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Abstract: In this paper, we propose a large-update interior-point algorithm for linear 
optimization based on a new kernel function.  New search directions and proximity 
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1. INTRODUCTION 

In this paper, we consider linear optimization (LO) problem in the standard form:  

min		்ܿݔ
.ݏ ݔܣ			.ݐ = ܾ,																				(ܲ) 			
ݔ													 ≥ 0,

 

where ܣ ∈ ܴ௠×௡ is a real ݉ × ݊ matrix of rank ݉, and ݔ, ܿ ∈ ܴ௡ , ܾ ∈ ܴ௠. The dual 
problem of (P) is given by  
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max		்ܾݕ
.ݏ .ݐ ݕ்ܣ		 + ݏ = (ܦ)														,ܿ
ݏ																						 ≥ 0,

 

with ݕ ∈ ܴ௠ 	and ݏ ∈ ܴ௡. In 1984, Karmarkar [12] proposed a polynomial-time 
algorithm, the so-called interior-point method (IPM) for linear optimization (LO). This 
method and its variants are frequently extended for solving wide classes of optimization 
problems, for example, quadratic optimization problem (QOP), semidefinite optimization 
(SDO) problem, second-order cone optimization (SOCO) problem, ∗ܲ(ߢ) linear 
complementarity problems (LCPs), and convex optimization problem (CP). IPM is the 
most efficient method from computational point of view. Also, its promising 
performance in solving large-scale linear programming problems caused it to be used in 
practical issues. Usually, if parameter ߠ in this method is a constant, which is 
independent of the dimension of the problem, then the algorithm is called a large-update 
method. If it depends on the dimension, then the algorithm is said to be a small-update 
method.  At present, the best known theoretical iteration bound for small-update IPM is 
better than the one for large-update IPM, but in practice large-update IPM is much more 
efficient than the small-update IPM [2, 3, 4, 5, 6] 

Most of IPM algorithms for LO are based on the logarithmic barrier function [1, 
10, 11].  In 2002, Peng et al. proposed new variants of IPM based on a specific self-
regular barrier function. Such a function is strongly convex and smooth coercive on its 
domain, the positive real axis. They obtained the best known complexity results for large- 
and small-update methods, which have ܱ(√݊log݊log ௡ఌ) complexity for large-update and 
ܱ(√݊log ௡ఌ) complexity for small-update methods [18, 19], and extended the results for 
LO, second order cone optimization (SOCO), semi-definite optimization (SDO) and 
NCPs. Later, Bai et al. [2] introduced eligible kernel functions and gave comprehensive 
complexity analysis. Cho [7] presented other barrier function which has ܱ(√݊log݊log ௡ఌ) 
complexity for large-update method and ܱ(√݊log ௡ఌ) complexity for small-update 
method. This kernel function does not belong to the family of self-regular functions. Kim 
et al. [16] defined new kernel functions that are both self-regular and eligible, and 
showed their properties. They also identified the relation between the classes of eligible 
and self-regular kernel functions. Kheirfam and Hasani [14] presented a large-update 
primal-dual interior-point algorithm for convex quadratic semi-definite optimization 
problems based on a new parametric kernel function. They investigate such a kernel 
function, and show that their algorithm has the best complexity bound, i.e., 
ܱ(√݊log݊log ௡ఌ). 

In 2012, El Ghami et al. [9] proposed a new primal-dual IPM for LO problems 
based on a kernel function, which has a trigonometric barrier term, and Kheirfam defined 
another trigonometric barrier function and presented a new algorithm for semidefinite 
optimization [13]. They obtained ܱ(݊

య
రlog ௡

ఌ
) iteration bound for large-update and 

ܱ(√݊log ௡ఌ) for small-update methods, respectively. El Ghami generalized the analysis 
presented in the above paper for ∗ܲ(ߢ)-LCPs [8]. Recently, Kheirfam [15] proposed a 
new kernel function with trigonometric barrier term which yields the complexity bound  
ܱ(√n log n log ௡ఌ) for large-update methods and is currently the best known bound for 
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such methods. Some examples of kernel function, which have been analyzed in earlier 
papers can be seen in [8, 14, 16, 17] 

In this paper, we define a new kernel function, which has a trigonometric barrier 
term, and propose a primal-dual interior-point algorithm for LO based on this function. 
We analyze the complexity for large-update method based on three conditions of kernel 
function. This algorithm has ܱ(݊

య
రlog ௡

ఌ
) complexity bound for large-update method 

similar to complexity obtained in [9, 13]. 
The paper is organized as follows. In Section 2, we recall the generic path-

following IPM. In Section 3, we define a new kernel function and give its properties, 
which are essential for the complexity analysis. In Section 4, we derive the complexity 
result for large-update method and obtain an upper bound to decrease the barrier function 
during an inner iteration. In the final section, we conclude with some remarks. 

 

2. THE PRIMAL-DUAL ALGORITHM 

In this section, we recall some basic concepts and the generic path-following IPM. 
Without loss of generality, we assume that a strictly feasible pair (ݔ଴,  ,.଴) exists, i.eݏ
there exists (ݔ଴, ,଴ݕ   ଴) such thatݏ

଴ݔܣ = ܾ, ଴ݕ்ܣ + ଴ݏ = ܿ, ଴ݔ		 > 0, ଴ݏ			 > 0. 

This assumption is called the interior-point condition (IPC) [20]. The IPC ensures 
the existence of an optimal primal-dual pair (ݔ∗, ∗ݔ்ܿ ,.with zero duality gap, i.e (∗ݏ −
∗ݕ்ܾ = ∗ݏ்(∗ݔ) = 0. 

It is well known that finding an optimal solution of (P) and (D) is equivalent to 
solving the following system  

				
ݔܣ										 = ܾ, ݔ ≥ 0,
ݕ்ܣ + ݏ = ݏ			,ܿ ≥ 0, 																					
ݏݔ											 = 0.

