main loop. The 
steps of the algorithm are given below. 

Step 1: Tolerance Initialization: Randomly generated ߤ individuals is used to 
determine initial tolerance values, ߝ௜ሺ0ሻ, with 

௜ሺ0ሻߝ ൌ ݅     Ԧሻݔ௜ሺݒ ൌ ݎ ൅ 1, … , ݉  (9) 

where ݒ௜ሺݔԦሻ stands for average violation of ߤ individuals for constraint i. 
Step 2: Covariance Matrix, Step Size, and Learning Rate Initialization: 

݊ ሺ૙ሻ will be initialized as an࡯ ൈ ݊-identity matrix. Based on the experiments conducted, 
a good choice for ߪሺ0ሻis ߪሺ0ሻ ൎ 1/݊. The proper learning rate ܿ௖௢௩ for benchmark 
problems[6] is estimated by [7] as ܿ௖௢௩ ൎ 2/ሺ݊ଶ ൅ √݊ሻ[8]. 

Step 3: CMA based Mutation: CMA-like mutation is applied to ߤ parents to 
generate ߣ offspring, as given in (6).  

Step 4: Repairing Individuals out of Definition Domain: If an offspring is 
outside the definition domain ܵ, the offspring is simply set on the respective boundary of 
S. 

Step 5: Updating Tolerances: Based on the comparison of the feasible 
percentage of the population, ߬௜ሺ݃ሻ א ሾ0,1ሿ, for constraint i, and the desired ratio, 
0 ൒ ߬௧௔௥ ൒ 1, the tolerance value, ߝ௜ሺ݃ሻ א ሾ1.0݁ െ 4, ∞ሻ, is updated with given factors, 
߮௘௤ א ሾ1, ∞ሻ, and ߮௘௤ଶ א ሾ1, ∞ሻ, with the following formula[4]: 

௜ሺ݃ߝ ൅ 1ሻ ൌ ,௜ሺ݃ሻ/߮௘௤ߝ ݂݅ ߬௜ ሺ݃ሻ ൐ ߬௧௔௥

௜ሺ݃ߝ ൅ 1ሻ ൌ ߮௘௤ଶߝ௜ሺ݃ሻ ,        ݂݅ ߬௜ሺ݃ሻ ൑  ߬௧௔௥ . (10) 

Step 6: Computing overall Ranking and Replacement:The ranking lists are 
created and combined with (5) and the best ߤ individuals out of ߣ are selected as new 
population. We use elitism, and the best feasible individual found so far replaces the 
worst one in the current population. 

Step 7: Estimation of Distribution: The new distribution parameters ࡯ሺࢍ ൅
૚ሻ, and ߪሺ݃ ൅ 1ሻ are updated with (7) and (9) based on the distribution of the new 
population. 
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Step 7: Stopping Criteria: The algorithm stops if maximum number of 
iterations has been reached or a solution ݔԦ has been found with |݂ሺݔԦሻ െ ݂ሺݔԦכሻ| ൏ 1.0݁ െ
4, where ݔԦכ denotes the optimal solution. 

4. RESULTS  

4.1. First Benchmark Problems 

The algorithm is tested on 13 problems given in [6]. For all benchmark 
problems, a (20, 100)-ES has been adopted except g2 (for g2, (40,200)-ES is used), for 
which this strategy leads to premature convergence. This problem has been regarded as 
the hardest problem in the benchmark[4], [19]. The algorithm is implemented in 
MATLAB and experiments are repeated 30 times. The parameter settings adopted are 
given in Table 1. 

The results of experiments conducted with A2RL-ES are summarized Table 2, 
and Table 2 shows the best, mean, and worst objective function values obtained with 
A2RL-ES and 3RL-ES. When compared the mean values, A2RL-ES performs better than 
3RL-ES in 8 problems, g2, g5, g6, g7, g9, g10, g11 and g13, while the same results are 
obtained for the other problems. 3RL-ES could not find the optimum point for problems 
g2, g7, g10 and g13 whereas our method finds the optimum with high reliability. The 
deviations in median, mean and worst objective function values reveal that 3RL-ES is not 
as reliable as A2RL-ES. Thus, the proposed algorithm is superior to the underlying 
method by [5]. Namely, the correlated mutation strategy has improved significantly the 
performance of the ranking based constraint handling strategy. In both tables, the bold-
faced values indicate that a better or at least equal result has been achieved by the 
corresponding algorithm. 
 
