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Abstract. Pricing is a significant step in the simplex algorithm where an improving non-
basic variable is selected in order to enter the basis. This step is crucial and can dictate
the total execution time. In this paper, we perform a computational study in which the
pricing operation is computed with eight different pivoting rules: (i) Bland’s Rule, (ii)
Dantzig’s Rule, (iii) Greatest Increment Method, (iv) Least Recently Considered Method,
(v) Partial Pricing Rule, (vi) Queue Rule, (vii) Stack Rule, and (viii) Steepest Edge Rule;
and incorporate them with the revised simplex algorithm. All pivoting rules have been
implemented in MATLAB. The test sets used in the computational study are a set of
randomly generated optimal sparse and dense LPs and a set of benchmark LPs (Netlib-
optimal, Kennington, Netlib-infeasible).
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1. INTRODUCTION

Linear Programming (LP) is the process of minimizing or maximizing a lin-
ear objective function z =

∑n
i=1 ci · xi subject to a number of linear equality and

inequality constraints. Several algorithms have been proposed for solving linear
programming problems (LPs). The most well-known method for solving LPs is
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the simplex algorithm developed by George B. Dantzig [6]; other well-studied
algorithms include the Interior Point Methods and the Exterior Point Simplex
Algorithm (EPSA). The main idea of EPSA is that it moves in the exterior of
the feasible region and constructs basic infeasible solutions instead of feasible
solutions calculated by the simplex algorithm. A more effective approach is the
Primal-Dual Exterior Point Simplex Algorithm [17]. The aforementioned algo-
rithms can be used for solving general LPs or network optimization problems
[18].
Assuming that the problem is in its general form, the linear problem can be
formulated as shown in (LP.1).

min cTx
subject to Ax = b (LP.1)

x ≥ 0

where A ∈ Rm×n, (c, x) ∈ Rn, b ∈ Rm, and T denotes transposition. We assume that
A has full rank, rank(A) = m, where (m < n). The simplex algorithm searches for
the optimal solution by moving from one feasible solution to another, along the
edges of the feasible set. The dual problem associated with the linear problem
(LP.1) is shown in (DP.1).

max bTw
subject to ATw + s = c (DP.1)

s ≥ 0

where w ∈ Rm and s ∈ Rn. AB is an m × m non-singular sub-matrix of A, called
basic matrix or basis. The columns of A which belong to subset B are called basic
and those which belong to N are called non basic. A column Al is selected in each
step in order to enter the basis and a column Ar to leave the basis. The variable
l is called entering variable and is computed according to a pivoting rule in each
iteration of the simplex algorithm.
The selection of the entering variable is a crucial step of the simplex algorithm
and is performed according to a pivoting rule. Good pivoting rules can lead to a
fast convergence to the optimal solution, while poor pivoting rules lead to worst
execution times or even no solutions of the LPs. A pivoting rule is one of the
main factors that will determine the number of iterations that simplex algorithm
performs [14]. Hence, the pivoting rule applied for the selection of the entering
variable should be designed and implemented carefully. Many pivoting rules
have been proposed in the literature. Eight of these are presented and compared
in this paper; namely, (i) Bland’s Rule, (ii) Dantzig’s Rule, (iii) Greatest Increment
Method, (iv) Least Recently Considered Method, (v) Partial Pricing Rule, (vi)
Queue Rule, (vii) Stack Rule, and (viii) Steepest Edge Rule. Other well-known
pivoting rules include Devex [12], Modified Devex [2], Steepest Edge approxima-
tion scheme [19], Murtys Bard type scheme [15], Edmonds-Fukuda rule [8] and
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its variants [5] [22] [24] [25].
There are a few papers in the literature that have focused in the pricing step and
fewer that compared pivoting rules. Forrest and Goldfarb [7] proposed several
new implementations of Steepest Edge Rule and compared them with Devex
variants and Dantzig’s Rule over large LPs. They concluded that the Steepest
Edge variants are clearly superior to Devex variants and Dantzig’s Rule for solv-
ing difficult large-scale LPs. Thomadakis [20] has compared five pivoting rules:
(i) Bland’s Rule, (ii) Dantzig’s Rule, (iii) Greatest-Increment Method, (iv) Least-
Recently Considered Method, and (v) Steepest-Edge Rule. Thomadakis studied
the trade-off between the number of iterations and the execution time per iteration
and find that: (i) Bland’s Rule requires the shortest execution time per iteration,
but it usually needs many more iterations than the other methods to converge to
the optimal solution, (ii) Dantzig’s Rule and Least Recently Considered Method
perform comparably, but the latter requires fewer iterations in cases where de-
generate pivots exist, (iii) the computational cost per iteration in the Greatest
Increment Method is greater than the aforementioned methods, but it usually
leads to fewer iterations, and (iv) the Steepest-Edge Rule requires fewer iterations
than all other pivoting rules and its computational cost is lower than Greatest
Increment Method but higher than the other three methods.
To the best of our knowledge, the aforementioned are the only papers that com-
pared some of the most widely-used pivoting rules. This paper is an extension
of the work of Thomadakis [20] where eight well-known pivoting rules are com-
pared. Thomadakis [20] has focused on the number of iterations and the execution
time per iteration, while we also investigate the total execution time of the simplex
algorithm relating to the pivoting rule that is used.
The structure of the paper is as follows: in Section 2, eight widely-used pivoting
rules are presented. In Section 3, the computational comparison of the pivoting
rules is presented over randomly generated optimal sparse and dense LPs and on
a set of benchmark LPs (Netlib-optimal, Kennington, Netlib-infeasible). Finally,
the conclusions of this paper are outlined in Section 4.

