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1. INTRODUCTION

Estimation of large quantiles of an unknown distribution function is a sta-
tistical problem of great practical importance. Let us mention estimation of the
Value-at-Risk parameter for a given financial portfolio as an important problem
that directly involves high quantile estimators. Different estimators of high quan-
tiles based on the upper order statistics of a sample were proposed and many
important properties were proved. See, for example, Feldman and Tucker [7],
Dekkers and de Haan [5], Embrechts et al. [6], Matthus and Beirlant [13] and
references therein. In this paper we consider the rate of convergence of the direct-
simulation estimator of large quantiles and the aim of this paper is to calculate the
rate of convergence of the Pareto and Gamma distributions. Applications of that
distributions in theory as in empirical analyzes are well known. For example, it
is well established that the burst and idle times for on/off traffic are modeled by
the Pareto and Gamma distributions, respectively. Also, the inter arrival times
between on/off-traffic is the convolution of the Pareto and Gamma random vari-
ables. For details see Nadarajah and Kotz [14]. The Pareto distribution is widely
applied in different fields such as finance, insurance, physics, hydrology, geology,
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climatology, astronomy. Recently much attention has been paid to the statistical
distribution of certain socio-economic quantities such as annual personal income
of individuals (Pareto’s law is one of the two functions most often used to describe
the size distribution of income), magnitudes of earthquakes, the size of human
settlements, number of hits at web sites, the assets of firms as well as standardized
price returns on individual stocks or stock indexes. The intellectual antecedents
of these studies can be found in the works of Pareto, Gibrat and others, and for
other references see Champernowne [4] , Quandt [15] , Singh and Maddala [18],
Levy and Solomon [11], Levy [10], Reed [16] , Aoyama et al. [1], Fujiwara et al. [8].
The second distribution which has been considered in this paper is the Gamma
distribution. It is a special case of the generalized inverse Gaussian distribution
(that is nonnegative process for modeling changing volatility). This distribution
is self-decomposable and may serve as building blocks in the various dynamic
models, which has been discussed in paper Barndorff-Nielsen et al. [3]. A review
of the definitions and properties of the generalized inverse Gaussian distribution
is given in Schiryaev [17]. The importance of the Gamma distribution is also a fact
that the Variance Gamma processes are special classes of subordinated processes
extensively studied in finance. They have been first introduced in literature by
Madan and Seneta [12] as model for stocks return.

2. PRELIMINARIES AND NOTATION

Let X1, X5, ..., X, be iid. random variables with the common distribution
function F. Define the empirical distribution function

1 n
Falx)= = Zl(xk <x), —c0<x<oo,
k=1

where I(X < x) denotes the indicator of the event {X} < x}. The quantile x, of the
distribution function F is defined by x, = inf{x : F(x) > p}, for all p € (0, 1). In this
paper we shall consider the following estimator of x,:

Xp(n) = inf{t : F,(t) > p}. (1)

That is direct-simulation estimator. The following notion of negative dependence
will be used in what follows.

Definition 2.1. (see [19]) Random variables X1, Xa, ..., Xy, are called negatively de-
pendent if the following two inequalities hold for all x1,x», ..., X,:

P{X1 <x1,0, Xy < x,} SP{Xy <x1} ... - P{X, < x,),
P{Xy > x1,..., X, = x,} <P{X1>x1}-...- P{X,, > x,}.

A sequence of random variables (X,,) is negatively dependent if foralln > 2,1 < j; <
< Jpand xq, ..., x, € R the following inequalities hold true:

P{Xj < x1,.., X}, S x} S PIXj <xa} - PAX, < xa,
P{Xj, 2 x1,..., Xj, 2 x5} < P{Xj, 2 x1} - ... - P{X], > x,).
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Lemma 2.2. (see [19]) If X;, i = 1,...,n are negatively dependent with E|X;| < +oo,
i=1,..,n,then
E(XiX;) < E(X)E(X)),i # j,i,j=1,..,n.