Table 1: Design parameters used in the algorithm 
Name Value Notes 

ሺߤ, ሻߣ (20, 100)  
߬௧௔௥ 60%  
߮௘௤ 1.01 first update factor for tolerance values 
߮௘௤ଶ 1.00001 second update factor for tolerance values 
ܿ௖௢௩ 2/ሺ݊ଶ ൅ √݊ሻ  

Maximum generations 5000  
 

Table 2 shows the best, mean, and worst objective function values obtained with 
A2RL-ES and 3RL-ES. When compared the mean values, A2RL-ES performs better than 
3RL-ES in 8 problems, g2, g5, g6, g7, g9, g10, g11 and g13, while the same results are 
obtained for the other problems. 3RL-ES could not find the optimum point for problems 
g2, g7, g10 and g13 whereas our method finds the optimum with high reliability. The 
deviations in median, mean and worst objective function values reveal that 3RL-ES is not 
as reliable as A2RL-ES. Thus, the proposed algorithm is superior to the underlying 
method by [5]. Namely, the correlated mutation strategy has improved significantly the 
performance of the ranking based constraint handling strategy. 
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Table 2: Comparison of A2RL-ES with 3RL-ES in terms of the best, mean, and worst 
objective function values 

  Best Mean Worst 
Fun. Opt. value A2RL-ES 3RL-ES A2RL-ES 3RL-ES A2RL-ES 3RL-ES 

g1 -15 -15 -15 -15 -15 -15 -15 
g2 -0.803619 -0.803619 -0.803602 -0.79812 -0.780828 -0.79261 -0.712177 
g3 1 1 1 1 1 1 1 
g4 -30665.53 -30665.53 -30665.53 -30665.53 -30665.53 -30665.53 -30659.01 
g5 5126.498 5126.498 5126.499 5126.498 5433.689 5126.498 6080.091 
g6 -6961.81 -6961.81 -6961.81 -6961.81 -6952.210 -6961.81 -6566.977 
g7 24.3062 24.3062 24.307 24.3062 24.384 24.3062 25.004 
g8 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 
g9 680.63 680.63 680.63 680.63 680.649 680.63 680.863 
g10 7049.248 7049.248 7063.312 7049.248 7289.269 7049.248 8220.442 
g11 0.75 0.75 0.75 0.75 0.826 0.75 0.957 
g12 1 1 1 1 1 1 1 
g13 0.053949 0.053949 0.443019 0.053949 0.997364 0.053949 0.998250 
 
Table 3:Comparison of A2RL-ES with 3RL-ES in terms of median and standard 
deviations of objective function values, and average number of generations to reach the 
optimum point 

 Median Std Gmean 
Fun. A2RL-ES 3RL-ES A2RL-ES 3RL-ES A2RL-ES 3RL-ES 
g1 -15 -15 4.68e-04 0.0e+00 850 691 
g2 -0.79261 -0.780828 9.17e-04 2.0e-02 4492 1225 
g3 1 1 7.09e-10 2.5e-05 299 1682 
g4 -30665.53 -30665.53 9.66e-04 9.9e-01 268 679 
g5 5126.498 5433.689 2.54e-05 2.7e+02 1577 247 
g6 -6961.81 -6952.210 7.17e-05 9.5e+01 42 34 
g7 24.3062 24.384 1.12e-05 1.2e-01 1035 533 
g8 -0.095825 -0.095825 1.20e-08 3.0e-17 13 383 
g9 680.63 680.649 5.07e-06 3.9e-02 391 387 

g10 7049.248 7289.269 3.80e-04 2.5e+02 1556 678 
g11 0.75 0.826 4.66e-06 8.5e-02 222 493 
g12 1 1 2.48e-07 0.0e+00 29 63 
g13 0.053949 0.997364 1.32e-04 8.5e-02 1151 1750 

 
The median and standard deviations of objective function values obtained over 

30 runs are given in Table 3. The last two columns in Table 3 show the average number 
of generations needed to find the best solution. A closer look at the table reveals that 
A2RL-ES was able to converge to the optimum in less than 40,000 objective function 
evaluations (FES) for g3, g4, g6, g8, g9, g11, and g12. The problems g1, g2, g7, and g13 
required high number of function evaluations due to the high complexity they possess. 
Furthermore, the algorithm was very reliable as it was able to find the global optimum in 
all 30 runs for all problems, but g2. This is highly desired property for real life 
applications with limited computational time. Considering that 3RL-ES used (30,200) 
strategy,A2RL-ES converges to the optimum in less function evaluations (FES) for g1, 
g3, g4, g6,g7, g8, g9,  g11, g12, and g13. However, the reliable convergence behavior of 
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A2RL-ES to the optimum for complex problems, g2, g5, and g7 is paid with high 
computational costs. Thus, the proposed algorithm is in general faster than 3RL-ES. 

