
Yugoslav Journal of Operations Research 
24 (2014), Number 3, 359-370 
DOI: 10.2298/YJOR140401033C 

DECISION MAKING WITH CONSONANT BELIEF 
FUNCTIONS: DISCREPANCY RESULTING WITH THE 
PROBABILITY TRANSFORMATION METHOD USED 

Esma Nur CINICIOGLU 
School of Business, Istanbul University, Istanbul, TURKEY 

esmanurc@istanbul.edu.tr 

Received: April 2014 / Accepted: October 2014 

Abstract: Dempster−Shafer belief function theory can address a wider class of 
uncertainty than the standard probability theory does, and this fact appeals the 
researchers in operations research society for potential application areas. However, the 
lack of a decision theory of belief functions gives rise to the need to use the probability 
transformation methods for decision making. For representation of statistical evidence, 
the class of consonant belief functions is used which is not closed under Dempster’s rule 
of combination but is closed under Walley’s rule of combination. In this research, it is 
shown that the outcomes obtained using both Dempster’s and Walley’s rules do result in 
different probability distributions when pignistic transformation is used. However, when 
plausibility transformation is used, they do result in the same probability distribution. 
This result shows that the choice of the combination rule and probability transformation 
method may have a significant effect on decision making since it may change the choice 
of the decision alternative selected. This result is illustrated via an example of missile 
type identification.  
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1. INTRODUCTION 

Belief functions represent ignorance, and a wider class of uncertainty than the 
standard probability theory, which creates a flexible framework for any sort of 
application where information is gathered from semi-reliable resources. For that reason 
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belief functions establish a major appeal to operation researchers for potential application 
areas wherein uncertainty is involved. Belief functions has been used in a wide range of 
applications such as target identification (Delmotte and Smets 2004), data fusion 
(Appriou 1997), auditing (Srivastava et al. 2011), and data mining (Wickramaratna et al. 
2009).  

Belief functions theory originates to the early works of Dempster (1967 & 1968) 
on upper and lower limits of probability. This work was developed by Shafer (1976) and 
thus, belief functions are also named as Dempster-Shafer theory of belief functions, or 
theory of evidence. 

For combination of independent belief functions, Dempster’s rule of 
combination is the classical one, and the most widely used rule in Dempster-Shafer (D-S) 
theory. However, the rule has been criticized on various matters. One of the criticisms 
made at DS combination rule is the fact that consonant belief functions are not closed 
under Dempster’s rule of combination. As a remedy to this problem, Walley (1987) 
proposed an alternative rule for combination of belief function representations of 
statistical evidence. Consonant belief functions are closed under Walley’s rule of 
combination; however, the drawback of Walley’s rule is that it is only defined for 
partially consonant belief functions. A detailed review and comparison of these two 
combination rules is done by Cinicioglu and Shenoy (2006). In their work they also 
showed that when plausibility transformation is applied to outcomes obtained by 
Dempster’s and Walley’s combination rule, they do result in the same probability 
distribution function. The fact that there is no decision theory of belief functions gives 
rise to the need to transform belief functions into probability distributions. Consequently, 
according to the result obtained by Cinicioglu and Shenoy (2006), a decision made with 
the expected utility theory would be indifferent of the combination rule (Dempster or 
Walley’s rule) used. On the other hand, though plausibility transformation is one of the 
available methods of probability transformation, it is not the only one. In this research, 
both pignistic and the plausibility transformation are used to transform the outcomes of 
both of the combination rules into a probability distribution. It is shown that when 
pignistic transformation is used on the outcomes obtained from both of the combination 
rules, the result is different probability distributions. So, the choice of the combination 
rule, and the resulting discrepancy, depending on the transformation method used, may 
have significant effect on decisions.  