Furthermore, if X;,i = 1, ..., n are non-negative and E(Xj - ... - X;,) < 400, then
E(X7:...- X;) <E(Xy) - ...  E(Xy).
The proof of this lemma can be found in Xing Jin and Michael C. Fu [19].

The following two results show that ¥, (1) converges to x, exponentially fast
in probability as n goes to infinity. These results were proved in Xing Jin and
Michael C. Fu [19]. We shall use them for our calculation in the next section.

Lemma 2.3. (see [19]) Let {Y,,n > 1} be negatively dependent and identically dis-
tributed random variables, with moment generating function M(A) = E[exp(AY7)]. Let
Sy = Y Yi. If M(A) exists in a neighborhood (—€, €) of A = 0 for some € > 0, then

P{S,/n > x} <e ™M forall x > E(Y1), )
P{S,/n < x} <e™M  forall x < E(Y1), 3)
where
InE AS,
A(x,n) = sup (/\x_ M)
0<A<e n
> sup (Ax — InE{exp[AY1]}) > 0,
0<A<e
and
InE AS,
A_(x,n) = sup (Ax _ H{L”)
—e<A<0 n
> sup (Ax —InE{exp[AY1]}) > 0.
—-e<A<0

Conwversely, if E[|Y1]] < +o0 and for any x > E(Y1), there exist a(x) > 0 such that
P{S,/n > x} < e,

and for any x < E(Y1), there exist f(x) > 0 such that
P{S,/n < x} < e,

then the moment generating function M(A) exists in neighborhood (—€,€) of A = 0 for
some € > 0.
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Theorem 2.4. (see [19]) If the distribution function F is strictly increasing and {Y,,n >
1} are negatively dependent, then

P{IEc\p(n) - xp| > €} < gTMAEm y pmnAlem) forall € >0, 4)
where In Efexp[A T, I(Y )
n E{ex i iSx,+e€
Ai(e,n) = sup (Ap - P ! ? ),
—00<A<0 n
InEfexp[A YL I(Y; < x, — €
A_(e,n) = sup (Ap - (expld L) I P )]}).
0<A<+oo n

And, moreover, the rate is enhanced by negatively dependence in the sense that

Ai(e,n) 2 sup (Ap —InE{exp[AI(Y < x, +€)]}) >0,

—o00<A<0
A_(e,n) > sup (Ap—InE{exp[AI(Y < x, —€)]}) >0,
0<A<+co

where the right-hand "sup” quantiles are the rates for i.i.d. samples.

Remark 2.5. Let us notice p, = P{|55p(n) - xp| > €}. If we use the fact that probabilities
Py are finite,

(o]

< 1 1
an_ T—eh " Toea 7%

n=1

and Borel-Cantelli lemma, then the probability that infinitely many of them occur is 0,
that is
P{ lim x,(n) = x,} = 1.

n—+o0

3. THE CASES OF THE PARETO AND GAMMA DISTRIBUTIONS

In this section we shall determine the rate of convergence for the Pareto and
Gamma distributions.

Theorem 3.1. Let {Y,,n > 1} be negatively dependent random variables with the com-
mon Pareto distribution

1_-"(x) =Kx™%, x> W, Ka>0,
F(x)=1-Kx™“.

The rate of convergence for standard quantile estimator x,(n) in this case is given by

P, () — x| 2 e} < (

pK(x, + €)™ )—pn . (K(xp +€)7 )n
(1-K(xp +€) )1 -p) L-p
( pK(x, — €)™ )—pn _ (K(x,, —e)” )n'
(1=K =€) )1 - p) L-p
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Proof. Since the Pareto distribution is strictly increasing we may us the
Theorem(2.4) and obtain

P{)Ec\,,(n) - xp| > e} < e g pnhem - forall € >0,

where
Ai(e,n) = sup (Ap—InE{exp[AI(Y <x, +€)]}) = Ay,
—00<A<0
A (e,n) = sup (Ap—InE{exp[AI(Y <x,-¢€)]}) =A_,
0<A<+co0

and p = P[Y < x]. Let us determine A, and A_. We may denote
p" =P[Y <x,+e€]=F(x,+¢€) =1-K(x, +€)™"
The distribution of the indicator I(Y < x, + €) is given by
0 1
I(Y<x,+¢€): ,
(Y <3, +6) ( g )

where p* =1 - K(x, + €)™ and 1 - p* = K(x, + €)™*. Now we may calculate
Ay = sup (Ap—In(e'p* +1-p")).
—o0<A<0

pd-p")
(1-pp*’

