
Yugoslav Journal of Operations Research
25 (2015), Number 3, 361–378
DOI: 10.2298/YJOR130702032M

METAHEURISTIC APPROACHES TO SOLVING
LARGE-SCALE BILEVEL UNCAPACITATED

FACILITY LOCATION PROBLEM WITH CLIENTS’
PREFERENCES

Miroslav MARIĆ
Faculty of Mathematics, University of Belgrade

maricm@matf.bg.ac.rs

Zorica STANIMIROVIĆ
Faculty of Mathematics, University of Belgrade

zoricast@matf.bg.ac.rs

Nikola MILENKOVIĆ
Faculty of Mathematics, University of Belgrade

nikola.milenkovic@live.com

Aleksandar DJENIĆ
Faculty of Mathematics, University of Belgrade

djenic@matf.bg.ac.rs

Received: July 2013 / Accepted: September 2014

Abstract: In this study, we consider a variant of the Bilevel Uncapacitated Facility
Location Problem (BLUFLP), in which the clients choose suppliers based on their
own preferences. We propose and compare three metaheuristic approaches for
solving this problem: Particle Swarm Optimization (PSO), Simulated Annealing
(SA), and a combination of Reduced and Basic Variable Neighborhood Search
Method (VNS). We used the representation of solutions and objective function
calculation that are adequate for all three proposed methods. Additional strat-
egy is implemented in order to provide significant time savings when evaluating
small changes of solution’s code in improvement parts. Constructive elements of
each of the proposed algorithms are adapted to the problem under consideration.
The results of broad computational tests on modified problem instances from the
literature show good performance of all three proposed methods, even on large

problem dimensions. However, the obtained results indicate that the proposed
VNS-based has significantly better performance compared to SA and PSO ap-
proaches, especially when solving large-scale problem instances. Computational
experiments on large scale benchmarks demonstrate that the VNS-based method
is fast, competitive, and able to find high-quality solutions, even for large-scale
problem instances with up to 2000 clients and 2000 potential facilities within
reasonable CPU times.

Keywords: Location problems, Discrete optimization, Particle Swarm Optimization, Sim-
ulated Annealing, Variable Neighborhood Search.

MSC: 68T20, 90B80, 90B06.

1. INTRODUCTION

In this study, we consider the bilevel uncapacitated facility location problem
(BLUFLP), introduced by Hanjoul et al. in [11]. We start from a given set I
of M potential sites for locating facilities, and a set J of N clients. The costs of
assigning clients to facilities are given by a cost matrix C. The clients’ preferences
to be served by facilities are defined by a matrix G. Opening a facility at certain
location assumes certain additional cost. The problem is to choose the facilities
that are to be opened and to assign the clients to the opened facilities so that the
sum of fixed costs for opening facilities and the total cost for servicing the clients
is minimized. The problem involves two stages of decision making:

• at the upper level, a set of facilities to be opened is chosen,

• at the lower level, the clients are assigned to these facilities by taking into
account the clients’ preferences.

Several reformulations of the BLUFLP as a single-level location problem with
some additional constraints are proposed in Gorbachevskaya [10]. In Hansen
et al. [15], the authors introduced another reformulation of the problem, and
showed that it dominates the three previous ones from the literature, regarding
their linear programming relaxations.

Cánovas et al. [4] developed several valid inequalities for the BLUFLP. They
combined them and got preprocessing rules that were applied to the model to ob-
tain a reduced and tighter formulation. Computational experiments were carried
out on a modified subset of standard ORLIB instances [2] for the uncapacitated
facility location problem, involving up to 100 customers and 75 potential facility
locations. The results of the computational study indicate that the proposed ap-
proach may be successfully incorporated in a more general framework, such as
branch-and-bound algorithms, in order to improve lower bounds and the overall
efficiency of the algorithm.

Alekseeva et al. in [1] considered a variant of the problem with a fixed number
of facilities to be opened, named the p-median problem with clients’ preferences.
The authors also designed a genetic algorithm for solving this problem [1]. The

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 363

proposed method was benchmarked on a specific set of test instances, which
include some essentially sparse matrices of transportation costs, meaning that
transportation is not possible for each pair facility–client.