The remainder of the paper is as follows: In section 2, the basics of belief 
functions theory and consonant belief functions are introduced. Additionally, two 
combination rules, the classical rule of Dempster and Walley’s combination rule for 
consonant belief functions are demonstrated via an example of Missile Fall Down. In 
section 3, the need for probability transformation is explained, and the two 
transformation methods, plausibility and pignistic transformation are applied to the 
results of the combinations. The discrepancy resulting from the choice of the 
combination and/or transformation method is demonstrated. Finally, in section 4, we 
summarize and conclude. 
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2. EVIDENCE THEORY 

2.1. Belief Functions 

Belief functions theory is also called the theory of evidence since it deals with 
weights of evidence and with numerical degrees of support based on evidence (Shafer 
1976). The main advantage of belief functions lies in their ability to represent ignorance 
and ambiguity. As shown by Ellsberg’s paradox (1961), the probability theory is unable 
to distinguish between a situation of complete ignorance and a situation where we have 
complete knowledge (Srivastava, 1997). Dempster-Shafer theory allows the description 
of partial or complete ignorance, since the belief not accorded to a proposition does not 
have to be accorded to the negation of that proposition (Cattaneo, 2011).  

There are several equivalent ways of representing a belief function, namely 
basic probability assignment, belief function, plausibility function, and a commonality 
function.  

Consider a set of mutually exclusive and exhaustive propositions,  
Θ = {θ1, θ2, …, θK}, referred to as frame of discernment. A proposition θi states the 
lowest level of discernible information. Any proposition that is not singleton, e.g. 
{θ1, θ2}, is referred to as a composite.  

A basic probability assignment (bpa) m for Θ is a function m: 2Θ → [0, 1] such 
that   

m(∅) =0 and Σ{m(A) | A ⊆ Θ}=1      (1) 
m(A) is a measure of the belief that is committed exactly to A. If m(A) > 0, then 

A is called a focal element of m. Note that if ܣҧ is the complement of A, then  
m(A) + m(ܣҧ ) ≤ 1. Basic probability assignment differ from a probability function in that 
they can assign a measure of belief to a subset of the state space without assigning any 
belief  to its elements. If all the focal elements are singletons, a belief function is reduced 
to a Bayesian probability function (Shafer 1976). Consequently, belief function calculus 
is a generalization of probability calculus, and any Bayesian model of uncertainty is also 
a belief function model (Shafer and Srivastava 1990) 

There are three important functions in DS theory, belief functions, plausibility 
functions, and commonality functions. They can all be defined in terms of the basic 
probability assignments.  

A belief function Bel corresponding to a bpam is a function  
Bel: 2Θ → [0, 1] such that Bel(A) = Σ{m(B) | B ⊆ A} for all A ⊆ Θ (2) 
Bel(A) can be interpreted as the probability of obtaining a set observation that 

implies the occurrence of A. 
A plausibility function Pl corresponding to a bpam is a function  
Pl: 2Θ → [0, 1] such that Pl(A) = Σ{m(B) | B∩A ≠ ∅} for all A ⊆ Θ (3) 
Pl(A) can be interpreted as the probability of obtaining a set observation that is 

consistent with some element of A. 
A commonality function Q corresponding to bpam is a function  
Q: 2Θ → [0, 1] such that Q(A) = Σ{m(B) | B ⊇ A} for all A ⊆ Θ (4) 
Q(A) can be interpreted as the probability of obtaining a set observation that is 

consistent with every element of A. Since the m-values add to one, commonality 
functions have the property: 
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Notice that for singleton subsets {θ}, the definitions of plausibility and 
commonality functions coincide, i.e., Q({θ}) = Pl({θ}) for all θ ∈ Θ. 

 
A famous example named “Betty’s testimony”, given by Shafer & Srivastava 

(1990), demonstrates the fact that belief functions base the beliefs on the evidence. 
Suppose that I have a friend called Betty, and according to my subjective probability, 
Betty is reliable 90% of time, and she is unreliable 10% of time.  

Accordingly, P(Betty = reliable) = 0.9,  P(Betty = unreliable) = 0.1. 
Betty tells me a tree limb fell on my car. Betty's statement must be true if she is 

reliable, but it is not necessarily false if she is unreliable. So, representing this situation 
under a belief function framework, the following results are obtained:   

Bel(limb fell) = 0.9 Bel(no limb fell) = 0 
It does not mean that I am sure that no limb fell on my car, as a zero probability 

would. This zero value only means that Betty's testimony gives me no reason to believe 
that no limb fell on my car.  

In the following section, consonant belief functions are introduced, and the use 
of consonant belief functions for representation of statistical evidence is demonstrated.  