The maximum of the function Ap —In(e*p* +1—p*) is attained for A = In
and since p < p* it is always negative. Consequently we obtain that

R Pa-r  1-p
1 -pp* 1-p’
pK(x, + €)™ B K(x, + €)™
1-K+oad-p  (A-p)

Similarly, let us denote p~ = P[Y < x, —€] = F(x, —€) = 1 — K(x;, — €)™*. We may
calculate

Ay=p

Ay =pln

A= sup (Ap—In('p™ +1-pO)).

0<A<+00

pd-p7)
A-pp~’

The maximum of the function Ap — In(e*p™ + 1 — p7) is attained for A = In
and since p > p~ it is always positive. Now we may calculate

pA-p7) | 1-p"
(1-pyp~ 1-p’
pK(x, — €)™ K(x, —e)™
A =pl -
PR 0—Ke,—oo-p  (1-p)

A_=pln
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Finally we obtain

P{”x\p(n) - xp| >e} < At A
_ pK(x, + €)™ )—pn . (K(xp +€)7 )n
(I-K(xp +€) )1 -p) I-p
pK(xp —-e)¢ s K(xp —€)\n
. Ky,

(1-Kxp —e)™)(1~-p
and the proof is completed. [

1-p

Also, we can analyze more general case, for example general Pareto distribu-
tion, F(x) = L(x)x™®, where a > 0 and L(x) is slowly varying function. In that case
we can obtain the next result:

P{|55p(n) - xp| >e) < e peAs
<p(l = L(xp + €)(xp + e)‘“))—pn ' (1 —L(xy +€)(xp +€)7¢ )n
(1 =p)L(xp +€)(xp + €)@ 1-p
(p(l = L(xp —€)(xp — e)‘“))—pn . (1 —L(xp —€)(xp — €)™ )n
(1 =p)L(xy —€)(xp — €)™ 1-p .
The proof in this case is analog as the proof for Pareto distribution and we will
omit it here.

Theorem 3.2. Let {Y,,n > 1} be negatively dependent random variables with the com-

mon Gamma density

B ‘Bae—ﬁx
I'(a) ’

f(xr UC;,B) =x"

x>0,a4>0,8>0.

The rate of convergence for standard quantile estimator x,(n) in this case is given by:

. pA (A Y
P{)xlﬂ(”) xP| e} < (F(a)(l - %)(1 - p)) (r(a)(l —P))

B —pn B n
(r<a)<1 —Z%)(l - p>) (Tma—p)
where
A = e P ([Bx, + )1 + (@ = DB, +€)1* 2 + o([Bx, + €)]°7?)),
B = e I([p(x, — )l + (@ = DIB0s, — €)1 + o([B0xy — €)]*7H)).
Proof. Since the Gamma distribution is strictly increasing we may use the same

notation as in Section 2 and we shall determine

Ay = sup (Ap —InE{exp[AI(Y < x, +€)]}),

—00<A<0

A_ = sup (Ap —InEfexp[AI(Y < x, —¢€)]}).

0<A<+00
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Let us denote p* = P[Y < x, + €]. If we use substitution y = fx we will obtain

p+ = P[Y < Xp + €] — fxp+€ xa—l @dx
0 I(a)

1 B(xp+e) o
T T@ Jo yety

1 +00 1 +00 .
= — e Vdy - e Vd
r(a><fo ety V)

(xp+€)
1 A

= —(T@)-4)=1- L

I'(a) ®)

where
A = P I([Blg, + 1 + (@ = DIBG, + I + (B, +€)]"?)

