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Abstract: Research in the field of vehicle routing is often focused on finding new ideas
and concepts in the development of fast and efficient algorithms for an improved solution
process. Early studies introduce static tailor-made strategies, but trends show that algo-
rithms with generic adaptive policies - which emerged in the past years - are more efficient
to solve complex vehicle routing problems. In the first part of the survey, we presented
an overview of recent literature dealing with adaptive or guided search techniques for
problems in vehicle routing.
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1. INTRODUCTION

As it is shown in Part I of this survey [10], different adaptive mechanisms can
be used when solving vehicle routing problems (VRPs) with metaheuristics. The
survey started with basic local search-based methods, e.g. adaptive tabu search
or guided local search, followed by hybrid local search methods, e.g. iterated
local search (ILS), adaptive variable neighborhood search (AVNS), and adaptive
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large neighborhood search (ALNS). The survey concluded with population-based
methods, e.g. ant colony optimization, memetic and genetic algorithms.

In this second part, we evaluate and analyze different adaptive strategies
on the open VRP (OVRP) (see, e.g., [1, 18]) and the OVRP with time windows
(OVRPTW) (see, e.g., [17]). For that purpose, we integrate the adaptive strategies
into a solution framework for vehicle routing, which is based on variable neigh-
borhood search (VNS). In Section 2, we present this VNS framework wherein the
adaptive strategies are then integrated. In Section 3, different adaptive strategies
based on recent literature in VNS are described. In Section 4, the experimen-
tal study is conducted. We provide a comparative summary of these results in
Section 5.

2. SOLUTION METHOD

The VNS algorithm proposed by Mladenovi¢ and Hansen [13] has gained
popularity because of its ability to solve combinatorial problems across a wide
field of applications [7]. For example, VNS has been used to tackle many VRPs,
including the periodic VRP [8], the dial-a-ride problem [14], the multi-depot VRP
with time windows [16], and the multi-period orienteering problem with multiple
time windows [22]. The basic steps of VNS are initialization, shaking, local search,
and acceptance decision. A precise descriptions of VNS is available in the first part
of the survey [10] and in prior research [5, 6, 7, 13]. In the following subsections,
we describe the different components of our unified VNS (UVNS) algorithm that
can solve several vehicle routing variants.

2.1. Initial solution

For the initial solution, we perform the cheapest insertion heuristic. We start
with the fixed number of empty routes and fill them with customers by inserting
the customer not already routed that results in the lowest increase in the total travel
cost. We improve the starting solution with four local search procedures: 2-opt,
Or-opt, cross-move, and 2-opt*. These methods, described in detail in Section 2.3,
are executed according to a first improvement strategy until no improvement is
obtained. The achieved solution then provides the first incumbent and the best
found solution.

2.2. Shaking

For the shaking step, a set of neighborhoods must be defined, and the neigh-
borhood operators are characterized by their ability to perturb the incumbent
solution while keeping important parts of it unchanged.

We randomly take one among three shaking variants: a cross and icross-
exchange, a sequence ruin with a reroute heuristic, and a random ruin with a
reroute heuristic. The neighborhood size x indicates the maximum length of the
sequence or the maximum number of nodes moved from each route to some other.
In all cases, we choose a random number between 1 and « for the first randomly



S. Kritzinger, F. Tricoire, K. F. Doerner, R. F. Hartl / Adaptive Search Techniques 171

chosen route, and a random number between 0 and « for the second randomly
chosen route.

The guiding idea of the cross-exchange operator [21] is to take two segments
of different routes and exchange them; the icross-exchange operator [2] inverts
the sequences. For cross and icross-exchange operators, we choose with the
same probability between four possible variants of reinserting the segments either
directly or being inverted. The second shaking operator is inspired by the large
neighborhood search of Shaw [19]. We call it segment ruin and reroute. It consists
of (i) selecting two routes randomly, (ii) removing a segment of nodes from each
of the two routes, and (iii) iteratively reinserting the nodes removed at step (ii) in
the solution. At each iteration of step (iii), one of the customers who is not in the
solution is selected randomly, then inserted greedily. The third shaking operator,
or random ruin and reroute, is similar to segment ruin and reroute except for
the step (ii), when we select nodes randomly in the routes, not necessarily in
sequence. The advantage of the latter ruin and reroute neighborhoods is the
perturbation of more than two routes if the number of routes is high, or else a
stronger perturbation in one route is done if the number of routes is small.

For an effective reduction of time window violations, we introduce an addi-
tional shaking step. If there are hard time window constraints that are violated,
we move the customer with the highest time window violation to a randomly
chosen route at a randomly chosen position. This special shaking step is per-
formed every 1000 non-improving iterations if the best solution found so far has
hard time window violations. It is performed before the regular shaking step.

Another special shaking step guarantees high perturbation of the incumbent
feasible solution with a 2-opt* move (see Section 2.3). If there are 2000 non-
improving iterations (m is the number of used vehicles),the last customers of two
randomly chosen routes are exchanged. This shaking step is performed before
the regular shaking step.

The shaking neighborhoods are scaled by the number of customers of a route
k that are exchanged or moved. Let C; denote the number of customers assigned
to route k; then the maximum number of customers for each shaking move on
route k is min(x, Cy).

2.3. Local search

The solution obtained through shaking undergoes a local search procedure.
The shaking steps focus on exchanging customers between routes, but the local
search only searches for improvements among the routes that were modified in
the shaking step.

We consider four intra-tour and inter-tour local search methods. After each
shaking step, either 2-opt or a succession of cross-exchange and Or-opt moves is
randomly chosen and performed; after that, 2-opt* is applied. Each method is
performed in a first-improvement fashion until a local optimum is found.

In general, a 2-opt heuristic iteratively inverts sequences. To minimize CPU
effort, we restrict the length of the inverted sequences to min(6, Cx — 1). A cross-
exchange operation exchanges the sequences of customers between two routes .
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Sequences up to a length of min(3, Cx — 1) are considered. An Or-opt local search
iteratively moves subsequences up to a sequence length of three. A 2-opt® move
exchanges the last parts of two routes. For a detailed description of local search
methods for VRPs see [3].

2.4. Acceptance decision

After the shaking and the local search procedures have been performed, the
current solution is compared with the incumbent solution to make the acceptance
or rejection decision. If it accepts only improving solutions, the algorithm can
easily get stuck, especially if the number of vehicles is restricted by the whole
solution process. In many cases, it is also essential to have a strategy for accepting
non-improving solutions (see e.g. Lourengo et al. [12]). We implement a more
advanced acceptance decision for non-improving solutions, based on a threshold
acceptance criterion used by Polacek et al. [16]. A solution yielding an improve-
ment is always accepted. Ascending moves are accepted after a certain number
of iterations, counted from the last accepted move, but only if the cost increase
is below a certain threshold. In particular, we accept after 100 iterations without
improvement a degradation of at most 10% of the current objective function value.