Vasilyev et al. [34] presented a new formulation of the BLUFLP, based on a
family of valid inequalities that are related to the problem on a pair of matrices and
the set packing problem. A cutting plane method is implemented for calculating
the corresponding lower bounds. The proposed cutting plane algorithm was
further incorporated in two versions of a branch-and-cut method in order to find
an optimal solution. The simulated annealing method is proposed for obtaining
the upper bounds of the optimal solution used in the proposed branch-and-cut
methods. Numerical experiments are conducted on the same benchmark set
as in [4], including test instances of relatively small dimensions (M ≤ 75, N ≤
100). Computational results from [34] approve the efficiency of the implemented
branch-and-cut methods when solving the considered BLUFLP test instances.

The purpose of this study is to develop metaheuristic methods that are able to
solve BLUFLP instances of real-life dimensions. Inspired by the results presented
in [25], we design and implement advanced variants of three metaheuristics:
Particle Swarm Optimization, Simulated Annealing and Variable-Neighborhood
Search, which are tailored to the BLUFLP. The proposed metaheuristic methods
are benchmarked on the generated data set involving up to 2000 clients and 2000
potential facility locations, and the obtained results are analyzed and compared.

The remainder of the paper is organized as follows. Section 2 provides math-
ematical formulation of the BLUFLP. Section 3 gives a description of the imple-
mentation of the proposed metaheuristics for solving the BLUFLP. Results of the
computational experiments and comparisons of the algorithms’ performance are
presented in Section 4. In Section 5, we draw out some conclusions, and give
directions for a future work.

2. MATHEMATICAL FORMULATION

The formulation involves the following notation:

I = {1, ...,M} is the set of potential facilities;

J = {1, ...,N} is the set of clients;

fi ≥ 0 is the cost of opening the facility i ∈ I;

C = [ci j], ci j ≥ 0, i ∈ I, j ∈ J, is the matrix of the production and delivery costs
for servicing the clients;

G = [1i j], 1i j ≥ 0, i ∈ I, j ∈ J is the clients’ preference matrix M × N. More
precisely, if 1i1 j < 1i2 j, then the client j prefers facility i1 to facility i2.

Two sets of binary decision variables are used: xi j ∈ {0, 1}, i ∈ I, j ∈ J and yi,
i ∈ I. Variable xi j ∈ {0, 1} takes the value of 1 if the client j is served by facility i,

364 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

and 0 otherwise. Variable yi, i ∈ I is equal to 1 if the facility i is opened, and 0
otherwise.

Using the notation given above, the problem is formulated as in the study of
Hansen et al. [15]:

miny

∑
i∈I

∑
j∈J

ci jx∗i j(y) +
∑
i∈I

fiyi (1)

subject to:

yi ∈ {0, 1} for every i ∈ I (2)

where x∗i j(y) is the optimal solution of the client problem:

minx

∑
i∈I

∑
j∈J

1i jxi j (3)

subject to:∑
i∈I

xi j = 1 for every j ∈ J, (4)

xi j ≤ y j for every i ∈ I, j ∈ J, (5)

xi j ∈ {0, 1} for every i ∈ I, j ∈ J. (6)

The objective (1) of the upper level problem minimizes the cost of servicing the
clients and opening the facilities. Objective function (3) of the lower level problem
guarantees that the clients are served in conformity with their preferences. Con-
straints (4) ensure that each client is served by exactly one facility. Inequalities (5)
indicate that a client can be served only by an open facility. Finally, constraints
(2) and (6) indicate binary nature of variables yi and xi j, respectively.

The BLUFLP is NP-hard in the strong sense. In the case that clients’ preferences
at the lower level properly correspond to the transportation costs at the upper
level, the BLUFLP is equivalent to the well known uncapacitated facility location
problem [5]. If there are no fixed costs for opening facilities, i.e. fi = 0 for all i ∈ I,
this case of the BLUFLP is still NP-hard in the strong sense. If ci j = −1i j for all
i ∈ I, j ∈ J, the problem can be solved in polynomial time, as it was proved by
Hansen et al. in [15].