 
2.2. Consonant Belief Functions 

A belief function is said to be consonant if its focal elements are nested, 
meaning that each is contained in the following one (Shafer, 1976). The nested structure 
of consonant belief functions restricts the number of focal elements the belief function 
may have. In a belief function which is not consonant, depending on the number of 
elements n, the belief function may have up to 2n – 1 focal elements. This property of 
consonant belief functions makes it preferable for representation of statistical evidence 
(Shafer 1976). However, when Dempster’s rule is applied for combination of consonant 
belief functions, then the resulting belief function is not consonant any more. For that 
reason, an alternative rule was proposed by Walley (1987) for combination of partially 
consonant belief functions.  

An example of a consonant bpa m with the frame of discernment  
{x, y, z}, and the focal elements {x}, {x, z} and {x, y, z} is as follows: m({x}) = 0.5,  
{x, z} = 0.1 and {x, y, z} = 0.4. The corresponding belief, plausibility, and commonality 
functions are given in Table 1.  
 
Table 1:Different representations of a consonant belief function 

A m(A) Bel(A) Pl(A) Q(A) 
{x} 0.5 0.5 1.0 1.0 
{y}   0.4 0.4 
{z}   0.5 0.5 

{x, y}  0.5 1.0 0.4 
{x, z} 0.1 0.6 1.0 0.5 
{y, z}   0.5 0.4 

{x, y, z} 0.4 1.0 1.0 0.4 
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A type of consonant belief functions is partially consonant belief functions, 
where the state space is partitioned and with focal elements nested within each element of 
partition, (Walley, 1987). Partially consonant belief functions are the only class of DS 
belief functions that are consistent with the likelihood principle of statistics. A decision 
theory for partially consonant belief functions is proposed by Giang and Shenoy (2011).  

An example for representation of statistical evidence that use consonant belief 
functions is provided below as “Missile Fall Down”. 

 
Example: Missile Fall Down 
Suppose that an attack has been placed, and three foe missiles are thrown to the 

country of Neverland. The missile defense system of Neverland is able to shut down two 
of the three missiles. Neverland Security Defense Deputy has the information that all 
three foe missiles are of the same type, either type X309, type Y118, or type Z127. 
However, they do not know which type these three foe missiles do belong. These three 
types use different technologies and hence have different likelihoods for being shut down 
by the missile defense system of Neverland. Let MT denote the missile type and let the 
state space of MT be denoted by ΩMT = {X309, Y118, Z127}. Let F denote the result of 
Neverland Missile Defense Systems’ response, f  indicate the foe missile fell down, nf 
indicate it did not fell down (it was missed by the missile defense system of Neverland) 
ΩF = {f, nf}. The probabilistic likelihoods for each type of foe missile for being shut 
down by Neverland forces are as follows:  

 
P(f| X309) =  7/10 P(nf| X309) = 3/10 
P(f| Y118) =  5/10 P(nf| Y118) = 5/10   
P(f| Z127) =  3/10 P(nf| Z127) = 7/10 
 
In this example, for representation of evidences observed (either the missile fall 

down or did not),  a consonant belief function framework seems reasonable, since the 
number of parameters needed for a consonant belief function representation is the same 
as the number of likelihoods available, three. A belief function which is not consonant 
would require 23−1 parameters instead.  Additionally, notice that the likelihood of X309 
is greater than the likelihood of Y118 (for the fall down), and the likelihood of Y118 is 
greater than the likelihood of Z127. Following this intuition, an evidence x should lend 
the plausibility to a singleton {θ}ؿΘ  in strict proportion to the chance that qθ assigns x, 
i.e., that x should determine a plausibility function Plx obeying  

Plx({θ}) = cqθ(x) for all θ � Θ      (6)  
for all θ � Θ, where the constant c does not depend on θ (Shafer, 1976). Together with 
the assumption of consonance, a plausibility function is completely determined  
Plx: 2Θ→[0,1], since the plausibility of the most likely singleton is 1, the constant  c  is 
determined as the reciprocal of the largest likelihood. Consequently, it may be concluded, 
having observed that foe missile fell down, that the foe missile of type X309 is more 
plausible than Y118, and that Y118 is more plausible than X309. Conversely, observing 
that Neverland’s defense missiles were not able to hit the foe missiles, it may be 
concluded that the foe missile of type Z127 is more plausible than the type Y118, and 
Y118 is more plausible than X309. Thus, the plausibilities Pl for the singleton subsets of 
MT, based on the evidence observed (f, nf), can be identified as follows:  
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Plf({X309}) = (10/7)(7/10) =1  Plnf({X309}) = (10/7)(3/10) =3/7
 Plf({Y118}) = (10/7)(5/10) = 5/7  Plnf({Y118}) = (10/7)(5/10) =5/7
 Plf({Z127}) = (10/7)(3/10) =3/7  Plnf({Z127}) = (10/7)(7/10)=1
  