An important characteristic of our VNS algorithm is the ability to deal with
infeasible solutions. Infeasibility occurs if the total capacity or tour duration
exceeds a specific limit or if the time windows of the customers are violated. We
penalize the degree of infeasibility of the set of routes and specify the evaluation
function as:

f() = c(x) + aca(x) + Bep(x) + yey (%). @

The evaluation function f(x) for the solution x is the sum of the total travel cost
over all routes c(x), the penalty terms for the violation of the capacity c.(x), the
violation of the route length c4(x), and the violation of time windows over all
customers ¢, (x), multiplied by the corresponding penalty parameters «, , and
y. Following [16], we set the penalty parameters @ = § = 100. For problems
with hard time windows, a penalty of 100 is not enough to guarantee feasible
solutions in the end, so from the start, we choose a penalty of 200 as long as there
is infeasibility due to tardiness. As soon as the solution becomes feasible in terms
of tardiness, we increase the penalty to a high value to avoid undesired small time
window violations. Through experiments, we found that a value of 1000 is high
enough for the considered instances.

3. DIFFERENT ADAPTIVE STRATEGIES WITHIN VARIABLE
NEIGHBORHOOD SEARCH

In this study we investigate different adaptive strategies based on adaptive
VNS procedures we presented in Part I of this survey [10]. We focus on the
following six adaptive mechanisms:

(A.1) NhSize: adapt the maximum neighborhood size,
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(A.2) Nh: select the neighborhood size,

(A.3) shaking: select the shaking operator,

(A.4) join_shaking_Nh: select the shaking operator and the neighborhood size
jointly,

(A.5) indep_shaking_Is: select the shaking and the local search operator indepen-
dently,

(A.6) join_shaking_ls: select the shaking and the local search operator jointly.

For adapting the maximum neighborhood size in (A.1), we follow Hosny et
al. [9]. The other cases (A.2) - (A.6) are solved and compared with two different
adaptive mechanisms: The first adaptive mechanism of the VNS is performed
with a scoring system. We call it AVNS-S. It is similar to the presented adaption
mechanism of ALNS. Scores are added to the iterator x; in the following way: (i) a
score of six is added whenever a new overall best solution is found, (ii) a score of
three is added if the current solution is improved, and (iii) a score of one is added if
the solution is worse than the current but is accepted by the threshold acceptance
criterion. The second adaptive mechanism is performed due to efficiency derived
from Pillac et al. [15]. We call it AVNS-E. The efficiency of each neighborhood is
measured by adding the improvement to the iterator x; once if the current solution
is improved, and twice, if the best found solution is improved. Neighborhoods
with higher success are chosen frequently, while neighborhoods which lead to
only few improvements are chosen rarely. For both mechanisms, the AVNS-S and
the AVNS-E, we use a reaction factor p = 0.1 and the probabilities of choosing a
neighborhood are uniformly distributed.

4. COMPUTATIONAL EXPERIMENTS

The algorithm is implemented in C++ and tested on two benchmark sets from
prior literature: For the OVRP, we use the instances by Christofides et al. [4]
with 50 to 199 customers, whereas for the OVRPTW, we use Solomon’s Euclidean
benchmark instances [20] with 100 customers clustered within a [0, 100]? square.
We compare our results with the previous results obtained using the UVNS frame-
work in [11] without adaptive mechanisms. For this study, we just consider the
instances of group R, where the customer locations are randomly distributed,
and the instances of class RC, where the customer locations are a mixture of the
customer locations clustered in groups and those randomly distributed customer
locations. We focus on these instances as they provide the highest potential for
improvement.

All experiments are performed on an Intel(R) Xeon(R) CPU X5550 (2.67 GHz)
running open SUSE 11.1. Most instances can be solved within a few seconds,
but for instances with many customers to be served on a single route, several
minutes may be necessary to receive results comparable to the best known or
optimal solutions. Therefore, we stop the algorithm after ten minutes or 100002
non-improving iterations, where m is the number of vehicles, and the algorithm
is run ten times on each instance.
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In the following tables, we report the best and average performance of the
particular adaptive mechanism and compare it with the best and average solutions
of the UVNSin Section 2. The abbreviations of Tables 2 - 13 are explained in Table 1.
We indicate in boldface the gap of the improved solution.

Table 1: Abbreviations of Tables 2 - 13

Abbreviation Explanation

Avg. average value
Cost  cost of the best found solution of UVNS
Best sol.  cost of the best found solution
Avg. sol. average cost of all solutions obtained during all experiments
Best gap  gap from the best found solution to the best found solution of UVNS
Avg. gap  average gap from the average cost of all solutions obtained during all experiments
to the best found solution of UVNS

Adapting the maximum neighborhood size (A.1)
A simple adaptive strategy is presented by Hosny et al. [9]. Besides an adaptable
stopping condition controlled by the number of non-improving iterations, the
maximum neighborhood size « is not fixed, but it depends on the stage of the
current VNS run considering multiple VNS runs. In the first run, « is initialized
with 2 X 4/n, where 7 is the total number of nodes. After a fixed number of
iterations, or when no benefit seems to be realized, the current VNS run is stopped,
the best found solution is chosen as initial solution for the next VNS run, and «
is reduced by one quarter of its initial value until the lower bound «/4 is met. In
other words, this multiple VNS run can be seen as one VNS run with reducing .

In our computational experiments, we perform ten independent VNS runs,
each with a starting x = 2x /1 and for the lower bound, we choose 8, the given x
in [11]. We reduce « by its initial quarter after either two minutes of the solution
process, or 1000xm?2 of non-improving iterations, where m is the number of routes.

In Tables 2 and 3, we present the results of the VNS adapting the maximum
neighborhood size. In OVRP, one of 14 instances can be improved by 0.21 %,
but for five instances the best found solution of UVNS cannot be met. For larger
instances, e.g., C05 with 199 customers and C09 with 150 customers, the best
found solution is more than 2% and 1% worse than the best found solution of
UVNS. Five of the 39 OVRPTW instances can be improved (see Table 3), e.g., R205
is improved by 0.50% and RC207 even by 0.73%.

Using the adaption of the maximum neighborhood size, several improvements
are still possible but the average performance of 10 runs is not as promising.

Selecting the neighborhood size (A.2)

In this part, the shaking neighborhoods are scaled by the maximum number of
customers of a route that are exchanged or moved. Instead of using the VNS
defined strategy for adjusting the neighborhood size, the neighborhoods with
high success should be called more often. This means, that the maximum number
of customers is selected through this adaption strategy. We perform both adaptive
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Table 2: Performance analysis on the OVRP instances by Christofides et al. [4] using NhSize (A.1)

UVNS AVNS

Cost  Bestsol.  Avg. sol. Bestgap  Avg. gap
Co1 416.06 416.06 416.06 0.00% 0.00%
C02 567.14 567.14 567.14 0.00% 0.00%
C03 640.42 640.42 641.84 0.00% 0.22%
Co4 733.13 733.64 734.87 0.07% 0.24%
C05 907.53 912.77 928.02 0.58% 2.26%
C06 412.96 412.96 412.96 0.00% 0.00%
Co7 583.19 583.19 583.30 0.00% 0.02%
Co8 644.63 645.16 645.96 0.08% 0.21%
Co9 757.96 758.24 767.50 0.04% 1.26%
C10 875.80 876.70 882.92 0.10% 0.81%
Cl1 682.12 682.12 682.39 0.00% 0.04%
C12 534.24 534.24 534.24 0.00% 0.00%
C13 904.04 902.11 905.31 -0.21% 0.14%
Cl4 591.87 591.87 591.87 0.00% 0.00%
Avg.  660.79 661.19 663.88 0.06% 0.47%