3. PROPOSED METAHEURISTIC METHODS

We have employed three well-known metaheuristics for solving the BLUFLP:
Particle Swarm Optimization, Simulated Annealing, and a Variable-Neighborhood
Search based method. All three approaches are adopted to the problem under
consideration. In the following subsections, the proposed algorithms will be
explained in more details.

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 365

3.1. Solution’s encoding and objective function calculation
Although these algorithms use different strategies to explore the search space

and to look for global minimum, they have two common aspects: solution encod-
ing, and objective function calculation.

All three metaheuristic methods use a binary encoding. Each solution is
represented by a binary string of the length M = |I|. Each bit in the solution
encoding corresponds to one potential facility location. If the bit on the i-th
position in the solution encoding takes the value of 1, it means that a facility is
located at the i-th location. Zero on the i-th position in the solution encoding
indicates that the i−th location is not chosen for establishing a facility.

Indices of established facilities are easily obtained from the solution encoding.
For each client j ∈ J, we sort the array of potential facilities according to preferences
of the client j. This information is stored in the matrix of sorted preferences Gs,
where each row corresponds to one client and stores the array of sorted facilities,
ordered from the most preferred to the least preferred. By using the matrix of
sorted clients’ preferences Gs, we speed up the objective function calculation since
it is called many times during the run of all three algorithms.

For each client j, we are searching through the j-th row of the matrix Gs,
looking for the first established facility in the sorted array assigned to client
j. This will obviously be the established facility that client j prefers the most.
Corresponding transportation costs are added to the objective function value. In
this way, the assignment procedure is performed and the sum of transportation
costs is calculated. Finally, the objective function value is obtained by adding
opening costs for each established facility to total transportation costs.

The proposed methaheuristic methods often perform the inversion of a bit
value in a solution encoding, looking for possible improvements. Since inversion
procedure is applied many times, recalculation of the objective function value for
every newly created solution will significantly prolong the total running time.
For this reason, we have implemented an efficient strategy, which quickly returns
objective function value of a new solution, obtained by opening/closing a single
facility in the current solution. This strategy performs only partial recalculations
of objective function of the current solution and therefore, provides valuable time
savings. Similar ideas for accelerating the swap procedure when solving location
problems with fixed number of facilities can be found in [1], [12], and [30].

The function Invert starts from a given solution x, its objective function f (x)
(previously calculated) and the index of facility i to be opened/closed. If the
i-th bit in the solution encoding is changed from 0 to 1, this is equivalent to
opening facility at location i. Instead of recalculating objective function value, we
go through the array of clients and check if the newly opened facility i is more
preferable for a client j ∈ J, compared to the one currently assigned. If the answer
is yes, we assign the client j to facility i and update transportation costs in the
objective function value. Finally, we need to add fixed cost for opening facility at
position i.

Similar procedure is performed if the facility at position i is closed by inverting
bit value x(i) from 1 to 0. We search the array of clients and identify all clients j ∈ J

366 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

that were previously assigned to facility i, which is now closed. For each such a
client j, we go through the j-th row of sorted matrix of clients’ preferences Gs and
find an opened facility i′ that the client j prefers the most. We further assign j to
i′ and update transportation costs. At the end, we subtract fixed cost for opening
facility at location i from the objective function value.

The output of the Invert function is a new solution x′ with inverted bits on
position i and its objective function value. The pseudocode of Invert procedure is
shown in Algorithm 1.

Invert function KwEacheach InputinputOutputoutput Solution x;
Objective value cost of the solution x;
Index of facility i to be opened/closed; New solution x′;
Objective value of the solution x′; fcount ← the number of active facilities in x
x′ ← x x′(i) = 1 x′(i)← 0 fcount ← fcount − 1 x′(i)← 1 fcount ← fcount + 1 fcount is
0 x, cost

facility i is open
client j ∈ J j prefers newly opened facility i more than the previously assigned

one assign client j to facility i update cost with Ci j
cost← cost+ fi facility i is closed client j ∈ J j was assigned to facility i find

the best preferred open facility i′ for client j
by using matrix Gs update cost with Ci′ j

cost← cost- fi
x′, cost

3.2. Particle Swarm Optimization (PSO)
Particle Swarm Optimization method (PSO) is a nature inspired, population-

based metaheuristic that uses the idea of natural swarm intelligence, see [17],
[19]. Particles in a swarm behave as simple and non-sophisticated agents that
cooperate by an indirect communication medium, and perform movements in
the decision space. In the literature, the PSOs have been successfully designed
for both continuous and discrete optimization problems [18], [28] and [31].