Table 4 shows the comparison of performance indicators of A2RL-ES, SR[6], 
simple multimembered evolution strategy (SMES)[20] methods on the same benchmark. 
When compared with other ES-based methods, A2RL-ES delivers better or similar 
results in terms of best, median, mean, and worst objective function values for all 
problems. The reliability of our method is higher than the reliability of the other 
approaches, as it is indicated by mean and median objective function values. 

Table 4: Comparison of performances of A2RL-ES with SR[8], SMES [30] 
Fun. Opt. Value Method Best Median Mean Worst Gmean 

g1 -15 A2RL-ES -15 -15 -15 -15 850 
  SR -15 -15 -15 -15 741 
  SMES -15 -15 -15 -15 671 

g2 0.803619 A2RL-ES 0.803619 0.79261 0.79293 0.76409 3078 
  SR 0.803515 0.7858 0.781975 0.726288 1086 
  SMES 0.803601 0.7912549 0.785238 0.751322 NA 

g3 1 A2RL-ES 1 1 1 1 299 
  SR 1 1 1 1 1146 
  SMES 1 1 1 1 184 

g4 -30665.53 A2RL-ES -30665.53 -30665.53 -30665.53 -30665.53 268 
  SR -30665.53 -30665.53 -30665.53 -30665.53 441 
  SMES -30665.53 -30665.53 -30665.53 -30665.53 129 

g5 5126.498 A2RL-ES 5126.498 5126.498 5126.498 5126.498 1577 
  SR 5126.49 5127.372 5128.881 5142.472 258 
  SMES 5126.599 5160.198 5174.492 5304.167 NA 

g6 -6961.81 A2RL-ES -6961.81 -6961.81 -6961.81 -6961.81 42 
  SR -6961.81 -6961.81 -6875.940 -6350.262 590 
  SMES -6961.81 -6961.81 -6961.284 -6952.482 249 

g7 24.3062 A2RL-ES 24.3062 24.3062 24.3062 24.3062 1035 
  SR 24.307 24.357 24.374 24.642 715 
  SMES 24.327 24.426 24.475 24.843 NA 

g8 0.095825 A2RL-ES 0.095825 0.095825 0.095825 0.095825 13 
  SR 0.095825 0.095825 0.095825 0.095825 381 
  SMES 0.095825 0.095825 0.095825 0.095825 18 

g9 680.63 A2RL-ES 680.63 680.63 680.63 680.63 391 
  SR 680.63 680.641 680.656 680.763 557 
  SMES 680.632 680.642 680.643 680.719 NA 

g10 7049.248 A2RL-ES 7049.248 7049.248 7049.248 7049.248 1556 
  SR 7049.316 7372.613 7559.192 8835.655 642 
  SMES 7051.903 7253.603 7253.047 7638.366 NA 

g11 0.75 A2RL-ES 0.75 0.75 0.75 0.75 222 
  SR 0.75 0.75 0.75 0.75 57 
  SMES 0.75 0.75 0.75 0.75 88 

g12 1 A2RL-ES 1 1 1 1 29 
  SR 1 1 1 1 82 
  SMES 1 1 1 1 77 

g13 0.053949 A2RL-ES 0.053949 0.053949 0.053949 0.053949 1151 
  SR 0.053957 0.057006 0.067543 0.216915 349 
  SMES 0.053986 0.061873 0.166385 0.468294 NA 

 
To check whether the differences reported above are statistically significant, we 

employed Holm procedure [21]. The four algorithms are evaluated based on the obtained 
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mean objective function values. According to[22], the algorithm demonstrating the best 
performance is assigned a score of four while the algorithm showing the worst 
performance is scored as one. For each algorithm, the scores are summed up and 
averaged over the number of problems. The resulting number denotes the overall score, 
ݏ ௝ܿ, of the ݆th algorithm. Next, A2RL-ES is isolated from the set of algorithms and is 
labeled with zero as the reference algorithm. Then, the remaining algorithms (three 
algorithms in our case) are sorted in ascending order based on ݏ ௝ܿ. For each of the 
remaining algorithms, a z୨ value is computed with: 