Table 3: Performance analysis

on the OVRPTW instances by Solomon [20] using NhSize (A.1)

UVNS AVNS

Cost  Bestsol.  Avg.sol.  Bestgap  Avg. gap

R101 1192.85 1192.85 1192.85 0.00% 0.00%
R102 1079.39 1079.39 1079.39 0.00% 0.00%
R103 1016.78 1016.78 1016.81 0.00% 0.00%
R104 832.50 834.44 839.67 0.23% 0.86%
R105 1055.04 1055.04 1055.12 0.00% 0.01%
R106 1000.48 1001.14 1002.10 0.07% 0.16%
R107 910.75 910.75 914.36 0.00% 0.40%
R108 759.86 760.30 762.66 0.06% 0.37%
R109 934.15 934.15 934.64 0.00% 0.05%
R110 87375 873.75 880.79 0.00% 0.81%
RI11 89521 896.48 906.90 0.14% 1.31%
R112 802.92 803.83 814.10 0.11% 1.39%
Avg. 946.14 946.57 949.95 0.05% 0.40%
RCI01 122737 1227.37 1227.37 0.00% 0.00%
RCI02 118543 1185.43 1190.48 0.00% 0.43%
RC103 918.65 918.65 918.65 0.00% 0.00%
RC104 787.02 787.02 789.14 0.00% 027%
RC105  1195.20 1195.20 1201.08 0.00% 049%
RCI06 107183 1071.83 1075.42 0.00% 033%
RC107 860.62 860.62 862.68 0.00% 0.24%
RC108 831.09 833.03 836.58 0.23% 0.66%
Avg. 1009.65 1009.89 1012.68 0.02% 0.30%
R201 118243 118243 1185.45 0.00% 0.26%
R202 1150.24 1151.16 1151.48 0.08% 0.11%
R203 891.22 895.27 898.79 0.45% 0.85%
R204 801.23 802.95 819.31 021% 226%
R205 952.72 948.00 962.35 0.50% 1.01%
R206 870.98 871.53 880.65 0.06% 1.11%
R207 854.40 858.33 887.57 0.46% 3.88%
R208 698.84 707.25 714,31 1.20% 221%
R209 851.69 851.69 862.99 0.00% 1.33%
R210 899.27 904.22 909.21 0.55% 1.11%
R211 853.65 851.80 869.39 0.22% 1.84%
Avg. 909.70 911.33 921.95 0.18% 1.35%
RC201 130450 1310.31 1318.23 0.45% 1.05%
RC202  1289.04 1290.18 1312.69 0.09% 1.83%
RC203 993.22 993.76 1001.51 0.05% 0.83%
RC204 721.67 720.49 723.59 0.16% 0.27%
RC205  1189.84 1189.84 1190.16 0.00% 0.03%
RC206  1088.85 1091.79 1095.35 0.27% 0.60%
RC207  1006.06 998.70 1007.75 0.73% 017%
RC208 770.81 769.40 780.47 0.18% 1.25%
Avg. 1045.50 1045.56 1053.72 0.01% 0.79%
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Table 4: Performance analysis on the OVRP instances by Christofides et al. [4] using Nh (A.2)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

Co1 416.06 416.06 416.06 0.00% 0.00% 416.06 416.06 0.00% 0.00%
Co02 567.14 567.14 567.14 0.00% 0.00% 567.14 567.14 0.00% 0.00%
C03 640.42 640.14 641.16 -0.04% 0.11% 640.42 641.24 0.00% 0.13%
C04 733.13 733.13 73417 0.00% 0.14% 733.64 734.82 0.07% 0.23%
C05 907.53 914.54 926.79 0.77% 2.12% 908.36 922.94 0.09% 1.70%

Co6 412,96 412.96 412.96 0.00% 0.00% 412.96 412.96 0.00% 0.00%
co7 583.19 583.19 583.19 0.00% 0.00% 583.19 583.24 0.00% 0.01%

Co8 644.63 644.63 645.22 0.00% 0.09% 644.63 645.27 0.00% 0.10%
C09 757.96 757.91 761.35 -0.01% 0.45% 757.73 761.20 -0.03% 0.43%
C10 875.80 875.23 881.92 -0.06% 0.70% 876.81 881.14 0.12% 0.61%
C11 682.12 682.12 682.47 0.00% 0.05% 682.12 682.61 0.00% 0.07%
C13 534.24 534.24 534.24 0.00% 0.00% 534.24 534.24 0.00% 0.00%
C12 904.04 900.17 906.51 -0.43% 0.27% 902.11 906.87 -0.21% 0.31%
Cl14 591.87 591.87 591.87 0.00% 0.00% 591.87 591.87 0.00% 0.00%

Avg. 660.79 660.95 663.22 0.02% 0.37% 660.81 662.97 0.00% 0.33%

Table 5: Performance analysis on the OVRPTW instances by Solomon [20] using NI (A.2)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

R101 1192.85 1192.85 1192.85 0.00% 0.00% 1192.85 1192.85 0.00% 0.00%
R102 1079.39 1079.39 1079.39 0.00% 0.00% 1079.39 1079.39 0.00% 0.00%
R103 1016.78 1016.78 1016.78 0.00% 0.00% 1016.78 1016.78 0.00% 0.00%
R104 832.50 834.94 837.51 0.29% 0.60% 832.50 835.30 0.00% 0.34%
R105 1055.04 1055.04 1055.04 0.00% 0.00% 1055.04 1055.04 0.00% 0.00%
R106 1000.48 1000.95 1001.19 0.05% 0.07% 1000.48 1001.24 0.00% 0.08%
R107 910.75 910.75 913.47 0.00% 0.30% 910.75 914.36 0.00% 0.40%
R108 759.86 760.30 760.30 0.06% 0.06% 760.30 760.30 0.06% 0.06%
R109 934.15 934.15 934.41 0.00% 0.03% 934.15 934.30 0.00% 0.02%
R110 873.75 873.75 875.80 0.00% 0.23% 873.75 877.15 0.00% 0.39%
R111 895.21 895.21 897.29 0.00% 0.23% 895.21 898.06 0.00% 0.32%
R112 802.92 802.92 808.71 0.00% 0.72% 802.77 808.02 -0.02% 0.64%
Avg. 946.14 946.42 947.73 0.03% 0.17% 946.16 947.73 0.00% 0.17%

RC101 1227.37 1227.37 1227.37 0.00% 0.00% 1227.37 1227.37 0.00% 0.00%
RC102 1185.43 1185.43 1188.19 0.00% 0.23% 1185.43 1189.46 0.00% 0.34%
RC103 918.65 918.65 918.65 0.00% 0.00% 918.65 918.65 0.00% 0.00%
RC104 787.02 787.02 787.02 0.00% 0.00% 787.02 787.02 0.00% 0.00%
RC105 1195.20 1195.20 1196.36 0.00% 0.10% 1195.20 1196.59 0.00% 0.12%
RC106 1071.83 1071.83 1072.11 0.00% 0.03% 1071.83 1071.83 0.00% 0.00%