In the proposed PSO for solving the BLUFLP, a swarm consists of S = 60 par-
ticles moving around in a M-dimensional search space. The number of particles
S is a parameter that may be varied.

Particles are first randomly generated by setting the bit values (0 or 1) of
the corresponding particle vectors with certain probability. Each particle pk, k =
1, 2, ...,S has assigned information on its current position Yk, the best visited
position Bk, and velocity vk. A position of a particle is represented by a binary
vector Yk of length M and corresponds to a candidate solution in the search space.
The velocity of a particle vk is also a vector of length M with elements that take
real values between [−vmax, vmax], where vmax is a pre-determined parameter. If an
element of the velocity vector vk exceeds vmax or −vmax, it will be reset to vmax or
−vmax, respectively.

In each iteration of the PSO, each particle successively adjusts its position Yk
in respect to the best position Bk visited by itself and the best position visited by
the whole swarm. The flying direction of a particle also depends on a cognitive

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 367

learning parameter ϕp, and a social learning parameter ϕ1. Parameters ϕp and ϕ1
represent the attraction that a particle will fly to, either toward its own success
or towards the success of the best-positioned particle, respectively. Parameter ω
(denoted as inertia weight) controls the impact of the previous velocity of a particle
on its current velocity. For large values of ω, the impact of the previous velocities
will be much higher, while smaller values encourage search around current par-
ticle position. The inertia weight parameter represents a trade-off between global
exploration and local exploitation. The values of variables Fp and F1 are randomly
chosen from the interval (0, 1).

Since we are dealing with a discrete problem with binary variables, the velocity
of a particle is associated with the probability that a particle’s bit will take the
value of 1. Therefore, a sigmoid function S(v) = 1/(1 + e−v) is used to normalize
the velocities values into the interval [0, 1] (see paper by Kennedy et al. [18]).
A random number u is generated in the same range. If the generated number
u is less than the normalized velocity value of a particle S(vk[d]), the decision
variable Yk[d] is initialized to 1, otherwise the value 0 is assigned to Yk[d], for each
dimension d = 1, 2, ..,M.

If a particle pk has moved to better position compared to its best local solution,
the best local position Bk is updated. Moreover, if the new best local position is
better than the best global one, the best global position G of the swarm is updated.
The algorithm stops if the best global solution remains unchanged through the
maximal number of PSO iterations (stopping criterion). In this implementation,
the maximal number of PSO non-improving iterations is set to 10 000.

The basic scheme of the proposed PSO method is presented in Algorithm 2.
Particle Swarm Optimization FloorFloor SigmoidSigmoid particle pk, k = 1, . . . ,S

randomly initialize a particle position vector:
Yk[d]←U(0, 1)+0.5, for each dimension d = 1, ...,M set local best known position
to the initial position: Bk ← Yk initialize particle velocity: vk[d]← U(−vmax, vmax),
for each dimension d = 1, ...,M particle pk is better than the global best particle
1 1 ← pk maximum non improving iterations reached particle pk, k = 1, . . . ,S
dimension d = 1, . . . ,M Fp ← U(0, 1) F1 ← U(0, 1) Update particle velocity:
vk[d]← ωvk[d] +ϕpFp(Bk[d]−Yk[d]) +ϕ1F1(G[d]−Yk[d]) vk[d] > vmax vk[d]← vmax
vk[d] < −vmax vk[d]← −vmax u← U(0, 1) u < vk[d] Yk[d]← 1 Yk[d]← 0

Yk better than local best position Bk Bk ← Yk local best position Bk better than
global G G← Bk

3.3. Simulated Annealing (SA)
Simulated annealing SA is a single-solution, local-search based optimization

technique, inspired by the physical process of the cooling of a metal until it
reaches a minimum energy crystalline structure, see [8], [16], and [20]. The key
property of the SA method is that it allows hill-climbing moves (which worsen the
objective function value) as a mechanism to decrease the probability of converging
to a local optimum. It showed to be a simple and efficient method for solving
different combinatorial and continuous optimization problems, as in [6], [21], and
[33].