 (1) 

The basic idea of primal-dual IPMs is to replace the third equation in (1), the so-
called complementarity condition for (P) and (D), by the parameterized equation ݏݔ =  ݁ߤ
with ߤ > 0; where ݁ denotes the all-one vector (1,1,… ,1)் . Thus, we have the following 
parameterized system:  

ݔܣ										 = ܾ, ݔ ≥ 0,
ݕ்ܣ + ݏ = ݏ			,ܿ ≥ 0, 																		
ݏݔ											 = .݁ߤ

 (2) 

For each ߤ > 0, the parameterized system (2) has a unique solution 
,(ߤ)ݔ) ,(ߤ)ݕ -ߤ center of (P) and (D). The set of-ߤ which is called the ,(see [20]) ((ߤ)ݏ
centers (with ߤ running through all positive real numbers) gives a parameterized curve, 
which is called the central path of (P) and (D). If ߤ → 0, then the limit of the central path 
exists and, since the limit point satisfies the complementarity condition, the limit yields 
optimal solutions for (P) and (D) [20]. 
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A natural way to define a search direction is to follow the Newton approach and to 
linearize the third equation in (2) by replacing ݔ, ାݔ with ݏ and ݕ = ݔ + Δݔ, ାݕ = ݕ +
Δݕ and ݏା = ݏ + Δݏ respectively. This leads to the following system:  

ݔΔܣ													 = 0,
ݕΔ்ܣ + Δݏ = 0,
ݏΔݔ + ݔΔݏ = ݁ߤ − .ݏݔ

 (3) 

Since ܣ has full row rank, the system (3) uniquely defines a search direction 
(Δݔ, Δݕ, Δݏ) for any ݔ > 0 and ݏ > 0 [20]. We define the vector  

=:ݒ ට
௫௦
ఓ
,																																																																		 (4) 

and its ݅th component as ට
௫೔௦೔
ఓ

. Introduce the scaled search directions as follows:  

݀௫: =
௩୼௫
௫
, 				݀௦:=

௩୼௦
௦
.																																													 (5) 

Using (5), we can rewrite the system (3) as follows:  

												Aഥ݀௫ = 0,
ݕΔ்ܣ̅ + ݀௦ = 0,
						݀௫ + ݀௦ = ଵିݒ − ,ݒ

 (6) 

where  

:ܣ̅ =
1
ܸܣߤ

ିଵܺ,			ܸ: = d݅ܽ݃(ݒ),			ܺ:= d݅ܽ݃(ݔ). 

A crucial observation is that the right-hand side of the third equation in (6) is the 
negative gradient of the classical logarithmic barrier function Ψ௖(ݒ), that is,  

݀௫ + ݀௦ = −∇Ψ௖(ݒ),																																															 (7) 

where  

Ψ௖(ݒ):=෍  
௡

௜ୀଵ

߰௖(ݒ௜), ߰௖(ݐ) =
ଶݐ − 1
2 − log(ݐ). 

One may easily verify that ߰௖(ݐ) satisfies  

߰௖ᇱ(1) = ߰௖(1) = 0,
߰௖ᇱᇱ(ݐ) > 0, ݐ > 0,
lim
௧→଴శ

߰௖(ݐ) = lim
௧→ାஶ

߰௖(ݐ) = +∞.
 (8) 

This shows that Ψ௖(ݒ) is strictly convex, and attains its minimal value at ݒ = ݁ 
with Ψ௖(݁) = 0. Thus,  

Ψ௖(݁) = 0 ⇔ ∇Ψ௖(݁) = 0 ⇔ ݒ = ݁ ⇔ ݏݔ =  .݁ߤ
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In this paper, we replace the right-hand side of the third equation in (6) by 
−∇Ψ(ݒ), where Ψ is a barrier function induced by a new kernel function ߰(ݐ) as defined 
in (12). Thus, system (6) can be reformulated as follows:  

												Aഥ݀௫ = 0,
ݕΔ்ܣ̅ + ݀௦ = 0,
						݀௫ + ݀௦ = −∇Ψ(ݒ).

 (9) 

The new search direction (݀௫ , Δݕ, ݀௦) is obtained by solving (9) so that 
(Δݔ, Δݕ, Δݏ) is computed via (5). By taking a step along the search direction determined 
by (9), with a step size ߙ defined by some line search rules, a new triple (ݔା, ାݕ ,  ା) isݏ
constructed according to  

ାݔ = ݔ + ,ݔΔߙ ାݕ	 = ݕ + ,ݕΔߙ ାݏ = ݏ +  (10) 															.ݏΔߙ

Since ݀௫ and ݀௦ are orthogonal, we have  

Ψ(ݒ) = 0 ⇔ ݒ = ݁ ⇔ ∇Ψ(ݒ) = 0 ⇔ ݀௫ = ݀௦ = 0 ⇔ ݏݔ =  .݁ߤ

We use Ψ(ݒ) as the proximity function to measure the distance between the 
current iterate and the ߤ-center for given ߤ > 0. We also define the norm-based 
proximity measure, (ݒ)ߜ, as follows:  

=:(ݒ)ߜ ଵ
ଶ
∥ ∇Ψ(ݒ) ∥= ଵ

ଶඥ∑ 	௡
௜ୀଵ (߰ᇱ(ݒ௜))ଶ,			ݒ ∈ ܴାା௡ .		 (11) 

We assume that (P) and (D) are strictly feasible, and the starting point (ݔ଴, ,଴ݕ  (଴ݏ

is strictly feasible for (P) and (D). Choose ߬ and ݒ଴ = ට௫బ௦బ

ఓబ
 initial strictly feasible point 

such that Ψ(ݒ଴) ≤ ߬ , where ߬ is threshold value. We then decrease ߤ to ߤ:= (1 −  ,ߤ(ߠ
for some ߠ ∈ (0,1). In general, this will increase the value of Ψ(ݒ) above ߬. To get this 
value smaller again, and coming closer to the current ߤ-center, we solve the scaled search 
directions from (9), and unscaled these directions by using (5). By choosing an 
appropriate step size ߙ, we move along the search direction, and construct a new pair 
,ାݔ) ,ାݕ  ା) given by (10). If necessary, we repeat the procedure until we find iteratesݏ
such that Ψ(ݒ) no longer exceeds the threshold value ߬, which means that the iterates are 
in a small enough neighborhood of ((ߤ)ݔ, ,(ߤ)ݕ  is again reduced by the ߤ Then .((ߤ)ݏ
factor 1 −  centers. This-ߤ and we apply the same procedure targeting at the new ߠ
process is repeated until ߤ is small enough, say  ݊ߤ ≤  for a certain accuracy parameter ߝ
 approximate solution of (P) and (D). The generic IPM-ߝ at this stage we have found an ,ߝ
outlined above is summarized in Algorithm 1.  
 