 
The corresponding bpa of these consonant belief functions can be found as 

follows: 
mf({X309}) = 1 − 5/7 = 2/7   mnf({Z127}) = 1 − 5/7 = 2/7 
mf({X309, Y118}) = 5/7 − 3/7 = 2/7  mnf({Z127, Y118}) = 5/7 − 3/7 = 2/7 
mf({X309, Y118, Z127}) =  3/7         mnf({Z127, Y118, X309}) = 3/7 
 
The next section describes Dempster’s and Walley’s combination rules. 

 

2.3. Combination Rules 

2.3.1 Dempster’s Rule of Combination 

The classical combination rule for combining independent belief functions is 
called Dempster’s rule. Let m1⊕m2 denote the joint bpa resulting from the combination of 
two independent bpa’sm1 and m2, where ⊕ represents the operator of combination, then 
(݉ଵ ْ݉ଶሻሺܣሻ ൌ ଵିܭ ∑൛݉ଵሺܤሻሼ݉ଶሺܥሻ|ܤ, ܥ ك Θ, ܤ ת ܥ ൌ  ሽൟfor all A⊆ Θ, A ≠ ∅(7)ܣ
where K is a normalization constant given byܭ ൌ ∑ሼ݉ଵሺܤሻ݉ଶሺܥሻ|ܤ ת ܥ ്   ሽ׎
for K> 0       

If K = 0, this means the two bpa’s are totally conflicting and cannot be 
combined. Dempster’s rule in terms of bpa’s consists of assigning the product of the 
masses to the intersection of the focal elements followed by normalization. Zadeh (1986) 
claimed that this normalization involves counter-intuitive behaviours (Lefevre et al. 
2002). Many alternative combination rules have been proposed in order to solve the 
problem of conflict management (Yager 1987, Dubois and Prade 1998, Smets 1990, 
Murphy 2000). Another point where Dempster’s rule of combination is criticized is that 
the class of partially consonant belief functions is not closed under Dempster’s rule of 
combination. For that reason, Walley (1987) proposed an alternative rule, defined for 
partially consonant belief functions (this rule is introduced in the next section). 

Dempster’s rule of combination may also be expressed by commonality 
functions. Let Q1, Q2, and Q1⊕Q2 denote commonality functions corresponding to m1, 
m2, and m1⊕m2, respectively. Then, 
(Q1⊕Q2)(A)=K-1Q1(A)Q2(A) for all non-empty A ⊆ Θ,            (8) 
where K is given as follows: K =∑ ሺെ1ሻ|஺|ାଵܳଵሺܣሻ஺ஷ׎ ܳଶሺܣሻ   
 Dempster’s rule in terms of commonality functions is essentially pointwise 
multiplication of the commonality functions followed by normalization.   

 
 

2.3.2 Walley’s Rule of Combination 

Walley’s combination rule for partially consonant commonality functions Q1 
and Q2 is defined as follows: 
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(Q1ٛQ2)(A) = 0  if Q1(A)Q2(A) = 0 
(Q1ٛQ2)(A) = K-1min{Q1({θ})Q2({θ}) | θ ∈ A} otherwise (9) 

for all non-empty sets A, where K > 0 is uniquely determined by (5) so that Q1ٛQ2 is a 
commonality function. Q1ٛQ2 is well defined provided Q1({θ})Q2({θ}) > 0 for some  
θא Θ.  

The class of partially consonant commonality functions are closed under ٛ. 
However, Walley’s combination rule cannot be used to combine arbitrary commonality 
functions, since if combined under this rule, they may not be commonality function.  