368 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

In the initialization phase of the proposed SA for the BLUFLP, the number of
facilities M, initial temperature T = t0, t0 ≥ 0, and a temperature cooling schedule
tk are defined. We also select a repetition schedule, Rk, that defines the number
of iterations executed at each temperature tk. The proposed SA starts with a
randomly generated solution x that belongs to the search space. The best found
solution of the SA is denoted by x1lobal. Initially, the solution x1lobal is equal to the
starting solution x.

The SA further proceeds in several iterations. In the main SA loop, the current
solution x is set to the best found solution x1lobal, and repetition counter r is set
to 0. In the inner SA loop, we randomly generate a solution x′ belonging to a
neighborhood of the current solution x. The neighbor solution x′ is obtained by
inverting bit value on a randomly chosen position in the encoding of the solution
x. The procedure Invert is used to calculate the objective function value of the
new solution x′ in an efficient way (see Subsection 3.1). We further calculate
the difference in objective function values between the current solution and the
generated neighboring solution ∆x,x′ . Moves that improve the objective function
are always accepted, and the best found solution x1lobal is updated. Otherwise,
the chosen neighbor x′ is selected with a given probability p, which depends
on the current temperature and the amount of degradation ∆x,x′ of the objective
function, i.e. p = exp(−∆x,x′/tk). As the algorithm progresses, the probability that
we will accept the solution of a lower quality decreases. In this way, we help the
algorithm to avoid a local optimum trap. The temperature tk decreases after every
k generation, or after the solution has been improved. The algorithm stops if the
solution has not been improved through 200 000 consecutive SA iterations. The
basic concept of the proposed SA method is shown in Algorithm 3.

Simulated Annealing InvertInvert RandomRandom RandomInitializeRando-
mInitialize

select number of facilities M select the temperature change counter k select
a temperature cooling schedule tk select an initial temperature T = t0 ≥ 0 select
a repetition schedule, Rk, that defines the number of iterations executed at each
temperature, tk

x←M x1lobal ← x maximum non improving iterations reached set repetition
counter r = 0 x← x1lobal r = Rk i← 1, M x′ ← x, i x′ better than x x← x′ x← x′

with probability exp(−∆x,x′/tk) x better than x1lobal x1lobal ← x break r← r + 1
k← k + 1

3.4. Proposed VNS-based method
In this section, we present the combination of the Basic Variable Neighbor-

hood Search Method - VNS [13] and its reduced variant - RVNS [14] for solving
the BLUFLP. The VNS metaheuristic showed to be successful in solving various
discrete location problems, see for example [3], [9], [22], [26], [27], [32], etc. In our
VNS-based approach, the RVNS method is employed to provide a good-quality
solution, later used as a starting point of the basic VNS algorithm. Throughout
VNS loops, we tend to move to a solution that is relatively far from the current
one and to perform a systematic search in the neighborhood of the new solution.

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 369

Neighborhoods of a given solution x are defined by taking into account the
applied binary encoding of solutions. If the encoding of a solution x′ differs from
the encoding of a solution x in exactly k bits (k = 1, 2, ..), we say that x′ belongs to
the k-th neighborhood of the solution x, and vice versa.

An initial solution of the RVNS is generated randomly. In the RVNS phase,
we try to find an improvement of the current solution in its k-neighborhood
(k = 1, 2, ...) by inverting the bit on a randomly chosen position in the solution
encoding. The procedure Invert is used to calculate the objective function value
of a newly created solution, such that additional time savings are provided (see
Subsection 3.1). The RVNS algorithm runs until we reach the maximal number of
iterations without any improvement. The best solution obtained by the RVNS is
used as the initial solution of the VNS phase.

In the main VNS loop, we first randomly move to a solution in the k-th neigh-
borhood of the current solution (Shaking phase). We apply Local Search procedure
on the new solution, trying to find a new local extremum (Local Search phase).
If the best solution is improved, we perform Shake and Local search in the k-th
neighborhood of this new, improved solution. Otherwise, we keep the current
best solution, and change the size of the neighborhood from k to k + 1. At the
beginning of the VNS part, the value of parameter kmax is set to min(bM/3c, 30),
where M = |I|. The main VNS loop is repeated until the maximal number of VNS
iterations without improvement of the best solution is reached (500 in this VNS
implementation). The pseudocode of the proposed VNS-based method for the
BLUFLP problem is presented in Algorithm 6.