 
 
 
 
 
 
 
 



 B.Kheirfam, M.Moslem / A Polynomial-Time Algorithm 238 

 

         Algorithm1 : Primal-Dual Algorithm for LO 

        Input:  
                   Accuracy parameter߳ > 0; 
                   barrier update parameter ߠ, 0 < ߠ < 1; 
                   threshold parameter߬ ≥ 1; 
଴ݔ                    > 0, ଴ݏ > 0,		and			ߤ଴ = 1 such that			Ψ(ݔ଴, ,଴ݏ (଴ߤ ≤ ߬. 
      begin 
ݔ																				 ≔ ;0ݔ ݏ ≔ ;0ݏ ߤ	 =   ;0ߤ
          while		݊ߤ ≥ ߳			do 
         begin  
 :update-ߤ				          

ߤ ≔ (1 −  																																																																;ߤ(ߠ
           while		Ψ(ݔ, ,ݕ (ݏ > ߬		do 
           begin 
                  Solve the system (9) and use (5) for Δݔ, Δݕ, Δݏ; 
                  Determine a step size ߙ; 

ݔ ≔ ݔ +  																																																								;ݔΔߙ
ݕ																																								 ≔ ݕ +   ;ݕΔߙ
ݏ																																								 ≔ ݏ +   ;Δsߙ
           end 
       end 
   end 
 

  
A crucial question is how to choose the parameters ߬,  that ߙ and the step size , ߠ

minimizes the iteration complexity of the algorithm.  
 

3 THE NEW KERNEL FUNCTION 

In this section, we define a new kernel function and give its properties needed for 
the complexity analysis. Now, we define a new kernel function ߰(ݐ) as follows:  

(ݐ)߰ = ଶݐ − ݐ2 +
1

sin൫(ݐ)ݑ൯
, ݐ > 0,												 

where 	(ݐ)ݑ = గ௧
ଵା௧

. Then, we have the first three derivatives of ߰(ݐ) as follows:  

߰ᇱ(ݐ) = ݐ2 − 2 − ௨ᇲ(௧)ୡ୭ୱ൫௨(௧)൯
ୱ୧୬మ൫௨(௧)൯

,																																 (13) 

߰ᇱᇱ(ݐ) = 	2 +																																																																																																									 

					௨
ᇲ(௧)మୱ୧୬మ(௨(௧))ି௨ᇲᇲ(௧)ୱ୧୬(௨(௧))ୡ୭ୱ(௨(௧))ାଶ௨ᇲ(௧)మୡ୭ୱమ(௨(௧))

ୱ୧୬య൫௨(௧)൯
,																 (14) 
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߰ᇱᇱᇱ(ݐ) =																																																																																																															 
1

sinସ((ݐ)ݑ) ݑ3)
ᇱ(ݐ)ݑᇱᇱ(ݐ)sinଷ((ݐ)ݑ) −  ((ݐ)ݑ)cos((ݐ)ݑ)ଷsinଶ(ݐ)ᇱݑ5

((ݐ)ݑ)cos((ݐ)ݑ)sinଶ(ݐ)ݑ(ݐ)ᇱᇱᇱݑ− +  ((ݐ)ݑ)cosଶ((ݐ)ݑ)sin(ݐ)ᇱᇱݑ(ݐ)ᇱݑ6

ᇱݑ6−																																																										 ቀݐ)ଷcosଷ൫(ݐ)ݑ൯ቁ.													 (15) 

Lemma 1  For the function (ݐ)ݑ defined in (12), one has   
((ݐ)ݑ)cosߨ−  .1 < (1 + ((ݐ)ݑ)sin(ݐ < ,ߨ ݐ > 0.  
((ݐ)ݑ)cosݐߨ  .2 < (1 + ((ݐ)ݑ)sin(ݐ < ,ݐߨ ݐ > 0. 
3.  (1 + ((ݐ)ݑ)sin(ݐ < 0,((ݐ)ݑ)cosݐߨ2 < ݐ ≤ ଵ

ଶ
. 

Proof. For ݔ > 0, we define  

(ݔ)݂ =
ݔߨ
1 + ݔ − sin ቀ

ߨ
1 + ݔ

ቁ (ݔ)݃			, =
ݔߨ
1 + ݔ + tan ቀ

ݔߨ
1 + ݔ

ቁ. 

We have  

 ݂ᇱ(ݔ) = గ௫
(ଵା௫)మ

൬1 + cosቀ గ
ଵା௫

ቁ൰ > 0,				݃ᇱ(ݔ) = − గ
(ଵା௫)మ

tanଶ ቀ గ
ଵା௫

ቁ < 0. 

Thus, ݂(ݔ) is strictly increasing and ݃(ݔ) is strictly decreasing for ݔ > 0. 
Therefore ݂(ݔ) > 0 and ݃(ݔ) < 0, which implys that sin( గ

ଵା௫
) < గ௫

ଵା௫
 and గ௫

ଵା௫
<

)݊ܽݐ గ
ଵା௫

) respectively. Letting ݔ = ଵ
௧
 follows the first part. To prove the second part, we 

define  

(ݐ)݂ =
ݐߨ
1 + ݐ − sin ൬

ݐߨ
1 + ݐ

൰ (ݐ)݃										, =
ݐߨ
1 + ݐ − tan ൬

ݐߨ
1+ ݐ

൰. 

It can be easily seen that ݂(ݐ) is strictly increasing and ݃(ݐ) is strictly decreasing 
and ݂(0) = ݃(0) = 0. Therefore ݂(ݐ) > 0 and ݃(ݐ) < 0, which implys the desired 
inequalities. Now, for 0 < ݐ ≤ ଵ

ଶ
. , we  define  

(ݐ)݂ = cos൬ݐߨ2
ݐߨ
1 + ݐ

൰ − (1 + sin൬(ݐ
ݐߨ
1 + ݐ

൰. 