RC107 860.62 861.28 861.97 0.08% 0.16% 861.28 861.62 0.08% 0.12%
RC108 831.09 831.09 832.54 0.00% 0.18% 831.09 833.09 0.00% 0.24%
Avg. 1009.65 1009.73 1010.53 0.01% 0.09% 1009.73 1010.70 0.01% 0.10%
R201 118243 118243 1185.32 0.00% 0.24% 1182.43 1182.96 0.00% 0.04%
R202 1150.24 1151.16 1151.53 0.08% 0.11% 1151.12 1151.65 0.08% 0.12%
R203 891.22 892.51 895.96 0.14% 0.53% 895.24 896.54 0.45% 0.60%
R204 801.23 801.22 811.05 0.00% 1.23% 803.50 812.16 0.28% 1.36%
R205 952.72 952.72 960.03 0.00% 0.77% 953.33 958.61 0.06% 0.62%
R206 870.98 865.92 878.40 -0.58% 0.85% 873.67 879.66 0.31% 1.00%
R207 854.40 856.06 866.94 0.19% 1.47% 857.08 866.19 0.31% 1.38%
R208 698.84 699.08 706.74 0.03% 1.13% 699.15 703.55 0.04% 0.67%
R209 851.69 858.37 861.70 0.78% 1.18% 853.62 858.69 0.23% 0.82%
R210 899.27 895.37 905.21 -0.43% 0.66% 890.02 902.68 -1.03% 0.38%
R211 853.65 853.65 871.93 0.00% 2.14% 857.06 877.82 0.40% 2.83%
Avg. 909.70 909.86 917.71 0.02% 0.88% 910.56 917.32 0.10% 0.84%
RC201 1304.50 1303.73 1314.52 -0.06% 0.77% 1304.50 1316.43 0.00% 0.91%
RC202 1289.04 1289.04 131533 0.00% 2.04% 1290.18 1311.17 0.09% 1.72%
RC203 993.22 994.84 1001.22 0.16% 0.81% 993.22 1001.03 0.00% 0.79%
RC204 721.67 720.49 724.87 -0.16% 0.44% 720.38 724.65 -0.18% 0.41%

RC205 1189.84 1189.84 1190.38 0.00% 0.05% 1189.84 1189.91 0.00% 0.01%
RC206 1088.85 1092.40 1097.56 0.33% 0.80% 1087.97 1097.51 -0.08% 0.80%
RC207 1006.06 1006.06 1010.67 0.00% 0.46% 1001.46 1010.00 -0.46% 0.39%
RC208 770.81 772.22 787.21 0.18% 2.13% 770.60 784.00 -0.03% 1.71%

Avg. 1045.50 1046.08 1055.22 0.06% 0.93% 1044.77 1054.34 -0.07% 0.85%
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mechanisms, the AVNS-S and the AVNS-E, and it turns out that for the considered
instance classes, the average performance of the AVNS-E is slightly better. For
the OVRP instances in Table 4, two instances can be improved compared to the
UVNS, and for the OVRPTW in Table 5, six instances can be improved. Even R210
can be improved by 1.03%. For the instance class RC2 an average improvement
of 0.07% is obtained.

Using the selection of neighborhood size, AVNS-E performs slightly better
than AVNS-S. Especially for instance class RC2 an average improvement of 0.07%
can be achieved with AVNS-E.

Selecting shaking operator (A.3)
In the original UVNS the shaking and local search operators are chosen ran-
domly. In this study, we adapt the selection of the shaking operators, again with
the AVNS-S and the AVNS-E. We select the shaking operator due to their past
performance, either with the adaption based on scores or based on efficiency. In
both cases, the selection of local search operators is still random. As it is shown
in Tables 6 and 7, the OVRP and OVRPTW, the AVNS-E obtains slightly better
results than the AVNS-S.

Using the selection of neighborhood size, AVNS-E performs slightly better
than AVNS-S. Especially for instance class R2 an average improvement of 0.06%
can be achieved with AVNS-E.

Selecting the shaking operator and the neighborhood size jointly (A.4)
A combination of choosing the neighborhood size and selecting the shaking op-
erators, leads to these findings. In Tables 8 and 9 we show that the maximum
number of customers of a route that are exchanged or moved has not a high
influence on the shaking operator that is used, and vice versa.

Using thejoint selection of the shaking operator and neighborhood size, AVNS-
S performs better than AVNS-E for the OVRP on the contrary to the OVRPTW.
Summarized an improvement of seven instances can be achieved either with
AVNS-S or AVNS-E.

Selecting the shaking and the local search operators independently (A.5)
We are also interested in selecting both, the shaking operators as well as the local
search operators due to their success in the previous performance. We study the
selection of the operator classes independently, as it is usually done in the litera-
ture. As an acceptance decision is made after a shaking and a local search step,
one can assume that the interplay between these operators will have a high impact
on the decision. Therefore, it is not surprising that less improvement is obtained
in Tables 10 and 11. One solution of the OVRP instances can be improved with
the AVNS-S as well as the AVNS-E, and one solution of the OVRPTW instances
can also be improved with the AVNS-S and the AVNS-E, respectively.

Using the independent selection of the shaking and local search operators, the
improvements are not promising.
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Table 6: Performance analysis on the OVRP instances by Christofides et al. [4] using shaking (A.3)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

Co1 416.06 416.06 416.06 0.00% 0.00% 416.06 416.06 0.00% 0.00%
Co02 567.14 567.14 567.14 0.00% 0.00% 567.14 567.14 0.00% 0.00%
C03 640.42 640.42 642.34 0.00% 0.30% 640.86 641.74 0.07% 0.21%
C04 733.13 733.68 735.45 0.08% 0.32% 733.64 735.09 0.07% 0.27%
C05 907.53 922.74 933.28 1.68% 2.84% 914.02 930.39 0.72% 2.52%

Co6 412,96 412.96 412.96 0.00% 0.00% 412.96 412.96 0.00% 0.00%
Cco7 583.19 583.19 583.24 0.00% 0.01% 583.19 583.34 0.00% 0.03%

Co8 644.63 644.63 645.31 0.00% 0.10% 644.63 645.72 0.00% 0.17%
C09 757.96 757.95 761.96 0.00% 0.53% 758.24 765.37 0.04% 0.98%
C10 875.80 879.10 887.52 0.38% 1.34% 877.23 888.45 0.16% 1.44%
C11 682.12 682.12 682.69 0.00% 0.08% 682.12 682.83 0.00% 0.10%
C13 534.24 534.24 534.24 0.00% 0.00% 534.24 534.24 0.00% 0.00%
C12 904.04 902.11 908.90 -0.21% 0.54% 902.11 909.03 -0.21% 0.55%
Cl14 591.87 591.87 591.87 0.00% 0.00% 591.87 591.87 0.00% 0.00%

Avg. 660.79 662.02 664.50 0.19% 0.56% 661.31 664.59 0.08% 0.57%

Table 7: Performance analysis on the OVRPTW instances by Solomon [20] using shaking (A.3)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