RandomInitializeRandomInitialize InvertInvert RandomRandom MinMin Shake-
Shake LocalSearchLocalSearch VNS-based method

RVNS x←M kmax ← 2
maximum non improving iterations reached k ← 1 k = kmax i ← 1, M x′ ←

x, i x′ better than x x← x′ break k← k + 1 VNS kmax ← bM/3c, 30 maximum
non improving iterations reached k ← 2 k = kmax x′ ← x, k x′′ ← x′ x′′ better
than x x← x′′ break k← k + 1

4. COMPUTATIONAL RESULTS

In this section, computational results and comparisons of the proposed meta-
heuristic methods are presented. All three methods were implemented by using
.NET Framework. We used CPLEX 12.4 solver to find optimal solutions (if pos-
sible). We imposed no time limit on the run of CPLEX solver. All tests were run
on an Intel Core i7-860 2.8 GHz (quad-core processor) with 8GB RAM memory
under Windows 7 Professional operating system.

Computational experiments are carried out on four data sets from the liter-
ature, adapted for the BLUFLP, and three randomly generated data sets. Each
proposed metaheuristic method was run 20 times on each tested instance. Param-
eter values used in metaheuristics were tuned experimentally in order to provide
best performance of an algorithm in the sense of solution quality.

370 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

We have first considered test instances from the literature, originally intro-
duced for single and multiple level uncapacitated facility location problem, which
involve up to N = 2000 clients M = 2000 potential facilities:

• Data set 1: Standard ORLIB data set from [2], initially designed for the
UFLP. This data set contains small and medium size test problems with
50 ≤ N ≤ 1000 clients, and 16 ≤M ≤ 100 potential facilities;

• Data set 2: Modified UFLP instances, generated from standard ORLIB data
set. These instances are proposed in [23], and include 50 ≤ N ≤ 1000 clients
and potential facilities;

• Data set 3: M∗ data set introduced in [29]. It contains large scale instances
with 300 ≤ N ≤ 2000 and 300 ≤M ≤ 2000;

• Data set 4: Modified M∗ instances from [23]. This is a challenging large-
scale data set involving 300 ≤ n ≤ 2000 clients, and 300 ≤ m ≤ 2000 potential
facilities.

Instances in the used Data sets 1-4 contain fixed costs fi for establishing a
facility at a position i ∈ I. Transportation costs are used as the costs ci j for servicing
a client j by facility i for each pair i ∈ I, j ∈ J, while clients’ preference matrix is
created in respect to distance matrix. For each client j ∈ J, the array of distances
di j, i ∈ I is sorted in ascending order, and then small perturbations of the sorted
array are performed, i.e. 5-10% of the elements in the array exchange positions.
In this way, we obtain the array di1 j, . . . diM j which defines client’s preferences
1p1 j = 1,...,1pM j = M. This procedure is performed for each client j ∈ J. For some
instances from the data sets, different perturbation levels are applied, resulting in
several modifications of the original instance for the BLUFLP.

Note that data sets used for computational studies in [4] and [34] were obtained
by modifying the ORLIB instances [2] for the UFLP of smaller dimensions, while
the customers’ preferences are generated by using uniform distribution [4]. These
instances were separated into three blocks: the first block contains the problems
with N = 50 customers and M = 50 potential facility locations; the second block
consists of the problems of size N = 75 and M = 50; and the third block involves
instances with N = 100 and M = 75. Unfortunately, these test instances were
unavailable to us, and therefore we could not perform exact comparisons. Since
the dimensions of instances used in [4] and [34] are relatively small, these test
problems do not represent a challenge for the metaheuristic method proposed in
this paper.

In Table 1, we provide computational results and comparisons of the consid-
ered methods on instances from Data sets 1-4. For each instance, we present
optimal solution obtained by CPLEX 12.4 solver and its running time (”-” stands
if no optimal solution was found). For each of the three proposed metaheuristics,
the results are presented as follows.