We have  

 ݂ᇱᇱ(ݐ) = ିଶగమ

(ଵା௧)మ
sin ቀ గ௧

ଵା௧
ቁ − ଶగయ௧

(ଵା௧)ర
cos( గ௧

ଵା௧
) − గమ(ଵିଶ௧)

(ଵା௧)య
sin( గ௧

ଵା௧
) < 0,	 

the inequality follows from sin( గ௧
ଵା௧
) > 0 and cos( గ௧

ଵା௧
) > 0, for 0 < ݐ ≤ ଵ

ଶ
. This implies 

that ݂(ݐ) for 0 < ݐ ≤ ଵ
ଶ
 is strictly concave, since ݂(0) = 0 and ݂(ଵ

ଶ
) > 0, therefore 

(ݐ)݂ > 0. This completes the proof of lemma.  ∎ 
The next lemma is fundamental in the analysis of algorithm based on the kernel 

function (12).  
Lemma 2  For ߰(ݐ) defined in (12), we have  

߰ᇱᇱ(ݐ) > 2,																																									 (16) 
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(ݐ)ᇱᇱ߰ݐ  + ߰ᇱ(ݐ) > ݐ			,0 < 1																																																																																							(17) 

(ݐ)ᇱᇱ߰ݐ  − ߰ᇱ(ݐ) > 0,																																								                                                     (18) 

 ߰ᇱᇱᇱ(ݐ) < 0.																																								                                                                    (19) 

Proof. From (14), by ݑᇱ(ݐ) = గ
(ଵା௧)మ

  and 	ݑᇱᇱ(ݐ) = − ଶగ
(ଵା௧)య

, we get  

 ߰ᇱᇱ(ݐ) =
గమ

(ଵା௧)రୱ୧୬య(௨(௧))
(1 + ଶାଶ௧

గ
sin((ݐ)ݑ)cos((ݐ)ݑ) +

																																																																																																						cosଶ((ݐ)ݑ)) + 2. 

Case 1 Assume that 0 < ݐ ≤ 1. 
In this case sin((ݐ)ݑ) > 0, cos((ݐ)ݑ) > 0 and the proof is obvious. 
Case 2 Assume that ݐ > 1. 
Using the first part of Lemma 1, we obtain  

߰ᇱᇱ(ݐ) ≥
ଶߨ

(1 + ଷߨ(ݐ (1 +
2 + ݐ2
ߨ sin((ݐ)ݑ)cos((ݐ)ݑ) + cosଶ((ݐ)ݑ)) + 2 

 ≥ ଵ
గ(ଵା௧)

ቀ1 + 2cos൫(ݐ)ݑ൯ + cosଶ൫(ݐ)ݑ൯ቁ + 2	    

 = ଵ
గ(ଵା௧)

(1 + cos((ݐ)ݑ))ଶ + 2 > 2. 
 This proves (16). By using (13) and (14), we have  

(ݐ)ᇱᇱ߰ݐ + ߰ᇱ(ݐ) = ݐ2 +
ݐߨ

(1 + ((ݐ)ݑ)ସsinଷ(ݐ sinߨ)
ଶ൫(ݐ)ݑ൯															 

 +2(1 + ((ݐ)ݑ)cos((ݐ)ݑ)sin(ݐ +  (((ݐ)ݑ)ଶcosଶߨ2
                                                   − గୡ୭ୱ(௨(௧))

(ଵା௧)మୱ୧୬మ(௨(௧))
+ ݐ2 − 2 

=
1

(1 + ((ݐ)ݑ)ସsinଷ(ݐ ߨ)
ଶݐsinଶ((ݐ)ݑ) + 1)ݐߨ2 +  ((ݐ)ݑ)cos((ݐ)ݑ)sin(ݐ

((ݐ)ݑ)cosଶݐଶߨ2+  − 1)ߨ +  ((ݐ)ݑ)cos((ݐ)ݑ)ଶsin(ݐ
1)ݐ4+																		  + ((ݐ)ݑ)ସsinଷ(ݐ − 2(1 +  (((ݐ)ݑ)ସsinଷ(ݐ

 := ଵ
(ଵା௧)రୱ୧୬య(௨(௧))

ℎ(ݐ).																																																									(20) 

Case 1 Assume that 0 < ݐ ≤ ଵ
ଶ
. 

Using the second part of Lemma 1, we obtain  
 
ℎ(ݐ) ≥ 1)ߨ + ((ݐ)ݑ)sinଷ(ݐ + ((ݐ)ݑ)ଶcosଶݐଶߨ2 +  ((ݐ)ݑ)cosଶݐଶߨ2

 
1)ߨ−																				 + ((ݐ)ݑ)cos((ݐ)ݑ)ଶsin(ݐ + ݐ4) − 2)(1 +  ((ݐ)ݑ)ସsinଷ(ݐ

 
= (1 + ߨ)((ݐ)ݑ)sinଷ(ݐ + ݐ4) − 2)(1 +  																								(ଷ(ݐ

 
1)ߨ+																			 + ((ݐ)ݑ)cosݐߨ2)(ݐ − (1 + ((ݐ)ݑ)cos(((ݐ)ݑ)sin(ݐ > 0, 
 

the last inequality follows from sin((ݐ)ݑ) > 0 for 0 < ݐ ≤ ଵ
ଶ
, the third part of Lemma 1 

and  
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ߨ + ݐ4) − 2)(1 + ଷ(ݐ = ߨ + ସݐ4 + ଷݐ10 + ଶݐ6 − ݐ2 − 2																										 
 

	> ߨ) − 3) + ݐ) − 1)ଶ > 0. 
Case 2 Assume that ଵ

ଶ
< ݐ ≤ 1. 

In this case, by the second part of Lemma 1, we have  
 

ℎ(ݐ) = ݐଶߨ + 1)ݐߨ2 + ൯(ݐ)ݑ൯cos൫(ݐ)ݑsin൫(ݐ +  											൯(ݐ)ݑcosଶ൫ݐଶߨ
 
1)ߨ−					 + ((ݐ)ݑ)cos((ݐ)ݑ)ଶsin(ݐ + ݐ4) − 2)(1 +  ((ݐ)ݑ)ସsinଷ(ݐ

 
≥ 1)ߨ + ((ݐ)ݑ)sin(ݐ + 1)ߨ + ݐ2)(ݐ − (1 +  ((ݐ)ݑ)cos((ݐ)ݑ)sin((ݐ

 
ݐ4)+																																  − 2)(1 +  ((ݐ)ݑ)ସsinଷ(ݐ
 
≥ 1)ߨ + ൯(ݐ)ݑsin൫(ݐ ቀ1 + ݐ) − 1)cos൫(ݐ)ݑ൯ቁ					          
 
ݐ4)+																																			  − 2)(1 + ((ݐ)ݑ)ସsinଷ(ݐ > 0, 
 

the last inequality is true by sin((ݐ)ݑ) > 0 and 1 + ݐ) − 1)cos((ݐ)ݑ) > 0, for ଵ
ଶ
< ݐ ≤ 1. 