The last equality follows from the result

+00
f s le*ds = e‘t(tr‘1 + (=12 + o(t"Z)),
t
which can be found in Dekkers and de Haan [5]. Now we may obtain

Ay = sup ()\p —-In (eAer +1- P+)),

—o0<A<0

A A
A+ = _OSOI;IESO (Ap —In (eA(l — m) + m))
pa-p*)
(I-pp*”

Maximum is attained for A = In and since p < p* it is always negative.

And we may calculate
pA In A
T(a)(1 - #5)(1 - p) T(@)(1-p)

Ay =pln (6)

Similarly let us denote p~ = P[Y < x;, — €]. Now we may obtain

A= sup (Ap—In(e'p™ +1-p")).

0<A<+00

p-p7)

In this case the maximum is attained for A = In ,and since p > p~ itis always

A-p)p~
positive. Similarly as we have obtained p* ( equation (5)) we may obtain
B
-1 B
P Ty
where

B = P59([Bx, — ©)1* ! + (@ = DB, — €)1 2+ o([Bx, — €)1°72)).
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As we have calculated A, ( equation (6)) we may calculate

pB B
A_=pl -1 . 7
P - -p  T@a-p) 7
Finally we obtain result
P{‘Ec\p(n) - xp| >e} < e oA
pA —pn A n
(F(a)(l — )1 - p)> (F(a)(l - p)) ®

( pB >_pn ) ( B )n
T(@)(1 - #5)(1 - p) T -p)”
and the proof is completed. [J

4. NUMERICAL EXAMPLES AND DATA ANALYSIS

4.1. Numerical examples

In this subsection we present some numerical examples to see the performance
of rate of convergence from the Section 3. Table 4.1.1-4.1.4 contain results that
are related to the Pareto distribution and Theorem 3.1. We take two values of K
and a and three values of e. The whole approach can be applied on any other
parameters setting. For each parameters setting we compute rate of convergence
by using the appropriate formula.

Table 4.1.1 Rate of convergence for Pareto distribution and
K=2,a=3,p=032x, =1432761
n A+ A_ e—nA+ + e—nA_
e=0.1 | 4% [ 0.595463 | 0.260649 0.856112
57 | 0.444846 | 0.122345 0.567191
72 ] 0.204405 | 0.016281 0.220686
10% | 0.039160 | 0.000224 0.039384
132 | 0.004187 | 0.000001 0.004188
€=0.01 | 14% [ 0.293799 | 0.262761 0.556560
16% | 0.160676 | 0.136011 0.296687
19° | 0.946808 | 0.035409 0.982217
2231 0.008625 | 0.005593 0.014218
25° | 0.000935 | 0.000495 0.001430
e=0.001 | 12° | 0.315207 | 0.312308 0.627515
14° | 0.082465 | 0.080834 0.163299
10° | 0.009660 | 0.009308 0.018968
11° | 0.000269 | 0.000252 0.000521
12° [ 0.000001 | 0.000001 0.000002
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Table 4.1.2 Rate of convergence for Pareto distribution and
K=2,a=3,p=099x, = 58480355
n A, A_ e A 4 pmHA-
e=01 | 9° [ 0468399 | 0.443661 | 0.912060
10° | 0.276812 | 0.252510 | 0.529322
12° | 0.040924 | 0.032559 | 0.073483
15° | 0.000058 | 0.000029 | 0.000087
10° | 0.000003 | 0.000001 | 0.000004
e=0.01 | 14° | 0.368872 | 0.366333 | 0.735205
15° [ 0.221193 | 0.218895 | 0.440088
16° | 0.108372 | 0.196717 | 0.305089
19° [ 0.001967 | 0.001884 | 0.003851
21% | 0.000012 | 0.000011 | 0.000023
e=0.001 | 13° | 0.338286 | 0.338067 | 0.676353
14% | 0.140734 | 0.140569 | 0.281303
15° | 0.033323 | 0.331290 | 0.364613
16° | 0.003323 | 0.003312 | 0.006635
178 | 0.000094 | 0.000094 | 0.000188