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 371

(i) The best solution Best.Sol on the current instance. If Best.Sol is equal to
optimal solution obtained by CPLEX, opt is written. Note that the optimal
solutions and the best results of all three metaheuristics are bolded in Tables
1-4.

(ii) Average running time t(s), in which the algorithm reaches optimal solution
or obtains its best solution (in seconds).

(iii) Average gap a1ap(%) from the optimal/best solution through 20 runs. Av-
erage gap is calculated as a1ap = 1

20

∑20
i=1 1api, where 1api = 100 · |soli−Best.Sol|

|Best.Sol| ,
i = 1, .., 20 and Best.Sol is the optimal/best solution on the current instance.

(iv) Standard deviation σ(%) from the optimal/best solution through 20 runs,
obtained as
σ =
√

1
20

∑20
i=1(1api − a1ap)2.

As it can be seen from Table 1, the CPLEX 12.4 was able to solve only instances
with up to 50 clients, and 50 potential facilities to optimality. The proposed
VNS-based approach outperformed the PSO and the SA in the sense of solutions
quality: it reached all optimal solutions and provided best solutions for all test
instances. The values in a1ap(%) column indicate its high reliability in providing
all optimal/best solutions. As the t(s) column shows, in some cases the VNS
method is slower compared to PSO or SA approaches, but its running times
are still relatively short, even for the largest tested instances with 2000 nodes.
The proposed PSO shows the worst performance regarding solutions quality, but
its running times are short, while the SA showed slightly better performance
compared to PSO.

We have further benchmarked our methods on three newly generated sets of
instances, which include up to N = 2000 clients and M = 2000 facilities. The
instances are created in a similar way as done in a study by Hansen et al. [15]. In
a square [0,N] × [0,N] in two-dimensional plane, we randomly choose N points
for locations of clients and M points for locations of facilities. Fixed costs for
establishing a facility j ∈ J is equal to f j =

√
N

10 , while the elements of cost matrix
are obtained as ci j = di j. Following the idea from [15], clients’ preferences are
initially sorted according to their corresponding distances, and then we perform
some random changes by using three different strategies, producing three new
benchmark sets.

• Data set 5: In this data set, for each client j ∈ J, we randomly choose bM
8 c

pairs of facilities and exchange their preferences for the client j. In this way,
around 25% of preferences are changed for each client.

• Data set 6: In this group of instances, for each client j ∈ J, we randomly
choose the subset of bM

10 c facilities and assign them randomly generated
preference values that are between minimal and maximal preference value
for this client.

372 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

Table
1:R

esults
and

com
parisons

on
D

ata
sets

1-4
Inst-N

-M
C

PLEX
PSO

SA
V

N
S

O
pt.Sol.

t(s)
Best.Sol.

t(s)
a
1ap(%

)
σ(%

)
Best.Sol.

t(s)
a
1ap(%

)
σ(%

)
Best.Sol.