The two cases together prove (17). To prove (18), considering the first two derivatives of 
  we have , (ݐ)߰
 

(ݐ)ᇱᇱ߰ݐ − ߰ᇱ(ݐ) =
1

(1 + ((ݐ)ݑ)ସsinଷ(ݐ ߨ)
ଶݐsinଶ൫(ݐ)ݑ൯																										 

 
1)ݐߨ2+																																																														 +  ((ݐ)ݑ)cos((ݐ)ݑ)sin(ݐ

 
((ݐ)ݑ)cosଶݐଶߨ2+  + 1)ߨ +  ((ݐ)ݑ)cos((ݐ)ݑ)ଶsin(ݐ
 
																																																																																+2(1 +  .(((ݐ)ݑ)ସsinଷ(ݐ

 
Case 1: Assume that 0 < ݐ ≤ 1. 
 
In this case 0 < (ݐ)ݑ ≤ గ

ଶ
, so sin((ݐ)ݑ) > 0 and cos((ݐ)ݑ) ≥ 0. Therefore ߰ݐᇱᇱ(ݐ) −

߰ᇱ(ݐ) > 0. 
 
 Case 2: Assume that ݐ > 1. In this case, we have  
 

(ݐ)ᇱᇱ߰ݐ − ߰ᇱ(ݐ) >
1

(1 + ((ݐ)ݑ)ସsinଷ(ݐ ߨ)
ଶݐsinଶ((ݐ)ݑ) − ((ݐ)ݑ)cosଶݐଶߨ2

+  ((ݐ)ݑ)cosଶݐଶߨ2
                    −(1 + ((ݐ)ݑ)ଷsinଶ(ݐ + 2(1 +  (((ݐ)ݑ)ସsinଷ(ݐ

	=
1

(1 + ((ݐ)ݑ)ସsinଷ(ݐ ߨ)
ଶݐsinଶ൫(ݐ)ݑ൯																																																		 
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																																		+ ቀ(2 + ൯(ݐ)ݑsin൫(ݐ2 − 1ቁቀ1 +  ൯ቁ(ݐ)ݑଷsinଶ൫(ݐ

>
1

(1 + ((ݐ)ݑ)ସsinଷ(ݐ
ቀߨଶݐsinଶ൫(ݐ)ݑ൯ 	+ 3(1 + t)ଷ	sinଶ൫(ݐ)ݑ൯ቁ 

> 0.																																																																																																														 
The two cases together prove (18). To prove (19), using the first three derivatives of (ݐ)ݑ 
and substituting into (15), we obtain  

  
߰ᇱᇱ′(ݐ) =

ߨ−
(1 + ((ݐ)ݑ)଺sinସ(ݐ ℎ(ݐ), 

where  
ℎ(ݐ) = 1)ߨ6 + ൯(ݐ)ݑsinଷ൫(ݐ +  																				൯(ݐ)ݑ൯cos൫(ݐ)ݑଶsinଶ൫ߨ5

 
 																																		+6(1 +  ((ݐ)ݑ)cos((ݐ)ݑ)ଶsinଶ(ݐ
 
1)ߨ12+						  + ((ݐ)ݑ)cosଶ((ݐ)ݑ)sin(ݐ +  .((ݐ)ݑ)ଶcosଷߨ6

 
Case 1: Assume that 0 < ݐ ≤ 1. 
 
In this case 0 < (ݐ)ݑ ≤ గ

ଶ
, so sin((ݐ)ݑ) > 0 and cos((ݐ)ݑ) ≥ 0, and implies that 

ℎ(ݐ) > 0. 
 
Case 2: Assume that ݐ > 1.  
 
In this case, cos((ݐ)ݑ) < 0 and sin((ݐ)ݑ) > 0. Therefore,  
 

ℎ(ݐ) > ൯(ݐ)ݑsinଶ൫ߨ6 ቀ(1 + ൯(ݐ)ݑsin൫(ݐ +  																														൯ቁ(ݐ)ݑcos൫ߨ
 
													+6(1 + 1))((ݐ)ݑ)cos((ݐ)ݑ)sin(ݐ + ((ݐ)ݑ)sin(ݐ +  (((ݐ)ݑ)cosߨ
 
1))((ݐ)ݑ)cosଶߨ6+														  + ((ݐ)ݑ)sin(ݐ +  (((ݐ)ݑ)cosߨ
 

	= ((ݐ)ݑ)sinଶߨ)6 + (1 + ((ݐ)ݑ)cos((ݐ)ݑ)sin(ݐ +  (((ݐ)ݑ)cosଶߨ
 
                                   × ((1 + ((ݐ)ݑ)sin(ݐ +  (((ݐ)ݑ)cosߨ

≥ ߨ6 ቀ1 + cos൫(ݐ)ݑ൯ቁ ቀ(1 + ൯(ݐ)ݑsin൫(ݐ + ൯ቁ(ݐ)ݑcos൫ߨ > 0.		 
The second and the last inequalities follow by Lemma 1.                   ∎ 
Lemma 3  For ݐ ≥ 1, one has  
1.  cos((ݐ)ݑ) ≥ 1 −  .ݐ
 
2.  ଵ

ୱ୧୬(௨(௧))
≤ ଶݐ − ݐ2 + 2. 

 
Proof. For ݐ ≥ 1, గ

ଶ
≤ (ݐ)ݑ ≤ ((ݐ)ݑ)and sin ߨ ≤ 1. Define ݂(ݐ): = cos((ݐ)ݑ) + ݐ − 1. 

Then, we have  
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݂ᇱ(ݐ) = −
((ݐ)ݑ)sinߨ
(1 + ଶ(ݐ + 1 =

((ݐ)ݑ)sinߨ− + (1 + ଶ(ݐ

(1 + ଶ(ݐ ≥
ߨ− + 4
(1 + ଶ(ݐ > 0. 