Table 4.1.3 Rate of convergence for Pareto distribution and
K=5,a=5p=032x, =1490363

n A, A_ e A 4 pmHA-
e=0.1 | 10 | 0483973 | 0.011269 | 0.495242
13 | 0.389285 | 0.002934 | 0.392219
15 | 0.336691 | 0.001196 | 0.337887
20 | 0.234230 | 0.000127 | 0.234357
27 | 0.140935 | 0.000006 | 0.140941
e=0.01 | 10° | 0.325466 | 0.178036 | 0.603502
123 | 0.143751 | 0.109498 0.253249
15% | 0.022631 | 0.013300 | 0.035931
17° | 0.004027 | 0.001857 | 0.005884
10* | 0.000013 | 0.000003 | 0.000016
€=0.001 | 10° | 0.305191 | 0.299674 | 0.604865
11° | 0.147876 | 0.143595 | 0.291471
13° | 0.012197 | 0.011398 | 0.023595
15° | 0.000122 | 0.000126 | 0.000228
10° | 0.000007 | 0.000006 | 0.000013
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Table 4.1.4 Rate of convergence for Pareto distribution and
K=5a=5p=099x, =28854
n A, A_ e A 4 pmHA-
e=0.1 [ 132 ]0.536247 | 0.214966 | 0.751213
152 | 0.436202 | 0.129164 | 0.565366
197 | 0.264179 | 0.037487 | 0.301666
10° | 0.025038 | 0.000122 | 0.025160
11% | 0.007388 | 0.000005 | 0.007393
e=0.01 | 13% | 0.382301 | 0.349354 | 0.731655
167 | 0.233040 | 0.203303 | 0.436343
10° | 0.003381 | 0.001983 | 0.005364
11° | 0.000514 | 0.000253 | 0.000767
13% | 0.000004 | 0.000001 | 0.000005
e=0.001 | 15° | 0.263636 | 0.260492 | 0.524128
182 | 0.146638 | 0.144127 |  0.290765
257 | 0.024642 | 0.023835 | 0.048477
11° | 0.000376 | 0.000350 | 0.000726
13% | 0.000002 | 0.000002 | 0.000004

From Table 4.1.1-4.1.4 we can see that rate of convergence decreases as the sample
size increases. That is also an expected result.

Tables 4.2.1-4.2.4 contain results that are related to the Gamma distribution
and Theorem 3.2. We take two values of @ and f and three vales of €. The whole
approach can be applied on any other parameters setting. For each parameters
setting, we compute rate of convergence by using the appropriate formula.
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Table 4.2.1 Rate of convergence for Gamma distribution and
a=1,=2,p=095,x, = 1497866
n A, A e M pnA-
e=0.1 10° | 0.375500 | 0.321375 | 0.696875
125 [ 0.271522 | 0.140643 | 0.412165
13% ] 0.116257 | 0.082586 | 0.198843
17° ] 0.008129 | 0.003784 | 0.011913
10* [ 0.000056 | 0.000012 | 0.000068
€ =10.01 10° | 0.351729 | 0.346295 | 0.698024
115 [ 0.185851 | 0.181248 | 0.367099
12° | 0.074271 | 0.071449 | 0.145720
2+13° | 0.005516 | 0.005105 | 0.010621
10° | 0.000029 | 0.000025 | 0.000054
€=0.001 | 107 | 0.439389 | 0.348647 | 0.788036
117 ] 0.128837 | 0.128304 | 0.257141
127 1 0.023099 | 0.022924 | 0.046023
137 | 0.001362 | 0.001344 | 0.002706
10° | 0.000027 | 0.000026 | 0.000053