2. PIVOTING RULES

Eight pivoting rules are presented in this section: (i) Bland’s Rule, (ii) Dantzig’s
Rule, (iii) Greatest Increment Method, (iv) Least Recently Considered Method, (v)
Partial Pricing Rule, (vi) Queue Rule, (vii) Stack Rule, and (viii) Steepest Edge
Rule. Some necessary notations should be introduced, before the presentation
of the aforementioned pivoting rules. Let l be the index of the entering variable
and cl be the difference in the objective value when the non-basic variable xl is
increased by one unit and the basic variables are adjusted appropriately. Reduced
cost is the amount by which the objective function on the corresponding variable
must be improved before the value of the variable will be positive in the optimal
solution.
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2.1. Bland’s Rule
According to Bland’s Rule [3], the first variable among the eligible ones is

selected as the entering variable. This variable is the leftmost among columns
with negative relative cost coefficient. Bland’s Rule avoids cycling, but it has
been observed in practice that it can lead to stalling, a phenomenon where long
degenerate paths are produced.

2.2. Dantzig’s Rule
Dantzig’s rule or Largest Coefficient Rule [6] is the first pivoting Rule that was

used in the simplex algorithm. It has been widely-used in simplex implementa-
tions [1] [16]. This pivoting Rule selects the column Al with the most negative
cl. It guarantees the largest reduction in the objective value per unit of non-basic
variable cl increase. Its worst-case complexity is exponential [13]. However,
Dantzig’s Rule is considered as simple but powerful enough to guide simplex
algorithm into short paths [20].

2.3. Greatest Increment Method
Greatest Increment Method [13] selects as entering variable the one with the

largest total objective value improvement. Initially, the improvement of the ob-
jective value for each non-basic variable is calculated. Then, the variable, which
offers the largest improvement in the objective value, is selected. Although this
pivoting Rule can lead to fast convergence to the optimal solution, this advan-
tage is eliminated by the additional computational cost per iteration. Finally,
Gärtner [9] constructed LPs that Greatest Increment Method showed exponential
complexity.

2.4. Least Recently Considered Method
According to Least Recently Considered Method, in the first iteration of the

simplex algorithm, the incoming variable l is selected according to Bland’s Rule,
that is the leftmost among columns with negative relative cost coefficient. In
the next iterations, Least Recently Considered Method [23] starts searching for
the first eligible variable with index greater than l. If l = n then Least Recently
Considered Method starts searching from the first column again. This pivoting
Rule prevents stalling and it performs fairly well in practice [20]. However, its
worst-case complexity has not been proved yet.