 
Thus, ݂(ݐ) is increasing for ݐ ≥ 1 , and hence ݂(ݐ) ≥ ݂(1) = 0. This implies the 

first inequality. For the second part, defining  

(ݐ)݃ = ଶݐ − ݐ2 + 2 −
1

sin൫(ݐ)ݑ൯
, 

we have  

݃ᇱ(ݐ) = ݐ2 − 2 +
((ݐ)ݑ)cosߨ

(1 + ((ݐ)ݑ)ଶsinଶ(ݐ ≥ ݐ)2 − 1) −
ݐ)ߨ − 1)

(1 +  ((ݐ)ݑ)ଶsinଶ(ݐ

 

= (2൫1 + ൯(ݐ)ݑଶsinଶ൫(ݐ − ൯ߨ
ݐ − 1

(1 +  																	((ݐ)ݑ)ଶsinଶ(ݐ

 

≥ (8 − (ߨ
ݐ − 1

(1 + ((ݐ)ݑ)ଶsinଶ(ݐ ≥ 0.																																											 

 
The two inequalities are followed by  (1 + ((ݐ)ݑ)sin(ݐ > 2 for ݐ ≥ 1, and the 

first part, respectively. Therefore, ݃(ݐ) is increasing and hence ݃(ݐ) ≥ ݃(1) = 0. This 
completes the proof.                                           ∎ 

Note that ߰ᇱ(1) = ߰(1) = 0, and ߰ᇱᇱ(ݐ) > 0 imply that ߰(ݐ) is a nonnegative 
strictly convex such that ߰(ݐ) achieves its minimum at ݐ = 1, i.e., ߰(1) = 0. This 
implies that, since ߰(ݐ) is twice differentiable, it is completely determined by its second 
derivative: 

(ݐ)߰ = ∫  ௧ଵ ∫  కଵ ߰ᇱᇱ(ߞ)݀.ߦ݀ߞ																																			(21)  

The next lemma is very useful in the analysis of interior-point algorithms based on 
the kernel functions (see for example [2, 17]).  
Lemma 4 (Lemma 2.1.2 in [19]) Let ߰(ݐ) be a twice differentiable function for ݐ > 0. 
Then the following three properties are equivalent:    

(ଶݐଵݐ√)߰ .1 ≤
ଵ
ଶ
(ଵݐ)߰) + ,ଵݐ for ((ଶݐ)߰ ଶݐ > 0.  

2. ߰ᇱ(ݐ) + (ݐ)ᇱᇱ߰ݐ ≥ 0, ݐ > 0.  
3.  3.  ߰(݁క) is convex.  

 
Following [19], the property described in Lemma 4 is called exponential 

convexity, or shortly ݁-convexity. Therefore, Lemma 4 and (17) show that our new 
kernel function (12) is ݁-convex for ݐ > 0.  
Lemma 5  (Lemmas 7 and 8 in [13]) For ߰(ݐ) defined as (12), one has              

(ݐ)߰  .1 < ଵ
ଶ
߰ᇱᇱ(ݐ)(ݐ − 1)ଶ, ݐ > 1. 

(ݐ)߰  .2 ≤ ,(ݐ)ᇱ߰ݐ ݐ ≥ 1. 
The next theorem gives a lower bound on (ݒ)ߜ in terms of Ψ(ݒ). This is due to 

the fact that ߰(ݐ) satisfies (19).  
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Theorem 6. (Theorem 4.9 in [2]) Let ߩ: [0,∞) → [1,∞) be the inverse function of ߰(ݐ) 
for ݐ ≥ 1. One has  

(ݒ)ߜ ≥
1
2߰

ᇱ(ߩ(Ψ(ݒ))). 

Lemma 7.  If (ݒ)ߖ ≥ 1, then  

(ݒ)ߜ ≥
1
4ඥΨ(ݒ). 

Proof. Using (21) and (16), we have 

ݏ = (ݐ)߰ = න  
௧

ଵ
න  
క

ଵ
߰ᇱᇱ(ߞ)݀ߦ݀ߞ ≥ න  

௧

ଵ
න  
క

ଵ
ߦ݀ߞ݀(ߞ)2 = ݐ) − 1)ଶ, 

 
which implies ݐ = (ݏ)ߩ ≤ 1 +   Using Theorem 6 and Lemma 5, we have .ݏ√

 

(ݒ)ߜ ≥
߰ ቀߩ൫Ψ(ݒ)൯ቁ

൯(ݒ)൫Ψߩ2
=

Ψ(ݒ)
൯(ݒ)൫Ψߩ2

≥
Ψ(ݒ)

2 ቀ1 + ඥΨ(ݒ)ቁ
 

 

																											≥
Ψ(ݒ)

4ඥΨ(ݒ)
≥
1
4ඥΨ(ݒ). 

The proof of the statement is completed.                                               ∎ 
At the start of each outer iteration, just before the update of ߤ with the factor 

1 − (ݒ)we have Ψ ,ߠ ≤ ߬. Due to the update of ߤ , the vector ݒ defined by (4) is divided 
by the factor √1 − with 0 ,ߠ < ߠ < 1, which leads to an increase of the value of Ψ(ݒ). 
Then, during the inner iterations, Ψ(ݒ) decreases until it passes the threshold ߬ again. 
Hence, during the course of the algorithm, the largest values of Ψ(ݒ) occur just after the 
updates of ߤ. In the rest of this section, we derive an estimate for the effect of  ߤ-update 
on the value of Ψ(ݒ). We start with an important theorem. This is due to the fact that 
  .satisfies (16) and (18) (ݐ)߰
Theorem 8. (Theorem 3.2 in [2]) Let ߩ be the inverse function of ߰(ݐ) for ݐ ≥ 1. Then 
for any positive vector ݒ, and any ߚ ≥ 1  

Ψ(ݒߚ) ≤ )ߩߚ)߰݊
Ψ(ݒ)
݊ )). 

 
Corollary 9.  Let 0 ≤ ߠ < 1 and ݒା =

௩
√ଵିఏ

. If (ݒ)ߖ ≤ ߬, then  
 

Ψ(ݒା) ≤ ݊߰ቌ
ቀ߬݊ቁߩ

√1 − ߠ
ቍ. 
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Suppose that the barrier update parameter ߠ and threshold value ߬ are given. 
According to the algorithm, at the start of each outer iteration we have Ψ(ݒ) ≤ ߬. Define  

=:ܮ ,݊)ܮ ,ߠ ߬): = ݊߰ቆ
ఘቀഓ೙ቁ

√ଵିఏ
ቇ.																									 (22) 

According to Corollary 9, ܮ is an upper bound of Ψ(ݒା), the value of Ψ(ݒ) after 
the ߤ-update. 