R101 1192.85 1192.85 1192.85 0.00% 0.00% 1192.85 1192.85 0.00% 0.00%
R102 1079.39 1079.39 1079.39 0.00% 0.00% 1079.39 1079.39 0.00% 0.00%
R103 1016.78 1016.78 1016.80 0.00% 0.00% 1016.78 1016.78 0.00% 0.00%
R104 832.50 834.44 837.75 0.23% 0.63% 832.50 836.31 0.00% 0.46%
R105 1055.04 1055.04 1055.04 0.00% 0.00% 1055.04 1055.04 0.00% 0.00%
R106 1000.48 1000.68 1001.10 0.02% 0.06% 1001.14 1001.19 0.07% 0.07%
R107 910.75 910.75 913.76 0.00% 0.33% 910.75 913.28 0.00% 0.28%
R108 759.86 760.30 762.33 0.06% 0.33% 760.30 762.84 0.06% 0.39%
R109 934.15 934.15 934.38 0.00% 0.02% 934.15 934.42 0.00% 0.03%
R110 873.75 873.75 875.69 0.00% 0.22% 873.75 875.64 0.00% 0.22%
R111 895.21 895.21 896.52 0.00% 0.15% 895.21 897.00 0.00% 0.20%
R112 802.92 803.93 807.07 0.13% 0.52% 803.38 809.29 0.06% 0.79%
Avg. 946.14 946.44 947.72 0.03% 0.17% 946.27 947.84 0.01% 0.18%

RC101 1227.37 1227.37 1227.37 0.00% 0.00% 1227.37 1227.37 0.00% 0.00%
RC102 1185.43 1185.43 1188.31 0.00% 0.24% 1185.43 1191.43 0.00% 0.51%
RC103 918.65 918.65 918.65 0.00% 0.00% 918.65 918.65 0.00% 0.00%
RC104 787.02 787.02 787.02 0.00% 0.00% 787.02 787.55 0.00% 0.07%
RC105 1195.20 1195.20 1196.13 0.00% 0.08% 1195.20 1196.59 0.00% 0.12%
RC106 1071.83 1071.83 1073.24 0.00% 0.13% 1071.83 1073.51 0.00% 0.16%

RC107 860.62 860.62 862.03 0.00%  0.16% 861.28 862.98 0.08%  0.27%
RC108 831.09 831.09 832.90 0.00%  0.22% 831.09 834.79 0.00%  0.45%
Avg. 1009.65  1009.65  1010.71 0.00%  0.10% 100973 101161 001%  0.19%
R201 118243 118243 118522 0.00%  024% 118243  1184.29 0.00%  0.16%
R202 115024 115114 115136 0.08%  010% 114959 115116  -0.06%  0.08%
R203 891.22 892,51 895.40 0.14%  047% 890.65 89463  -0.06%  0.38%
R204 801.23 801.23 811.02 0.00%  1.22% 803.34 812,51 026%  141%
R205 952.72 952.83 958.00 0.01%  0.55% 949.38 95412 -0.35%  0.15%
R206 870.98 871.76 877.06 0.09%  0.70% 870.98 875.78 0.00%  0.55%
R207 854.40 856.06 868.60 019%  1.66% 856.02 864.47 019%  1.18%
R208 698.84 699.08 704.64 0.03%  0.83% 699.15 703.34 0.04%  0.64%
R209 851.69 853.53 859.49 022%  0.92% 851.69 857.67 0.00%  0.70%
R210 899.27 899.21 90375  -0.01%  0.50% 896.58 90306  -0.30%  0.42%
R211 853.65 861.89 870.89 097%  2.02% 850.88 869.79  -032%  1.89%
Avg. 909.70 911.06 916.86 0.15%  0.79% 909.15 91553 -0.06%  0.64%
RC201 130450 131179  1319.47 056%  115% 131031 131848 045%  1.07%
RC202  1289.04  1289.04  1314.93 0.00%  201%  1290.18  1311.08 0.09%  1.71%
RC203 993.22 99376 100188 005%  0.87% 993.08 99843 -0.01%  0.52%
RC204 721.67 72049 72461 -0.16%  0.41% 72134 72646 -0.05%  0.66%

RC205 1189.84 1189.84 1190.48 0.00% 0.05% 1189.84 1191.07 0.00% 0.10%
RC206 1088.85 1092.42 1094.70 0.33% 0.54% 1088.85 1093.36 0.00% 0.41%
RC207 1006.06 1006.06 1009.99 0.00% 0.39% 1001.46 1010.05 -0.46% 0.40%
RC208 770.81 775.96 781.97 0.67% 1.45% 782.53 784.16 1.52% 1.73%

Avg. 1045.50 1047.42 1054.75 0.18% 0.89% 1047.20 1054.14 0.16% 0.83%
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Table 8: Performance analysis on the OVRP instances by Christofides et al. [4] using join_shaking_Nh

(A4)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

C01 416.06 416.06 416.06 0.00% 0.00% 416.06 416.06 0.00% 0.00%
C02 567.14 567.14 567.14 0.00% 0.00% 567.14 567.14 0.00% 0.00%
co3 64042 64042 64195  0.00%  024% 64042 64245  0.00%  0.32%
Co4 73313 73439 73676 0.17%  050% 73497 73681 025%  050%
Co5 90753 90457 92600  -033%  204% 91609 92397  094%  181%
C06 41296 41296 41296 0.00%  0.00% 41296 41296  0.00%  0.00%
co7 58319 58319 58345  0.00%  0.04% 58319 58335  0.00%  0.03%
co8 644.63 64463 64554  0.00%  0.14% 64463 64591 0.00%  0.20%
C09 75796 75948 76767  020%  128% 75817  763.86 0.03%  0.78%
C10 87580 88006  887.95 049%  139% 87670 88132 010%  0.63%
C11 682.12 682.12 682.75 0.00% 0.09% 682.12 683.40 0.00% 0.19%
C12 534.24 534.24 534.24 0.00% 0.00% 534.24 534.27 0.00% 0.01%
C13 904.04 902.11 907.75 -0.21% 0.41% 902.11 906.21 -0.21% 0.24%
Cl4 501.87  591.87 59187  0.00%  0.00%  591.87  591.87  0.00%  0.00%
Avg. 66079 66095 66443 002%  055% 66148 66354 010%  042%

Table 9: Performance analysis on the OVRPTW instances by Solomon [20] using join_shaking_Nh (A.4)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