2.5. Partial Pricing Rule
Partial Pricing methods are variants of the standard pivoting rules that take

only a part of non-basic variables into account. In static partial pricing, non-basic
variables are divided into equal segments with predefined size and the pricing
operation is carried out segment by segment, until a reduced cost is found. In
dynamical partial pricing, the segments’ size is determined dynamically during
the execution of the algorithm. In the computational study presented in Section
3, we have implemented Partial Pricing Rule as a variant of Dantzig’s Rule with
static partial pricing.
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2.6. Queue Rule
Queue is a FIFO (First-In-First-Out) data structure, where the first element

added to the queue is the first one to be removed. In this pivoting Rule, two queues
are initially constructed; the first one stores the indices of the basic variables, while
the other the indices of the non-basic variables. The entering and leaving variables
are selected from the front of the corresponding queue. The variable, which is
extracted from the front of the queue that stores the basic variables, is inserted to
the end of the queue that stores the non-basic variables. Respectively, the variable,
which is extracted from the front of the queue that stores the non-basic variables,
is inserted to the end of the queue that stores the basic variables.

2.7. Stack Rule
Stack is a LIFO (Last-In-First-Out) data structure, where the last element added

to the stack is the first one to be removed. In the stack Rule, the entering and
leaving variables are selected from the top of the corresponding stack. The vari-
able, which is extracted from the top of the stack that stores the basic variables, is
inserted to the top of the stack that stores the non-basic variables. Respectively,
the variable, which is extracted from the top of the stack that stores the non-basic
variables, is inserted to the end of the stack that stores the basic variables.

2.8. Steepest Edge Rule
Steepest Edge Rule or All-Variable Gradient Method [11] selects as entering

variable the variable with the most objective value reduction per unit distance.
This pivoting Rule can lead to fast convergence to the optimal solution. How-
ever, this advantage is debatable due to the additional computational cost. Ap-
proximate methods have been proposed in order to improve the computational
efficiency of this method [19] [21].

3. COMPUTATIONAL RESULTS

Computational studies have been widely-used in order to examine the prac-
tical efficiency of an algorithm or even compare algorithms. In this section, we
present a computational study of the aforementioned pivoting rules. The com-
putational comparison has been performed on a quad-processor Inter Core i7 3.4
GHz with 32 Gbyte of main memory and 8 cores. The revised simplex method and
the pivoting rules have been implemented using MATLAB Professional R2013a.
MATLAB is a powerful programming environment and is especially designed for
matrix computations.
The test sets used in the computational study are a set of randomly generated
optimal sparse and dense LPs and a set of benchmark LPs (Netlib-optimal, Ken-
nington, Netlib-infeasible) [10] [4]. Table 1 presents some useful information
about the second test bed, which was used in the computational study. The first
column includes the name of the problem, the second the number of constraints,
the third the number of variables, the fourth the nonzero elements of matrix A
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and the fifth the optimal objective value. The test bed includes 40 optimal and
5 infeasible LPs from Netlib and 3 Kennington LPs that do not have ranges and
bounds sections in their mps files.