 
4. ANALYSIS OF THE ALGORITHM 

In this section, we determine a default step size and obtain an upper bound to the 
decrease of the barrier function Ψ(ݒ) during an inner iteration.  

 
4.1. Decrease the value of (࢜)࣒ and choose a default step size ࢻ 

In each iteration, the search directions Δݔ, Δݕ and Δݏ are obtained by solving the 
system (9) and via (5). After a step with size ߙ and due to (5), the new iterate is obtained 
by  

ାݔ = ݔ + ݔΔߙ =
ݔ
ݒ
ݒ) + ାݏ			,(௫݀ߙ = ݏ + ݏΔߙ =

ݏ
ݒ ݒ) +  .(௦݀ߙ

Thus we have  

ାଶݒ =
ାݏାݔ
ߤ = ݒ) + ݒ)(௫݀ߙ +  .(௦݀ߙ

 
Since the proximity after one step is defined by Ψ(ݒା), it follows that  

  

Ψ(ݒା) = Ψ(ඥ(ݒ + ݒ)(௫݀ߙ +  .((௦݀ߙ

Hence, by Lemma 4  

Ψ(ݒା) ≤
1
2 (Ψ(ݒ + (௫݀ߙ + Ψ(ݒ +  .((௦݀ߙ

Let us denote the difference between the proximity before and after one step by a 
function of the step size, that is  

=:(ߙ)݂ Ψ(ݒା) − Ψ(ݒ). 

Then ݂(ߙ) ≤ ଵ݂(ߙ), where  

ଵ݂(ߙ):=
1
2 (Ψ(ݒ + (௫݀ߙ + Ψ(ݒ + ((௦݀ߙ − Ψ(ݒ). 

Obviously  

݂(0) = ଵ݂(0) = 0. 
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Taking the derivative with respect to ߙ, we obtain  

ଵ݂
ᇱ(ߙ) = ଵ

ଶ
∑ 	௡
௜ୀଵ (߰ᇱ(ݒ௜ + ௫௜)݀௫௜݀ߙ + ߰ᇱ(ݒ௜ +   (23)										௦௜)݀௦௜),݀ߙ

and  

ଵ݂
ᇱᇱ(ߙ) = ଵ

ଶ
∑ 	௡
௜ୀଵ (߰ᇱᇱ(ݒ௜ + ௫௜)݀௫௜ଶ݀ߙ +߰ᇱᇱ(ݒ௜ + ௦௜)݀௦௜ଶ݀ߙ ),							 (24) 

where ݀௫௜ and ݀௦௜ denote the ݅th components of the vectors ݀௫ and ݀௦, respectively. From 
(23), using (11) and the third equation of (9), we obtain  

ଵ݂
ᇱ(0) =

1
2∇Ψ(ݒ)

்(݀௫ + ݀௦) 

= − ଵ
ଶ
∇Ψ(ݒ)்∇Ψ(ݒ) =   (25)												ଶ.(ݒ)ߜ2−

In what follows, we use the short notation ߜ:=  and state four important , (ݒ)ߜ
lemmas without proofs. These are due to the fact that ߰ᇱᇱ(ݐ) is monotonically decreasing.  
Lemma 10.(Lemma 4.1 in [2]) One has  

ଵ݂
ᇱᇱ(ߙ) ≤ ୫୧୬ݒ)ଶ߰ᇱᇱߜ2 −  .(ߜߙ2

Lemma 11. (Lemma 4.2 in [2]) If the step size ߙ satisfies  

−߰ᇱ(ݒ୫୧୬ − (ߜߙ2 + ߰ᇱ(ݒ୫୧୬) ≤  (26) 	,ߜ2

 
 then ଵ݂ᇱ(ߙ) ≤ 0. 
Lemma 12. (Lemma 4.3 in [2]) Let ߩ: [0,∞) → (0,1] denote the inverse function of the 
restriction of − ଵ

ଶ
߰ᇱ(ݐ) on the interval (0,1], then the largest possible value of the step 

size of ߙ satisfying (26) is given by  

=:തߙ
1
ߜ2 (ߜ)ߩ) −  .((ߜ2)ߩ

Lemma 13. (Lemma 4.4 in [2]) Let ߩ and ߙത be the same as defined in Lemma 11. Then  

തߙ ≥
1

߰ᇱᇱ((ߜ2)ߩ). 

For the purpose of finding an upper bound for ݂(ߙ), we need a default step size ߙ෤ 
that is the lower bound of the ߙത , and consists of ߜ.  
Lemma 14. Let ߩ: [0,∞) → (0,1] denote the inverse function of the restriction of  
− ଵ

ଶ
߰ᇱ(ݐ) on the interval (0,1] and  (ݒ)ߖ ≥ ߬ ≥ 1. Then  

1
߰ᇱᇱ((ߜ2)ߩ) ≥

1

(16 + ߜ(ଶߨ6√24
ଷ
ଶ
. 

Proof. To obtain the inverse function ݐ = − of (ݏ)ߩ ଵ
ଶ
߰ᇱ(ݐ) for 0 < ݐ ≤ 1, we need to 

solve the equation  



 B.Kheirfam, M.Moslem / A Polynomial-Time Algorithm 247

−߰ᇱ(ݐ) = ݐ2− + 2 +
((ݐ)ݑ)cosߨ

(1 + ((ݐ)ݑ)ଶsinଶ(ݐ =  .ݏ2

The above equation implies  

2 + గୡ୭ୱ(௨(௧))
(ଵା௧)మୱ୧୬మ(௨(௧))

= ݏ2 + ݐ2 ≤ ݏ2 + 2.																				 (27) 

By setting ݐ =   we have ,(ߜ2)ߩ

−߰ᇱ(ݐ) =  .ߜ4

Hence, we have  

 ଵ
టᇲᇲ(௧)

= ଵ

ଶା ഏమ

(భశ೟)ర౩౟౤య(ೠ(೟))
(ଵାమ(భశ೟)ഏ ୱ୧୬(௨(௧))ୡ୭ୱ(௨(௧))ାୡ୭ୱమ(௨(௧)))

. 