In Table 2 the combination of observations f, f, nf represented by commonality 
functions Qf Qf Qnf using both Dempster and Walley’s rule of combination is illustrated. 
Notice that for the case of singletons, the two rules do agree before normalization since 
both are pointwise multiplication of commonality functions. The next section describes 
the probability transformation methods, pignistic and plausibility transformation.  

 
Table 2: Missile Fall Down Example continued: Combination of observations f, f, nf 
using both Dempster and Walley’s rule of combination 

 Qf Qf Qnf Dempster Walley
normalized 

Dempster Walley 
{X309} 1.0000 1.0000 0.4286 0.4286 0.4286 0.6837 1.0000 
{Y118} 0.7143 0.7143 0.7143 0.3644 0.3644 0.5814 0.8503 
{Z127} 0.4286 0.4286 1.0000 0.1837 0.1837 0.2930 0.4286 
{X309, Y118} 0.7143 0.7143 0.4286 0.2187 0.3644 0.3488 0.8503 
{X309, Z127} 0.4286 0.4286 0.4286 0.0787 0.1837 0.1256 0.4286 
{Y118, Z127} 0.4286 0.4286 0.7143 0.1312 0.1837 0.2093 0.4286 
{X309, Y118, Z127} 0.4286 0.4286 0.4286 0.0787 0.1837 0.1256 0.4286 
KD 0.6268       
KW 0.4286       

 
 
3. DISCREPANCY OF PROBABILITY DISTRIBUTIONS 

3.1. Probability Transformation Methods 

As there is no decision theory of belief functions, the researchers are forced to 
use probability transformation methods. In sections 3.1.1 and 3.1.2, two famous 
probability transformation methods, pignistic and plausibility transformation are 
introduced. In section 3.1.3, using both of the probability transformation methods 
introduced, the combination results of the Missile Fall Down example are transformed 
into probability distributions.  
3.1.1 Pignistic Transformation 

The most commonly used transformation method in DS theory is the pignistic 
transformation method. The basic idea of the pignistic transformation consists in 
transferring the positive belief of each compound (or nonspecific) element onto the 
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singletons involved in that element split by the cardinality of the proposition when 
working with normalized basic probability assignments (Han et al. 2010).  

Suppose that Θ = {θ1, θ2, ..., θ3} is the frame of discernment. The pignistic 
probability transformation for the singletons is illustrated as follows  
(Smets and Kennes 1994): 

ݐ݁ܤ ௠ܲሺߠ௜ሻ ൌ ∑ ௠ሺ஻ሻ
|஻|ఏ೔א஻,஻كଶ౸           (10) 

where 2Θ is the power set of frame of discernment. 
 

3.1.2 Plausibility Transformation 

Cobb and Shenoy (2006) argue that the pignistic transformation method 
produces results that appear to be inconsistent with Dempster’s rule of combination. 
Claiming this, they proposed the plausibility transformation which is defined as follows:  

Suppose m is a subset for s. Let Plm denote the plausibility function for s 
corresponding to bpam. Let Pl_Pm denote the probability function that is obtained from m 
using the plausibility transformation method. Let Pl_Pm denote the probability function 
that is obtained from m using the plausibility transformation method. Pl_Pm is defined as 
follows:  

Pl_Pm(x) = K−1Plm({x} for all xא Ω௦,  
whereK = ∑ሼ݈ܲ௠ሺሼݔሽሻ|ݔ א Ω௦ሽ is a normalization constant            (11) 
 

 

3.2. Discrepancy Resulting from the Transformation Method Used 

In the preceding sections, going back to the Example Missile Fall Down, we used two 
combination rules, Dempster’s and Walley’s rule, for combining the observations 
represented under a consonant belief function framework to identify the type of the 
missile thrown at the country of Neverland. When the results of these two combination 
rules are compared, identical results before normalization are obtained, so both rules are 
the same for the case of singletons, as illustrated in Table 2. Investigating the m-values 
after combination given in Table 4, it can be seen that the resulting belief function by 
Walley’s rule of combination is consonant after combination. Looking to the results 
obtained by Dempster’s rule of combination, it is clear that the class of consonant belief 
functions is not closed under Dempster’s rule of combination.  
As given in Table 3, when plausibility transformation method is used on the results of the 
two combination rules, they do end in exactly the same probability distribution. The 
reason is that the plausibility and commonality values are the same for singletons and that 
the two combination rules do agree for singletons. However, when pignistic 
transformation is applied, the probability distribution functions obtained do differ, though 
the ordinal ranking is the same. Both of the probability distributions estimate the highest 
probability for the missile type X309, and the lowest for Z127. The results are illustrated 
in Table 4. Notice that these two different probability distributions also differ from the 
one found by the plausibility transformation method given in Table 3.   
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Table 3:Transformation of results using plausibility transformation 