In Tables 2 - 7, the following abbreviations are used: (i) Bland’s Rule - BR, (ii)
Dantzig’s Rule - DR, (iii) Greatest Increment method - GIM, (iv) Least Recently
Considered method - LRCM, (v) Partial Pricing Rule - PPR, (vi) Queue Rule - QR,
(vii) Stack Rule - SR, and (viii) Steepest Edge Rule - SER. For each instance we
averaged times over 10 runs. All times are measured in seconds. A limit of 70, 000
iterations was set that explains why there are no measurements for some pivoting
rules on specific instances. Finally, the objective value calculated using each
pivoting rule was accurate with a precision of 8 decimal digits. Table 2 presents the
results from the total execution time of the revised simplex algorithm combined
with the aforementioned pivoting rules over the benchmark LPs (Netlib-optimal,
Kennington, Netlib-infeasible), while Table 3 the iterations needed.
From the following results, we observe that only Dantzig’s Rule has solved all
instances, while Bland’s Rule solved 45 out of 48 instances, Greatest Increment
method solved 46 out of 48, Least Recently Considered method solved 45 out
of 48, partial pricing solved 45 out of 48, Queue’s Rule solved 41 out of 48,
Stacks’ Rule solved 43 out of 48, and Steepest Edge Rule solved 46 out of 48.
Furthermore, Dantzig’s Rule requires the shortest execution time both on average
and on almost all instances. On the other hand, Steepest Edge Rule has the
worst execution time both on average and on almost all instances. Despite its
computational cost, Steepest Edge Rule needs the fewest number of iterations
than all the other pivoting rules, while Bland’s Rule is by far the worst pivoting
rule in terms of the number of iterations.

Table 4 presents the results from the total execution time of the revised simplex
algorithm combined with the aforementioned pivoting rules over the randomly
generated sparse LPs with density 10%, while Table 5 presents the iterations
needed. From the following results, we observe that all pivoting rules have
solved all instances. Again, Dantzig’s Rule requires the shortest execution time
both on average and on all instances. On the other hand, Steepest Edge Rule
has the worst execution time both on average and on all instances. Despite its
computational cost, Steepest Edge Rule needs the fewest number of iterations
than all the other pivoting rules, while Bland’s Rule is the worst pivoting rule in
terms of the number of iterations.

Table 6 presents the results from the total execution time of the revised simplex
algorithm combined with the aforementioned pivoting rules over the randomly
generated dense LPs, while Table 7 presents the iterations needed. From the
following results, we extract the same results as in the benchmark LPs and the
sparse LPs.

4. CONCLUSIONS

The selection of the entering variable is a crucial step in the revised simplex
algorithm and should be carefully designed in order to economize this operation.
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Table 1: Statistics of the Netlib set (Optimal, Kennington and Infeasible LPs)
Name ConstraintsVariablesNon-zeros AObjective value

25FV47 822 1,571 11,127 5.50E+03
ADLITTLE 57 97 465 2.25E+05

AFIRO 28 32 88 -4.65E+02
AGG 489 163 2,541 -3.60E+07

AGG2 517 302 4,515 -2.02E+07
AGG3 517 302 4,531 1.03E+07

BANDM 306 472 2,659 -1.59E+02
BEACONFD 174 262 3,476 3.36E+04

BLEND 75 83 521 -3.08E+01
BNL1 644 1,175 6,129 1.98E+03
BNL2 2,325 3,489 16,124 1.81E+03

BRANDY 221 249 2,150 1.52E+03
CRE A 3,517 4,067 19,054 2.36E+07
CRE C 3,069 3,678 16,922 2.53E+07

DEGEN2 445 534 4,449 -1.44E+03
E226 224 282 2,767 -1.88E+01

FFFFF800 525 854 6,235 5.56E+05
ISRAEL 175 142 2,358 -8.97E+05
ITEST2 10 4 17 Infeasible
ITEST6 12 8 23 Infeasible
KLEIN1 55 54 696 Infeasible
KLEIN2 478 54 4,585 Infeasible
KLEIN3 995 88 12,107 Infeasible
LOTFI 154 308 1,086 -2.53E+01

OSA-07 1,119 23,949 167,643 5.36E+05
SC50A 51 48 131 -6.46E+01
SC50B 51 48 119 -7.00E+01
SC105 106 103 281 -5.22E+01
SC205 206 203 552 -5.22E+01