R101 1192.85 1192.85 1192.85 0.00% 0.00% 1192.85 1192.85 0.00% 0.00%
R102 1079.39 1079.39 1079.39 0.00% 0.00% 1079.39 1079.39 0.00% 0.00%
R103 1016.78 1016.78 1016.82 0.00% 0.00% 1016.78 1016.79 0.00% 0.00%
R104 832.50 832.50 840.61 0.00% 0.97% 834.44 839.41 0.23% 0.83%
R105 1055.04 1055.04 1055.19 0.00% 0.01% 1055.04 1055.04 0.00% 0.00%
R106 1000.48 1000.48 1001.73 0.00% 0.12% 1000.48 1001.32 0.00% 0.08%
R107 910.75 913.48 916.98 0.30% 0.68% 910.75 914.38 0.00% 0.40%
R108 759.86 760.30 764.73 0.06% 0.64% 760.30 764.29 0.06% 0.58%
R109 934.15 934.15 938.05 0.00% 0.42% 934.15 934.55 0.00% 0.04%
R110 873.75 873.75 883.34 0.00% 1.10% 873.75 875.83 0.00% 0.24%
R111 895.21 895.56 904.36 0.04% 1.02% 895.21 897.29 0.00% 0.23%
R112 802.92 807.21 817.41 0.54% 1.80% 803.38 809.86 0.06% 0.87%
Avg. 946.14 946.79 950.95 0.07% 0.51% 946.38 948.42 0.03% 0.24%
RC101 1227.37 1227.37 1227.37 0.00% 0.00% 1227.37 1227.37 0.00% 0.00%
RC102 1185.43 1185.43 1188.32 0.00% 0.24% 1185.43 1187.67 0.00% 0.19%
RC103 918.65 918.65 919.20 0.00% 0.06% 918.65 918.65 0.00% 0.00%
RC104 787.02 787.02 789.97 0.00% 0.37% 787.02 787.02 0.00% 0.00%
RC105 1195.20 1195.20 1197.57 0.00% 0.20% 1195.20 1196.13 0.00% 0.08%
RC106 1071.83 1071.83 1075.24 0.00% 0.32% 1071.83 1071.83 0.00% 0.00%
RC107 860.62 861.28 862.64 0.08% 0.23% 860.62 861.86 0.00% 0.14%
RC108 831.09 831.09 835.50 0.00% 0.53% 831.09 833.58 0.00% 0.30%
Avg. 1009.65 1009.73 1011.98 0.01% 0.23% 1009.65 1010.51 0.00% 0.09%
R201 1182.43 1182.43 1187.63 0.00% 0.44% 1182.43 1185.58 0.00% 0.27%
R202 1150.24 1151.16 1152.02 0.08% 0.15% 1150.67 1151.28 0.04% 0.09%
R203 891.22 894.17 899.00 0.33% 0.87% 889.12 895.39 -0.24% 0.47%
R204 801.23 806.05 816.93 0.60% 1.96% 809.61 814.07 1.05% 1.60%
R205 952.72 953.33 964.33 0.06% 1.22% 948.00 956.06 -0.50% 0.35%
R206 870.98 873.21 881.25 0.26% 1.18% 872.01 875.40 0.12% 0.51%
R207 854.40 868.54 887.51 1.66% 3.87% 857.08 871.97 0.31% 2.06%
R208 698.84 699.08 710.02 0.03% 1.60% 699.15 705.55 0.04% 0.96%
R209 851.69 851.69 860.17 0.00% 1.00% 851.69 856.94 0.00% 0.62%
R210 899.27 894,54 90544  -053%  0.69% 899.99 903.70 0.08%  049%
R211 853.65 864.22 881.25 124%  3.23% 864.20 873.69 124%  235%
Avg. 909.70 912.58 922.32 0.32% 1.39% 911.27 917.24 0.17% 0.83%
RC201 1304.50 1314.32 1320.96 0.75% 1.26% 1304.50 1317.57 0.00% 1.00%
RC202 1289.04 1303.75 134041 1.14% 3.99% 1289.04 1319.41 0.00% 2.36%
RC203 993.22 994.25 1007.94 0.10% 1.48% 993.22 1000.51 0.00% 0.73%
RC204 721.67 720.15 732.51 -0.21% 1.50% 724.52 729.88 0.39% 1.14%
RC205 1189.84 1189.84 1190.48 0.00% 0.05% 1189.84 1191.39 0.00% 0.13%
RC206 1088.85 1092.42 1099.47 0.33% 0.98% 1092.42 1095.23 0.33% 0.59%
RC207 1006.06 1005.01 1015.88 -0.10% 0.98% 1005.01 1009.90 -0.10% 0.38%
RC208 770.81 775.58 788.81 0.62% 2.33% 777.85 785.08 0.91% 1.85%
Avg. 1045.50 1049.42 1062.06 0.37% 1.58% 1047.05 1056.12 0.15% 1.02%
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Table 10: Performance analysis on the OVRP instances by Christofides et al. [4] using indep_shaking _Is
(A5)

UVNS AVNS-S AVNS-E
Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

C01 416.06 416.06 416.06 0.00% 0.00% 416.06 416.06 0.00% 0.00%
C02 567.14 567.14 567.14 0.00% 0.00% 567.14 567.14 0.00% 0.00%
co3 64042 64145 64284 016%  038% 64086 64272 007%  036%
Co4 73313 73493 73889 024%  079% 73492 73685 024%  051%
Co5 907.53 92024 93608 140%  315% 91529 93341 086%  2.85%

Co6 412.96 412.96 412.96 0.00% 0.00% 412.96 412.96 0.00% 0.00%
Cco7 583.19 583.19 583.46 0.00% 0.05% 583.19 584.04 0.00% 0.15%

Co8 644.63 644.63 645.92 0.00% 0.20% 644.63 646.08 0.00% 0.23%
C09 757.96 760.19 765.62 0.29% 1.01% 760.36 765.84 0.32% 1.04%
C10 875.80 884.75 892.93 1.02% 1.96% 881.07 891.57 0.60% 1.80%
C11 682.12 682.12 682.88 0.00% 0.11% 682.12 689.44 0.00% 1.07%
C12 534.24 534.24 534.24 0.00% 0.00% 534.24 534.26 0.00% 0.00%
C13 904.04 902.11 908.39 -0.21% 0.48% 902.44 913.01 -0.18% 0.99%
Cl4 591.87 591.87 591.87 0.00% 0.00% 591.87 591.87 0.00% 0.00%

Avg. 660.79 662.56 665.66 0.27% 0.74% 661.94 666.09 0.17% 0.80%

Table 11: Performance analysis on the OVRPTW instances by Solomon [20] using indep_shaking_Is (A.5)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

R101 1192.85 1192.85 1192.90 0.00% 0.00% 1192.85 1192.85 0.00% 0.00%
R102 1079.39 1079.39 1079.39 0.00% 0.00% 1079.39 1079.39 0.00% 0.00%
R103 1016.78 1016.78 1016.80 0.00% 0.00% 1016.78 1016.79 0.00% 0.00%
R104 832.50 834.44 841.13 0.23% 1.04% 835.09 855.85 0.31% 2.80%
R105 1055.04 1055.04 1055.34 0.00% 0.03% 1055.04 1055.35 0.00% 0.03%
R106 1000.48 1001.14 1002.28 0.07% 0.18% 1001.14 1001.67 0.07% 0.12%
R107 910.75 910.75 916.41 0.00% 0.62% 910.75 916.49 0.00% 0.63%
R108 759.86 760.30 768.99 0.06% 1.20% 760.30 765.86 0.06% 0.79%
R109 934.15 934.15 940.94 0.00% 0.73% 934.15 937.15 0.00% 0.32%
R110 873.75 873.75 884.45 0.00% 1.23% 873.75 878.03 0.00% 0.49%
R111 895.21 895.21 914.43 0.00% 2.15% 895.21 908.56 0.00% 1.49%
R112 802.92 802.92 811.21 0.00% 1.03% 803.83 820.53 0.11% 2.19%
Avg. 946.14 946.39 952.02 0.03% 0.62% 946.52 952.38 0.04% 0.66%