 Plausibility-values after 
combination Plausibility Transformation 

Dempster Walley Dempster Walley 
{X309} 0.68372 1.0 0.43881 0.43881 
{Y118} 0.58140   0.85034 0.37313 0.37313 
{Z127} 0.29302 0.42857 0.18806 0.18806 
{X309, Y118}  0.69302   0.57823 
{X309, Z127}  0.85116  1.0 
{Y118, Z127}   0.66512  0.85034 
{X309,Y118, Z127}  1.0  1.0   
 
Table 4:Transformation of results using pignistic transformation 
 m-values after combination Pignistic transformation 
 Dempster's rule Walley's rule Dempster Walley 

{X309} 0.33488 0.14966 0.48837 0.50340 
{Y118} 0.14884 0 0.34419 0.35374 
{Z127} 0.08372 0 0.16744 0.14286 
{X309, Y118} 0.22326 0.42177   
{X309, Z127} 0 0   
{Y118, Z127} 0.08372 0   
{X309,Y118, Z127} 0.12558 0.42857   

 
The above illustrated example and the following results show that the choice of 

the combination rule and/or probability transformation method may have a significant 
effect on our decisions. The ordinal ranking of the probability distributions may agree, 
but depending on different outcomes of the decision alternatives, and as a consequence of 
the expected utility theory, that would not assure to end up in the same decision 
alternative. To illustrate this, suppose that if the missile is of type X309, than its correct 
identification would save the country of Neverland $1000 (in thousand); if it is of type 
Y118, then $1500; and if it is of type Z127, then the saving is $3500. Consequently, as 
demonstrated in Table 5, considering the expected utility maximization, the s of the 
decision alternative do differ: Z127 according to the plausibility transformation method 
and also according to the  pignistic transformation for Walley’s combination rule, Y118 
according to pignistic transformation for Dempster’s combination rule. 
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Table 5: Expected utilities obtained with three probability distributions 
 

  Probabilities Expected Utilities 

  
Dempster, 

Walley Dempster Walley Dempster, 
Walley Dempster Walley 

Missile 
type 

Utilities $ 
(in 

thousand) 
Plausibility Pignistic Pignistic Plausibility Pignistic Pignistic 

X309 1000 0.4388 0.4884 0.5034 438.8060 503.4014 488.3721 
Y118 1500 0.3731 0.3442 0.3537 559.7015 530.6122 516.2791 
Z127 3500 0.1881 0.1674 0.1429 658.2090 500.0000 586.0465 

 
4. CONCLUSIONS 

Dempster−Shafer belief function theory can address a wider class of uncertainty 
than the standard probability theory, and this fact appeals the researchers in operations 
research society for potential application areas. However, the lack of a decision theory of 
belief functions gives rise to the need to use the probability transformation methods for 
decision making.   

In this work first an example of statistical evidence is represented using the 
consonant belief function framework. Then, the observations are combined using the 
classical Dempster's rule of combination and the newly proposed Walley's rule of 
combination for consonant belief functions. The combination results demonstrate that the 
class of consonant belief functions is closed under Walley's rule of combination, which is 
not the case for Dempster's rule. For decision making purposes, both of the combination 
results are transformed into probability distributions using the pignistic, and the 
plausibility transformation methods.  In this work, it is shown that although the two 
combination rules do result in the same probability distribution function when 
plausibility transformation is used, they end up with different probability distributions 
when pignistic transformation is applied. Consequently, it is demonstrated that the choice 
of the combination rule and/or the probability transformation method may have a 
significant effect on decision making, on the choice of the decision alternative.  

In the Missile Fall Down example used in this study although the probability 
distributions differ up to 7 %, the ordinal ranking of all the three probability distributions 
remained the same. For further research, it can be investigated whether the ordinal 
ranking of the probability distributions would differ if the likelihoods of the statistical 
evidence used also differ. 
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