SCAGR7 130 140 553 -2.33E+06
SCFXM1 331 457 2,612 1.84E+04
SCFXM2 661 914 5,229 3.67E+04
SCFXM3 991 1,371 7,846 5.49E+04

SCORPION 389 358 1,708 1.88E+03
SCRS8 491 1,169 4,029 9.04E+02

SCTAP1 301 480 2,052 1.41E+03
SCTAP2 1,091 1,880 8,124 1.72E+03
SCTAP3 1,481 2,480 10,734 1.42E+03

SHARE1B 118 225 1,182 -7.66E+04
SHARE2B 97 79 730 -4.16E+02
SHIP04L 403 2,118 8,450 1.79E+06
SHIP04S 403 1,458 5,810 1.80E+06
SHIP08L 779 4,283 17,085 1.91E+06
SHIP08S 779 2,387 9,501 1.92E+06
SHIP12L 1,152 5,427 21,597 1.47E+06
SHIP12S 1,152 2,763 10,941 1.49E+06

STOCFOR1 118 111 474 -4.11E+04
STOCFOR2 2,158 2,031 9,492 -3.90E+04
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Table 2: Total Execution Time of Benchmark LPs (Netlib-optimal, Kennington, Netlib-infeasible)
Name BR DR GIM LRCM PPR QR SR SER

25FV47 - 63.26 - - - - - 6,504.45
ADLITTLE 0.03 0.06 0.02 0.04 0.02 0.03 0.03 0.04

AFIRO 0.01 0.004 0.005 0.01 0.01 0.01 0.01 0.004
AGG 0.06 0.05 0.1 0.07 0.07 0.07 0.07 0.2

AGG2 0.14 0.11 0.41 0.11 0.11 0.13 0.15 1.24
AGG3 0.22 0.13 0.49 0.26 0.22 0.2 0.29 1.39

BANDM 1.33 0.48 0.8 1.28 1.08 - 1.98 1.88
BEACONFD 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02

BLEND 0.05 0.03 0.07 0.77 0.06 2.06 0.09 0.04
BNL1 181.4 20.92 30.2 95.43 53.2 - - 264.11
BNL2 - 211.51 - - - - - -

BRANDY 1.69 0.16 0.34 0.51 0.67 0.39 0.78 0.56
CRE A 1,205.65 100.33 4,156.39 3,109.87 145.63 287.45 210.48 5,567.89
CRE C 830.45 84.59 255.67 325.41 224.2 320.35 165.39 2,801.39

DEGEN2 15.89 2.48 5.01 39.64 15.67 - 9.2 16.86
E226 1.31 0.25 0.95 0.69 0.76 - 0.86 2.21

FFFFF800 4.04 0.49 3.31 1.39 1.98 - 2.48 15.9
ISRAEL 0.12 0.12 0.16 0.17 0.14 0.15 0.19 0.41
ITEST2 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
ITEST6 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.003
KLEIN1 0.02 0.03 0.07 0.05 0.04 0.06 0.05 0.05
KLEIN2 2.25 0.45 0.46 1.42 1.07 0.77 1.63 1.29
KLEIN3 24.05 6.8 3.68 17.75 19.33 7.34 71.12 15.22
LOTFI 0.27 0.12 0.39 0.16 0.2 0.25 0.23 0.75
OSA-07 8.95 6.31 14.07 3.86 22.11 14.11 9.54 -
SC50A 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SC50B 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SC105 0.03 0.02 0.03 0.03 0.03 0.03 0.04 0.04
SC205 0.1 0.11 0.16 0.15 0.11 0.16 0.16 0.3

SCAGR7 0.1 0.05 0.11 0.1 0.08 0.1 0.12 0.08
SCFXM1 1.73 0.4 1.43 0.82 1.32 0.84 2.03 2.92
SCFXM2 17.81 2.54 7.86 8.01 11.29 12.34 9.87 15.64
SCFXM3 45.65 7.98 48.13 28.67 33.16 29.65 - 80.67

SCORPION 0.28 0.24 0.3 0.26 0.27 0.27 - 0.41
SCRS8 - 1.3 4.83 - - 3.73 1.62 29.4

SCTAP1 0.5 0.16 0.77 0.37 0.49 0.34 0.48 2.77
SCTAP2 5.28 3.6 38.04 6.92 7.08 5.29 6.97 58.28
SCTAP3 9.64 6.2 92.85 10.5 17.1 10.72 13.7 335.03