௝ݖ  ൌ
ݏ ௝ܿ െ ଴ܿݏ

ඥ ௔ܰሺ ௔ܰ ൅ 1ሻ/6 ௣ܰ
 (11) 

where ௔ܰ and ௣ܰ stand for the number of the algorithms considered (four in our case) 
and the number of the test problems, respectively. ܿݏ଴corresponds to the overall score of 
A2RL-ESas the reference algorithm. Based on ݖ௝ values, the corresponding cumulative 
normal distribution probabilities ݌௝ have been calculated. Then, the ݌௝ values have been 
compared with /ሺ ௔ܰ െ ݆ሻ, where ߜ indicates level of confidence, set to 5%. The Holm 
procedure tests the hypotheses whether the performances of the compared two algorithms 
are statistically indistinguishable. Thus, in our case, the rejection of the null-hypotheses 
indicates that A2RL-ES outperforms the compared algorithm. On the other hand, the 
acceptance of it implies that there is no significant difference between the two 
algorithms. 

Table 5: Results of Holm procedure comparing the algorithms in terms of mean 
objective function values over 30 runs 
Algorithm J ࢾ ࢐࢖ ࢐ࢠ ࢐ࢉ࢙/ሺࢇࡺ െ  ሻ Hypotheses࢐

3RL-ES 1 1.46153 -3.038e+00 1.190e-03 1.667e-02 rejected 

SR 2 1.92307 -2.127e+00 1.672e-02 2.500e-02 rejected 

SMES 3 2.15384 -1.671e+00 4.736e-02 5.000e-02 rejected 

Table 6: Results of Holm procedure comparing the algorithms in terms of mean number 
of fitness function evaluations 
Algorithm J ࢾ ࢐࢖ ࢐ࢠ ࢐ࢉ࢙/ሺࢇࡺ െ  ሻ Hypotheses࢐

SMES 1 0.61538 -4.709e+00 1.243e-06 1.667e-02 rejected 

3RL-ES 2 1.38461 -3.190e+00 7.110e-04 2.500e-02 rejected 

SR 3 1.61538 -2.734e+00 3.125e-03 5.000e-02 rejected 
 

The first test compares the four algorithms in terms of mean objective function 
values achieved over 30 runs. The results are given in Table 5 along with the decision 
whether the null-hypotheses is rejected. The table shows that A2RL-ES outperforms, on 
average, other four algorithms over 13 test problems, and the outperformance of A2RL-
ES is significant.  
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A second test is conducted to compare the convergence speeds of the algorithm 
(FES needed to reach the optimum), see Table 6. The results indicate that A2RL-ES is 
again significantly better than the other algorithms. 

 
4.2. A real Life Application: Car Side Impact Design 

Besides the above benchmark problems, the merit of the algorithm is 
demonstrated by a real life application. The problem deals with the designing of a car-
side, which is exposed to a certain impact according to European Enhanced Vehicle 
Safety Committee (EEVC)[23]. The model consists of eleven variables: thicknesses of B-
Pillar inner, B-Pillar reinforcement, floor side inner, cross members, door beam, door 
beltline reinforcement and roof rail, materials of B-Pillar inner, floor side inner, barrier 
height and hitting position (ݔଵ, … ,  ଵଵ), respectively. The problem is approximated byݔ
[23]with global response surface methodology and aims to minimize the weight of the 
components: 
 

Minimize: 
fሺxሬԦሻ ൌ 1.98 ൅ 4.90xଵ ൅ 6.67xଶ ൅ 6.98xଷ ൅ 4.01xସ ൅ 1.78xହ ൅ 2.73x଻ 
subject to:  

gଵሺxሬԦሻ ൌ 1.16 െ 0.3717xଶxସ െ 0.00931xଶxଵ଴ െ 0.484xଷxଽ ൅ 0.01343x଺xଵ଴  െ 1 ൑ 0 
gଶሺxሬԦሻ ൌ 0.261 െ 0.0159xଵxଶ െ 0.188xଵx଼ െ 0.019xଶx଻ ൅ 0.0144xଷxହ