Table 4.2.2 Rate of convergence for Gamma distribution and
a=1,=2,p=099,x, = 2302588
n Ay Al [y
e=01 | 6+10° | 0321812 | 0.272792 0.594604
10* | 0.151125 | 0.114741 0.265866
2+10% | 0.022839 | 0.013165 0.036004
3+10* [ 0.003451 | 0.001511 0.004962
6+10° | 0.000001 | 0.000002 0.000003
€ =0.01 145 [ 0.339887 | 0.334887 | 0.674774
10° | 0.134459 | 0.130804 0.265263
11° ] 0.028592 | 0.027230 0.055822
12° ] 0.002500 | 0.002303 0.004803
13° | 0.000062 | 0.000054 0.000116
e=0.001 | 127 | 0.485174 | 0.484566 0.969740
10° | 0.132861 | 0.132397 | 0.265258
118 [ 0.013211 | 0.013112 0.026323
125 ] 0.000170 | 0.000168 0.000338
3+11% | 0.000002 | 0.000002 0.000004
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Table 4.2.3 Rate of convergence for Gamma distribution and
a=1,=3,p=0.951x, =0.9985774
n A, A e M pnA-
e=0.1 20> | 0.426816 | 0.345625 0.772441
257 | 0.264394 | 0.190139 0.454533
10° | 0.119015 | 0.070228 0.189243
15° | 0.000759 | 0.000128 0.000887
17° | 0.000029 | 0.000002 0.000031
e =0.01 35° | 0.366289 | 0.358154 | 0.724443
7+10* | 0.194033 | 0.187047 | 0.381080
10° | 0.096090 | 0.091186 0.187276
125 | 0.002942 | 0.002582 0.005524
145 | 0.000003 | 0.000002 0.000005
€=0.001 | 5x10° | 0.306406 | 0.305569 0.611975
8+10° | 0.150687 | 0.150029 0.300716
107 | 0.093884 | 0.093373 0.187257
127 | 0.000208 | 0.000204 | 0.000412
3x117 | 0.000001 | 0.000001 0.000002

Table 4.2.4 Rate of convergence for Gamma distribution and
a=1,=3,p=099,x, = 153505672
n Ay Al e e
e=0.1 |3+10° | 0.290920 | 0.219950 0.510870
7+10° | 0.127729 | 0.029203 0.156932
10* | 0.016315 | 0.006423 0.022738
11* ] 0.002416 | 0.000617 | 0.003033
13* ] 0.000008 | 0.000001 | 0.000009
€=0.01 | 3+10° | 0.259284 | 0.252168 0.511452
5x10° | 0.105429 | 0.100651 0.206080
10° | 0.011115 | 0.010131 0.021246
11° | 0.000345 | 0.000293 0.000638
12° | 0.000001 | 0.000001 0.000002
€=0.001 | 310”7 | 0.256091 | 0.255367 | 0.511458
5x107 | 0.103274 | 0.102788 0.206062
10° | 0.010665 | 0.010565 0.021230
157 | 0.000427 | 0.000420 0.000847
118 | 0.000059 | 0.000058 0.000117

From Table 4.2.1-4.2.4 we can see that rate of convergence decrease as the sample
size increase. That is also expected result.
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4.2. Data Analysis

In this subsection we analyze real data set and demonstrate how the proposed

results can be used in practice. The data set X represent the failure time of the
air conditioning system of an airplane (in hours): 33, 47, 55, 56, 104, 176, 182,
220, 239, 246, 320 and it is reported by Bain and Engelhardt [2]. X can be model
with Gamma(1,152.5) distribution. Jovanovi¢ and Raji¢ [9] studied validity of the
Gamma distribution for that data and they computed Kolmogorov-Smirnov (KS)
distance between the empirical distribution function and the fitted distribution
function, and KS statistic is approximately 0.23 with p value grater than 0.05. It is
clear that the Gamma model fits quite well this data set.
We obtain };(n) by using formula (1) for p = 0.90 and n = 11, and we obtain
Xo90(11) = 246. It is possible to calculate quantile x, for Gamma(1,152.5) dis-
tribution and probability p = 0.90, it is x990 = 351.1442. Now, using result (8)
we can calculate that there is 94.95% chances that quantile x99 deviates from
direct-simulation estimator x.99(11), for more than 160.

5. CONCLUSION

In this paper is considered the estimation of the probability
P{|£,(n) — xp| > ¢} of the direct-simulation estimator £,(1) of a large quantile
Xp. Some results for rate of convergence for Pareto and Gamma distributions
are determined. That results show that rate of convergence decreases as the
samplesize increases.
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