SHARE1B 0.58 0.09 0.22 0.26 0.32 0.2 0.41 0.37
SHARE2B 0.07 0.03 0.06 0.05 0.06 0.06 0.06 0.06
SHIP04L 0.89 0.85 3.22 0.95 0.99 1.44 1.41 2.43
SHIP04S 0.33 0.32 1.19 0.38 0.37 0.54 0.48 1.06
SHIP08L 6.39 4.01 13.14 4.65 5.86 7.99 6.25 15.79
SHIP08S 1.21 0.59 2.36 0.68 0.78 1.26 0.99 5.91
SHIP12L 9.84 9.14 33.19 9.76 11.08 13.79 12 39.77
SHIP12S 1.35 1.13 5.54 1.38 1.42 2.21 1.75 5.32

STOCFOR1 0.07 0.03 0.06 0.06 0.06 0.05 0.08 0.05
STOCFOR2 140.14 34.04 81.46 84.34 98.13 85.65 120.56 130.13
AVERAGE 56 11.91 104.51 83.49 15.04 19.76 15.2 346.14
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Table 3: Number of Iterations of Benchmark LPs (Netlib-optimal, Kennington, Netlib-infeasible)
Name BR DR GIM LRCM PPR QR SR SER

25FV47 - 6,522 - - - - - 1,510
ADLITTLE 198 118 82 239 209 172 205 100

AFIRO 24 11 9 18 20 18 20 10
AGG 106 73 69 124 111 104 108 69

AGG2 184 141 127 167 132 157 172 122
AGG3 300 153 145 386 293 234 359 134

BANDM 1,654 544 279 1,561 1,346 - 2,467 252
BEACONFD 40 22 22 30 23 31 31 22

BLEND 170 102 104 3,069 198 7,280 271 60
BNL1 36,078 4,447 1,643 25,096 12,673 - - 866
BNL2 - 8,517 - - - - - -

BRANDY 4,401 360 275 1,368 1,876 999 2,165 330
CRE A 64,132 5,487 3,098 14,856 4,867 13,985 12,045 1,801
CRE C 52,134 5,126 2,854 21,098 14,378 18,654 11,345 1,530

DEGEN2 7,415 844 569 19,392 6,678 - 4,014 441
E226 2,687 522 285 1,585 1,664 - 1,673 235

FFFFF800 6,499 457 403 1,890 2,517 - 3,523 253
ISRAEL 371 363 150 492 416 394 505 141
ITEST2 4 4 4 4 4 4 4 4
ITEST6 4 4 4 4 4 4 4 4
KLEIN1 90 190 102 276 182 267 225 117
KLEIN2 2,515 554 231 1,623 1,245 832 1,972 466
KLEIN3 7,805 2,411 602 6,114 6,840 2,408 24,398 1,263
LOTFI 708 351 191 431 527 570 577 144

OSA-07 6,405 1,059 860 3,546 7,011 4,015 3,330 -
SC50A 33 30 28 33 30 29 38 27
SC50B 29 31 30 34 31 31 34 30
SC105 73 66 53 69 81 70 106 56
SC205 141 139 124 221 155 211 235 115

SCAGR7 241 87 87 236 164 207 268 73
SCFXM1 1,756 403 388 1,025 1,486 836 2,007 286
SCFXM2 5,378 786 1,198 3,101 4,013 4,421 2,689 541
SCFXM3 7,745 1,227 2,453 4,854 4,578 4,801 - 789

SCORPION 155 112 117 157 141 154 - 111
SCRS8 - 658 348 - - 2,639 1,155 373

SCTAP1 814 284 284 614 675 491 684 167
SCTAP2 2,283 1,132 1,378 2,653 2,348 2,300 2,329 333
SCTAP3 2,501 2,862 1,733 2,582 3,426 2,683 2,972 619