൅ 0.0008757xହxଵ଴ ൅ 0.08045x଺xଽ ൅ 0.00139x଼xଵଵ
൅ 0.00001575xଵ଴xଵଵ  െ 0.32 ൑ 0 

gଷሺxሬԦሻ ൌ 0.214 ൅ 0.00817xହ െ 0.131xଵx଼ െ 0.0704xଵxଽ ൅ 0.03099xଶx଺ െ 0.018xଶx଻
൅ 0.0208xଷx଼ ൅ 0.121xଷxଽ െ 0.00364xହx଺ ൅ 0.0007715xହxଵ଴
െ 0.0005354x଺xଵ଴ ൅ 0.00121x଼xଵଵ  െ 0.32 ൑ 0 

gସሺxሬԦሻ ൌ 0.74 െ 0.061xଶ െ 0.163xଷx଼ ൅ 0.001232xଷxଵ଴ െ 0.166x଻xଽ ൅ 0.227xଶ
ଶ  

െ 0.32 ൑ 0 
gହሺxሬԦሻ ൌ 28.98 ൅ 3.818xଷ െ 4.2xଵxଶ ൅ 0.0207xହxଵ଴ ൅ 6.63x଺xଽ െ 7.7x଻x଼

൅ 0.32xଽxଵ଴ െ 32 ൑ 0 
g଺ሺxሬԦሻ ൌ 33.86 ൅ 2.95xଷ ൅ 0.1792xଵ଴ െ 5.057xଵxଶ െ 11.0xଶx଼ െ 0.0215xହxଵ଴

െ 9.98x଻x଼ ൅ 22.0x଼xଽ െ 32 ൑ 0 
g଻ሺxሬԦሻ ൌ 46.36 െ 9.9xଶ െ 12.9xଵx଼ ൅ 0.1107xଷxଵ଴ െ 32 ൑ 0 

g଼ሺxሬԦሻ ൌ 4.72 െ 0.5xସ െ 0.19xଶxଷ െ 0.0122xସxଵ଴ ൅ 0.009325x଺xଵ଴ ൅ 0.000191xଵଵ
ଶ

െ 4 ൑ 0 
gଽሺxሬԦሻ ൌ 10.58 െ 0.674xଵxଶ െ 1.95xଶx଼ ൅ 0.02054xଷxଵ଴ െ 0.0198xସxଵ଴ ൅ 0.028x଺xଵ଴

െ 9.9 ൑ 0 
gଵ଴ሺxሬԦሻ ൌ 16.45 െ 0.489xଷx଻ െ 0.843xହx଺ ൅ 0.0432xଽxଵ଴ െ 0.0556xଽxଵଵ

െ 0.000786xଵଵ
ଶ െ 15.7 ൑ 0 

 
where the bounds of the problem are 0.5 ൑ xଵ, xଷ, xସ ൑ 1.5, 0.45 ൑ xଶ ൑ 1.35, 

0.875 ൑ xହ ൑ 2.625, 0.4 ൑ x଺, x଻ ൑ 1.2, and 0.5 ൑ xଵ଴, xଵଵ ൑ 1.5. x଼and xଽ can attain 
only discrete values from the set ሼ0.192, 0.345ሽ.  

Gandomi et al. [23] used a newly emerging algorithm, firefly algorithm (FA) 
which mimics mate finding procedure of fire flies. A static penalty approach was 
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incorporated to the algorithm as a constraint handling mechanism. We refer this 
algorithm as penalty based Firefly Algorithm (PFA). 

Table 7:Comparison of results obtained by A2RL-ES and PFA 
Opt. Value  Method  Best  Mean  Worst  Std  FESav 

22.569 A2RL‐ES 22.569  22.6331  23.3585  2.46e­1  54840 

 PFA 22.8429 22.8937 24.0662 1.66e‐1 20000 

 

The reported results in Table 7 show that the algorithm is highly reliable and 
competitive when compared with PFA. A2RL-ES found a better solution, which is paid 
by more fitness function evaluation (FESav) on average[24].  

5. CONCLUSION 

Constrained optimization problems (COPs) require precisely tailored algorithms 
due to their complexity. If looked at from a different angle, inequality and equality 
constraints of a COP establish so called weak and strong relations among the problem 
variables, which may be exploited indirectly with the simplified (CMA)-like mutation 
operator. In this paper, we proposed an ES for constrained optimization which combines 
the correlated mutation operator and the ranking-based constraint handling strategy used 
by[5]. While the ranking-based constraint handling establishes a balance between 
feasible and infeasible population members, the algorithm learns the covariance matrix of 
the promising solutions in the vicinity of constraint boundaries, and increases the chance 
of generating individuals on the boundary. When compared with other algorithms, the 
algorithm delivers very promising results. The results on car-side design problem also 
indicate that A2RL-ES can deliver better results with more reliability. The robustness of 
the method is remarkable. The main drawback of the algorithm is its slightly lower 
convergence speed than the speed of the other methods for high dimensional problems.  
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