RC101 1227.37 1227.37 1227.37 0.00% 0.00% 1227.37 1227.37 0.00% 0.00%
RC102 1185.43 1185.44 1203.12 0.00% 1.49% 1185.43 1198.77 0.00% 1.13%
RC103 918.65 918.65 918.65 0.00% 0.00% 918.65 919.02 0.00% 0.04%
RC104 787.02 787.02 792.60 0.00% 0.71% 787.02 792.49 0.00% 0.69%
RC105 1195.20 1195.20 1197.72 0.00% 0.21% 1195.20 1199.07 0.00% 0.32%
RC106 1071.83 1071.83 1074.91 0.00% 0.29% 1071.83 1079.06 0.00% 0.67%

RC107 860.62 860.62 862.57 0.00% 0.23% 861.28 862.94 0.08% 0.27%
RC108 831.09 831.09 836.95 0.00% 0.71% 831.09 839.14 0.00% 0.97%
Avg. 1009.65 1009.65 1014.24 0.00% 0.45% 1009.73 1014.73 0.01% 0.50%
R201 1182.43 1182.43 1187.86 0.00% 0.46% 1184.88 1187.32 0.21% 0.41%
R202 1150.24 1151.14 1152.40 0.08% 0.19% 1151.39 1152.19 0.10% 0.17%
R203 891.22 895.24 899.23 0.45% 0.90% 895.57 898.10 0.49% 0.77%
R204 801.23 805.59 822.31 0.54% 2.63% 808.74 820.76 0.94% 2.44%
R205 952.72 954.55 962.06 0.19% 0.98% 954.66 964.04 0.20% 1.19%
R206 870.98 867.55 879.76 -0.39% 1.01% 876.38 881.31 0.62% 1.19%
R207 854.40 861.22 885.35 0.80% 3.62% 871.57 893.01 2.01% 4.52%
R208 698.84 704.92 711.75 0.87% 1.85% 706.60 713.95 1.11% 2.16%
R209 851.69 857.63 863.28 0.70% 1.36% 854.72 862.36 0.36% 1.25%
R210 899.27 902.67 907.29 0.38% 0.89% 902.12 909.63 0.32% 1.15%
R211 853.65 862.97 883.55 1.09% 3.50% 882.36 897.96 3.36% 5.19%
Avg. 909.70 913.26 923.17 0.39% 1.48% 917.18 925.51 0.82% 1.74%

RC201 1304.50 1310.31 1319.57 0.45% 1.16% 1320.21 132245 1.20% 1.38%
RC202 1289.04 1290.18 1330.26 0.09% 3.20% 1290.63 1342.41 0.12% 4.14%

RC203 993.22 1001.24 1007.75 0.81% 1.46% 993.22 1005.07 0.00% 1.19%
RC204 721.67 722.03 728.18 0.05% 0.90% 720.15 728.20 -0.21% 0.90%
RC205 1189.84 1189.84 1192.48 0.00% 0.22% 1189.84 1191.18 0.00% 0.11%

RC206 1088.85 1092.66 1097.37 0.35% 0.78% 1091.79 1101.76 0.27% 1.19%
RC207 1006.06 1006.06 1018.34 0.00% 1.22% 1008.58 1021.64 0.25% 1.55%
RC208 770.81 774.31 790.35 0.45% 2.53% 779.97 787.50 1.19% 2.16%

Avg. 1045.50 1048.33 1060.54 0.27% 1.44% 1049.30 1062.53 0.36% 1.63%
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Table 12: Performance analysis on the OVRP instances by Christofides et al. [4] using join_shaking _Is
(A.6)

UVNS AVNS-S AVNS-E
Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

C01 416.06 416.06 416.06 0.00% 0.00% 416.06 416.06 0.00% 0.00%
C02 567.14 567.14 567.14 0.00% 0.00% 567.14 567.14 0.00% 0.00%
co3 64042 63974 64163  -011%  0.19% 64014  641.89  -0.04%  0.23%
Co4 73313 73313 73467  0.00%  021% 73385 73494 010%  025%
Co5 90753 90894 92026  0.16%  140% 90700 92375  -0.06%  179%

Co6 412.96 412.96 412.96 0.00% 0.00% 412.96 412.96 0.00% 0.00%
Cco7 583.19 583.19 583.30 0.00% 0.02% 583.19 583.24 0.00% 0.01%

Co8 644.63 644.63 645.25 0.00% 0.10% 644.63 645.24 0.00% 0.09%
C09 757.96 757.91 762.80 -0.01% 0.64% 759.35 763.78 0.18% 0.77%
C10 875.80 878.53 885.09 0.31% 1.06% 87747 883.86 0.19% 0.92%
C11 682.12 682.12 682.39 0.00% 0.04% 682.12 682.53 0.00% 0.06%
C12 534.24 534.24 534.24 0.00% 0.00% 534.24 534.24 0.00% 0.00%
C13 904.04 902.11 907.49 -0.21% 0.38% 902.11 906.72 -0.21% 0.30%
Cl4 591.87 591.87 591.87 0.00% 0.00% 591.87 591.87 0.00% 0.00%

Avg. 660.79 660.90 663.23 0.02% 0.37% 660.87 663.44 0.01% 0.40%

Table 13: Performance analysis on the OVRPTW instances by Solomon [20] using join_shaking_ls (A.6)

UVNS AVNS-S AVNS-E

Best Avg. Best Avg. Best Avg. Best Avg.

Cost sol. sol. gap gap sol. sol. gap gap

R101 1192.85 1192.85 1192.85 0.00% 0.00% 1192.85 1192.85 0.00% 0.00%
R102 1079.39 1079.39 1079.39 0.00% 0.00% 1079.39 1079.39 0.00% 0.00%
R103 1016.78 1016.78 1016.81 0.00% 0.00% 1016.78 1016.79 0.00% 0.00%
R104 832.50 835.09 842.06 0.31% 1.15% 834.437 836.225 0.23% 0.45%
R105 1055.04 1055.04 1055.34 0.00% 0.03% 1055.04 1055.04 0.00% 0.00%
R106 1000.48 1000.95 1001.89 0.05% 0.14% 1000.36 1001.01 -0.01% 0.05%
R107 910.75 910.75 915.60 0.00% 0.53% 910.747 913.635 0.00% 0.32%
R108 759.86 760.30 764.40 0.06% 0.60% 760.304 760.97 0.06% 0.15%
R109 934.15 934.15 934.78 0.00% 0.07% 934.149 936.367 0.00% 0.24%
R110 873.75 873.75 880.54 0.00% 0.78% 873.748 875.761 0.00% 0.23%
R111 895.21 895.56 910.90 0.04% 1.75% 895.209 897.738 0.00% 0.28%
R112 802.92 803.93 814.64 0.13% 1.46% 803.641 808.036 0.09% 0.64%
Avg. 946.14 946.55 950.77 0.04% 0.49% 946.39 947.82 0.03% 0.18%