SHARE1B 1,860 200 92 762 955 493 1,134 162
SHARE2B 294 104 100 220 276 212 249 77
SHIP04L 368 227 241 500 326 508 572 211
SHIP04S 243 208 167 412 240 337 282 152
SHIP08L 3,788 469 443 1,479 2,130 2,093 1,317 377
SHIP08S 1,696 237 237 522 457 774 571 224
SHIP12L 1,795 733 731 1,751 1,668 1,892 1,460 633
SHIP12S 929 378 432 990 665 1,032 758 324

STOCFOR1 235 69 70 206 200 131 212 70
STOCFOR2 11,034 1,617 2,013 6,010 5,890 5,541 9,145 1,386
AVERAGE 5,273.67 1,050.85 540.33 2,928.89 2,069.98 2,000.34 2,270.47 369.78
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Table 4: Total Execution Time of Sparse LPs with Density 10%
Size BR DR GIM LRCM PPR QR SR SER

1000x1000 8.56 1.85 30.90 10.63 3.86 4.43 2.34 62.75
1500x1500 10.08 3.08 34.47 38.41 7.40 11.33 11.22 75.42
2000x2000 311.45 52.53 242.92 152.15 42.57 173.61 72.08 815.51
2500x2500 229.24 28.50 653.84 279.66 94.94 57.88 81.96 841.23
3000x3000 122.71 32.19 288.41 254.47 61.78 100.66 49.81 2,283.19
AVERAGE 136.41 23.63 250.10 147.07 42.11 69.58 43.48 815.62

Table 5: Number of Iterations of Sparse LPs with Density 10%
Size BR DR GIM LRCM PPR QR SR SER

1000x1000 1,161 140 196 417 353 406 553 91
1500x1500 566 163 79 686 255 282 764 30
2000x2000 6,122 784 1,081 1,203 2,443 3,665 4,993 222
2500x2500 1,424 922 480 2,992 2,092 571 3,068 122
3000x3000 1,599 422 314 2,371 508 1,405 609 312
AVERAGE 2,174.60 486.26 430.29 1,533.86 1,130.26 1,265.85 1,997.38 155.33

Table 6: Total Execution Time of Dense LPs
Size BR DR GIM LRCM PPR QR SR SER

1000x1000 29.55 5.74 63.34 48.48 8.95 13.42 9.58 160.64
1500x1500 56.03 12.00 157.17 114.46 22.56 34.55 22.56 305.47
2000x2000 719.45 134.48 1,217.01 1,030.08 169.44 423.60 200.37 4,053.10
2500x2500 797.75 132.52 1,981.13 836.18 190.82 261.06 266.36 3,238.72
3000x3000 624.58 157.72 1,312.25 1,402.15 313.87 400.61 227.12 4,575.52
AVERAGE 445.47 88.49 946.18 686.27 141.13 226.65 145.20 2,466.69

Table 7: Number of Iterations of Dense LPs
Size BR DR GIM LRCM PPR QR SR SER

1000x1000 4,132 628 477 2,091 1,287 1,262 2,342 182
1500x1500 2,254 523 282 2,359 962 968 1,857 129
2000x2000 18,428 3,537 4,421 7,357 9,797 8,595 12,132 983
2500x2500 6,496 2,158 1,446 11,998 4,079 2,827 9,582 433
3000x3000 8,172 1,816 1,707 11,877 2,797 4,849 3,033 453
AVERAGE 7,896.34 1,732.40 1,666.77 7,136.41 3,784.49 3,700.09 5,789.05 435.97
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Eight well known pivoting rules have been reviewed and compared in this pa-
per. The computational study over a set of randomly generated optimal sparse
and dense LPs and a set of benchmark LPs (Netlib-optimal, Kennington, Netlib-
infeasible) showed that only Dantzig’s Rule solved all instances. Furthermore,
Dantzig’s Rule performs better than the other pivoting rules in terms of execution
time both on randomly generated and benchmark LPs. Finally, the Steepest Edge
Rule requires the fewest number of iterations, but it has the worst execution time
compared to the other pivoting rules.
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