Using the second part of Lemma 1, (1 + ((ݐ)ݑ)sin(ݐ ≤ ݐߨ ≤ for 0 ߨ < ݐ ≤ 1, we have  

1
߰ᇱᇱ(ݐ) ≥

1

2 + ଶߨ
(1 + ((ݐ)ݑ)ସsinଷ(ݐ (1 + 2cos((ݐ)ݑ) + cosଶ((ݐ)ݑ))

 

≥
1

2 + ଶߨ
(1 + ((ݐ)ݑ)ଷsinଷ(ݐ (1 + cos((ݐ)ݑ))ଶ

																	 

=
1

2 + ((ݐ)ݑ)cosߨ) + 2(1 + (((ݐ)ݑ)ଶsinଶ(ݐ
ଷ
ଶߨଶ(1 + cos((ݐ)ݑ))ଶ

(1 + ଶ(1ߨ((ݐ)ݑ)ଷsinଷ(ݐ + cos((ݐ)ݑ))ଶ

 

≥
1

2 + ((ݐ)ݑ)cosߨ) + 2(1 + ((ݐ)ݑ)ଶsinଶ(ݐ
(1 + ((ݐ)ݑ)ଶsinଶ(ݐ )

ଷ
ଶ

ଶ(1ߨ + cos((ݐ)ݑ))ଶ

(2cosଶ((ݐ)ݑ) + 2sinଶ((ݐ)ݑ))
ଷ
ଶ

 

 

≥
1

2 + ( ((ݐ)ݑ)cosߨ
(1 + ((ݐ)ݑ)ଶsinଶ(ݐ + 2)

ଷ
ଶ
ଶߨ4
2√2

.																																															 

 
Using (27) and Lemma 7, we get  

1
߰ᇱᇱ(ݐ) ≥

1

2 + ߜ4) + 2)
ଷ
ଶ√2ߨଶ

≥
1

(16 + ߜ(ଶߨ6√24
ଷ
ଶ
. 

This completes the proof.                                                                        ∎ 
In the sequel, we use the notation  

෤ߙ = ଵ

(ଵ଺ାଶସ√଺గమ)ఋ
య
మ
,																																										 (28) 
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as the default step size. By Lemma 13, ߙത ≥  .෤ߙ
Lemma 15. (Lemma 4.5 in [2]) If the step size ߙ is such that ߙ ≤   ത, thenߙ

(ߙ)݂ ≤  .ଶߜߙ−

Theorem 16.  If ߙ෤ is the default step size as given by (28), then  

(෤ߙ)݂ ≤
−Ψ

ଵ
ସ

16 + ଶߨ6√24
. 

Proof. Using Lemma 15 with ߙ =   ෤ and (28), we haveߙ

(෤ߙ)݂ ≤ ଶߜ෤ߙ− ≤
ଶߜ−

(16 + ߜ(ଶߨ6√24
ଷ
ଶ
=

ߜ−
ଵ
ଶ

16 + ଶߨ6√24
. 

Using Lemma 7, we obtain  

(෤ߙ)݂ ≤ −
Ψ(ݒ)

ଵ
ସ

32 + ଶߨ6√48
. 

 
This proves the theorem.                                                                       ∎ 

 
4.2. Iteration Bound 

We need to count how many inner iterations are required to return to the situation 
where Ψ(ݒ) ≤ ߬ after a ߤ-update. We define the value of Ψ(ݒ) after ߤ-update as Ψ଴ , and 
the subsequent values in the same outer iteration are denoted as Ψ௞, ݇ = 1,2, …  where ,ܭ,
 denotes the total number of inner iterations in the outer iteration. According to ܭ
decrease of ݂(ߙ෤), for ݇ = 1,2,… ܭ, − 1, we obtain  

Ψ௞ାଵ(ݒ) ≤ Ψ௞(ݒ) −
ஏ(௩)

భ
ర

ଷଶାସ଼√଺గమ
.  (29) 

Lemma 17 (Lemma 14 in [18]) Suppose ݐ଴, ,ଵݐ … ,  ௄ be a sequence of positive numbersݐ
such that  

௞ାଵݐ ≤ ௞ݐ − ௞ݐߚ
ଵିక , ݇ = 0,1,… ܭ, − 1, 

 

where ߚ > 0 and 0 < ߦ ≤ 1. Then ܭ ≤ ඄௧బ
഍

ఉక
ඈ � �  

Letting ݐ௞ = Ψ௞(ݒ), ߦ =
ଷ
ସ
 and  ߚ = ଵ

ଷଶାସ଼√଺గమ
, we can get the following theorem from 

Lemma 17.  
Theorem 18.  Let ܭ be the total number of inner iterations in the outer iteration. Then 
we have  

ܭ			 ≤
4
3 (32 + ଶ)Ψ଴ߨ6√48

ଷ
ସ,  
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where, Ψ଴ is the value of Ψ(ݒ) after the ߤ-update in outer iteration.  
According to Lemma 3, it is clear that ߰(ݐ) ≤ ݐ)2 − 1)ଶ for ݐ ≥ 1. Applying Corollary 9 
and the proof of Lemma 7, we obtain  

Ψ଴ ≤ ݊߰(
ߩ ቀ߬݊ቁ

√1 − ߠ
) ≤ ݊߰(

1 + ට߬݊
√1 − ߠ

) ≤ 2݊(
1 + ට߬݊
√1 − ߠ

− 1)ଶ																				 

																																											≤
2݊
1 − ߠ ߠ) +

ට
߬
݊)

ଶ, 

 
where the last inequality holds from 1 − √1− ߠ ≤ for 0 ,ߠ < ߠ ≤ 1. The number of 
outer iterations is bounded above by ଵ

ఏ
log(௡

ఌ
) (Lemma ܫܫ. 17 in [20]). By multiplying the 

number of outer iterations and the number of inner iterations, we get an upper bound for 
the total number of iterations, namely  

																																4(32 + (ଶߨ6√48
ߠ3 (

2݊
1 − ߠ ߠ) +

ට
߬
݊)

ଶ)
ଷ
ସlog

݊
ߝ .

 

Large-update methods use ߠ = Θ(1) and ߬ = ܱ(݊), so the iteration bound becomes  

ܱ(݊
ଷ
ସlog

݊
 .(ߝ

 
5. CONCLUSION 

In this paper, we have proposed a new barrier function and a large-update 
version of primal-dual interior-point algorithm. The kernel function (12) has a new 
trigonometric barrier term with some properties described in Section 3. We have showed 
that the large-update IPM based on this kernel function has ܱ(݊

య
రlog ௡

ఌ
) iteration bound, 

which improves the classical iteration complexity for large-update methods, i.e., 
ܱ(݊log ௡

ఌ
). 
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