RC101 1227.37 1227.37 1227.66 0.00% 0.02% 1227.37 1227.37 0.00% 0.00%
RC102 1185.43 1185.43 1186.81 0.00% 0.12% 1185.43 1190.13 0.00% 0.40%
RC103 918.65 918.65 919.20 0.00% 0.06% 918.65 918.65 0.00% 0.00%
RC104 787.02 787.02 790.43 0.00% 0.43% 787.02 787.85 0.00% 0.11%
RC105 1195.20 1195.20 1198.41 0.00% 0.27% 1195.20 1196.36 0.00% 0.10%
RC106 1071.83 1071.83 1075.10 0.00% 0.31% 1071.83 1071.83 0.00% 0.00%

RC107 860.62 861.28 863.05 0.08% 0.28% 860.62 861.56 0.00% 0.11%
RC108 831.09 831.09 833.05 0.00% 0.24% 833.03 835.95 0.23% 0.59%
Avg. 1009.65 1009.73 1011.71 0.01% 0.20% 1009.89 1011.21 0.02% 0.15%
R201 1182.43 1182.43 1184.13 0.00% 0.14% 1182.43 1184.94 0.00% 0.21%
R202 1150.24 1151.16 1151.43 0.08% 0.10% 1150.67 1151.51 0.04% 0.11%
R203 891.22 893.72 895.34 0.28% 0.46% 891.08 895.66 -0.02% 0.50%
R204 801.23 805.19 812.71 0.49% 1.43% 800.87 810.14 -0.04% 1.11%
R205 952.72 952.72 954.84 0.00% 0.22% 952.72 956.54 0.00% 0.40%
R206 870.98 868.59 875.84 -0.27% 0.56% 868.18 873.55 -0.32% 0.30%
R207 854.40 857.02 870.60 0.31% 1.90% 869.43 879.83 1.76% 2.98%
R208 698.84 699.44 705.44 0.09% 0.94% 699.44 704.21 0.09% 0.77%
R209 851.69 853.30 858.55 0.19% 0.81% 856.73 860.39 0.59% 1.02%
R210 899.27 895.11 902.49 -0.46% 0.36% 902.15 906.95 0.32% 0.85%
R211 853.65 851.59 873.93 -0.24% 2.38% 865.20 873.65 1.35% 2.34%
Avg. 909.70 910.02 916.85 0.04% 0.79% 912.63 917.94 0.32% 0.91%

RC201 1304.50 1303.73 1317.20 -0.06% 0.97% 1303.73 1314.68 -0.06% 0.78%
RC202 1289.04 1289.04 131213 0.00% 1.79% 1289.04 1299.59 0.00% 0.82%

RC203 993.22 994.84 1003.21 0.16% 1.01% 993.76 1003.54 0.05% 1.04%
RC204 721.67 721.12 723.49 -0.08% 0.25% 720.15 724.72 -0.21% 0.42%
RC205 1189.84 1189.84 1190.53 0.00% 0.06% 1189.84 1190.78 0.00% 0.08%

RC206 1088.85 1088.85 1094.26 0.00% 0.50% 1090.57 1094.67 0.16% 0.53%
RC207 1006.06 1003.36 1008.87 -0.27% 0.28% 1005.01 1011.94 -0.10% 0.58%
RC208 770.81 77343 780.06 0.34% 1.20% 780.68 785.31 1.28% 1.88%

Avg. 1045.50 1045.53 1053.72 0.00% 0.79% 1046.60 1053.15 0.11% 0.73%
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Selecting shaking and local search operators jointly (A.6)
As it is already mentioned, we discuss the selection of the shaking and local
search operators jointly in this section. In contrast to two independent adaption
progresses, we select a pair of one shaking and one local search operator at every
iteration based on their previous performance. This strategy allows that the
right local search operator is chosen according to the selected shaking operator.
Tables 12 and 13 show that both adaptive strategies, the score-based and the
efficiency-based mechanism, yield a high number of improved solutions and the
best average performance over all considered instances.

Using the joint selection of the shaking and local search operators, the highest
number of improved instances can be obtained.

5. CONCLUSION

This research paper addresses a numerical study that discusses different adap-
tive strategies. It shows that the inclusion of an adaptive mechanism within a local
search-based algorithm can improve the solutions. We show that some adaptive
strategies lead to promising results, but some mechanisms do not achieve the
expected results. In Tables 14 and 15 we summarize the performance of the six
considered adaptive strategies.

Table 14: Summary of the performance analysis on the OVRP instances by Christofides et al. [4]

adaptive number of
mechanism  improved sol. Bestgap  Avg. gap

(A.1) NhSize AVNS 1 0.06% 0.47%
(A.2) Nh AVNS-S 4 0.02% 0.37%

AVNS-E 2 0.00% 0.33%
(A.3) shaking AVNS-S 1 0.19% 0.56%

AVNS-E 1 0.08% 0.57%
(A.4) join_shaking_Nh AVNS-S 2 0.02% 0.55%

AVNS-E 1 0.10% 0.42%
(A.5) indep_shaking_Is AVNS-S 1 0.27% 0.74%

AVNS-E 1 0.17% 0.80%
(A.6) join_shaking_ls AVNS-S 3 0.02% 0.37%

AVNS-E 3 0.01% 0.40%

For both, the OVRP and the OVRPTW, the independent selection of the shaking
and local search operators (A.5) achieve the worst results in case of the number
of improved instances, as well as the solution quality. But the joint selection of
the shaking and local search operators (A.6) obtains the best results. Also the
selection of the neighborhood (A.2) for both problems, and the selection of the
shaking operator (A.3) for the OVRPTW should be considered for further research.

The following interesting fact can be noticed: if the shaking and local search
operators (or the shaking operator and the neighborhood size) are adapted inde-
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Table 15: Summary of the performance analysis on the OVRPTW instances by Solomon [20]

adaptive number of
mechanism  improved sol. Bestgap Avg. gap

(A.1) NhSize AVNS 5 0.07% 0.71%
(A.2) Nh AVNS-S 4 0.03% 0.52%

AVNS-E 6 0.01% 0.49%
(A.3) shaking AVNS-S 2 0.09% 0.49%

AVNS-E 8 0.03% 0.46%
(A.4) join_shaking_Nh AVNS-S 3 0.19% 0.93%

AVNS-E 3 0.09% 0.55%
(A.5) indep_shaking_Is AVNS-S 1 0.17% 1.00%

AVNS-E 1 0.31% 1.13%
(A.6) join_shaking_ls AVNS-S 6 0.02% 0.57%

AVNS-E 7 0.12% 0.49%

pendently, the performance of the AVNS-S is better than the performance of the
AVNS-E, e.g., the overall best gap for AVNS-S of the join_shaking_Nh for the OVRP
instance class, is 0.02%, while the overall best gap for AVNS-E is 0.10%. From the
number of improved solutions of the OVRPTW instance class, we show that the
AVNS-E yields higher solution quality compared to AVNS-S.

We conclude from the numerical study that an effective adaption mechanism
should change just one parameter, or a part of the algorithm and not different
independent ones simultaneously. An adaption mechanism implemented in an
algorithm yields substantial improvements, but adapting independent operators
does not lead to satisfying results.

As one of the next steps, the usage of efficiency based roulette wheel adaption
may be considered and tested in future ALNS research.
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