t(s)
a
1ap(%

)
σ(%

)
cap-50-16

1248142.9
0.172

opt
0.014

3.450
1.992

opt
0.007

0.000
0.000

opt
0.008

0.000
0.000

cap-50-25
1248142.9

0.828
1270249.925

0.026
1.891

0.523
opt

0.047
0.000

0.000
opt

0.020
0.443

0.767
cap-50-50

1248142.9
0.409

opt
0.093

13.959
12.624

opt
0.047

0.000
0.000

opt
0.014

0.000
0.000

capa-1000-100
-

-
24147833.770

0.284
0.000

0.000
24147833.770

0.162
0.000

0.000
24147833.770

0.036
0.000

0.000
capb-1000-100

-
-

22705728.388
0.339

0.205
0.614

22705728.388
0.194

0.000
0.000

22705728.388
0.031

0.000
0.000

capc-1000-100
-

-
22204075.489

0.321
0.331

0.752
22204075.489

0.343
0.000

0.000
22204075.489

0.057
0.000

0.000
m

q1-300-300
-

-
4820.990

0.748
0.117

0.335
4820.990

10.633
0.000

0.000
4820.990

0.114
0.000

0.000
m

r1-500-500
-

-
3686.929

2.178
0.408

0.467
3686.929

103.019
0.139

0.253
3686.929

0.186
0.024

0.103
m

s1-1000-1000
-

-
7159.554

9.186
0.586

0.611
7159.554

391.812
0.530

0.526
7159.554

0.571
0.024

0.071
m

t1-2000-2000
-

-
14822.496

60.105
25.891

22.114
14796.344

1039.134
0.893

0.452
14796.344

6.416
0.062

0.084
rnd0-100-100

-
-

559418.823
0.148

2.917
1.960

559418.823
0.124

1.504
1.280

559418.823
0.016

0.000
0.000

rnd1-100-100
-

-
561768.823

0.153
3.024

1.260
557000.568

0.046
1.094

0.804
557000.568

0.025
0.259

0.348
rnd2-100-100

-
-

562082.736
0.110

2.904
0.747

554583.354
0.069

1.522
0.798

553797.540
0.042

0.034
0.103

rnd0-200-200
-

-
1149737.938

0.459
4.056

1.049
1127644.647

0.271
2.574

1.016
1122632.460

1.046
0.687

0.504
rnd1-200-200

-
-

1138336.196
0.594

4.798
1.211

1115991.054
0.216

3.003
1.522

1110665.699
0.903

0.567
0.422

rnd2-200-200
-

-
1124097.708

0.650
3.919

1.060
1122353.595

0.288
2.874

0.874
1102880.789

0.473
0.879

0.603
rnd0-300-300

-
-

1706456.503
1.329

3.525
0.969

1673291.934
0.508

2.966
1.327

1661657.633
0.199

0.699
0.570

rnd1-300-300
-

-
1689891.715

1.017
3.360

1.177
1690701.489

0.386
2.290

0.579
1667518.851

1.317
0.999

0.599
rnd2-300-300

-
-

1661295.583
1.377

2.573
1.114

1658392.177
0.704

2.104
0.798

1648977.107
2.211

0.531
0.424

rnd0-500-500
-

-
2827363.965

3.235
2.728

0.949
2810201.942

1.207
2.127

0.768
2787568.582

11.995
0.935

0.644
rnd1-500-500

-
-

2800942.512
3.937

3.819
0.970

2773501.349
2.289

2.723
1.104

2753812.000
8.212

1.415
0.615

rnd2-500-500
-

-
2824298.465

3.316
3.573

0.890
2803407.896

2.146
2.366

0.904
2782127.139

2.317
1.408

0.793
rnd0-1000-1000

-
-

5608973.680
21.912

2.946
0.643

5601373.986
8.750

2.107
0.519

5526194.156
89.119

0.940
0.376

rnd1-1000-1000
-

-
5594718.762

18.381
2.916

0.660
5548414.188

7.408
1.996

0.662
5501359.273

21.405
1.082

0.454
rnd2-1000-1000

-
-

5667948.877
18.134

2.310
0.624

5611827.823
7.356

1.335
0.617

5605783.436
71.544

0.735
0.440

rnd0-2000-2000
-

-
11395587.703

220.616
2.596

0.533
11296896.489

48.508
1.941

0.440
11201602.43

238.201
0.874

0.427
rnd1-2000-2000

-
-

11457550.357
164.476

2.337
0.438

11343445.599
46.449

1.753
0.388

11245868.168
459.582

0.648
0.361

rnd2-2000-2000
-

-
11268173.593

227.294
2.403

0.634
11254432.882

42.346
1.859

0.433
11128587.883

172.829
0.721

0.365

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 373

• Data set 7: In this data set, preferences are multiplied with the values
obtained by normal distribution N(0, 0.2) on the interval [−1, 1], i.e. 1i j =
di j f (ri j; 0, 0.2), where ri j is randomly chosen value from [−1, 1], and f is
corresponding Gaussian function.

Tables 2-4 show the results of conducted computational experiments on Data
sets 5-7. As it can be seen from Tables 2-4, all three metaheuristics reached optimal
solutions, previously obtained by CPLEX solver in significantly shorter CPU time.
The exception is PSO method, which failed to obtain optimal solution for instance
N = 100, M = 50 from Data set 7 (see Table 4). On other instances from Data
sets 5-7 that were out of reach for CPLEX, all three proposed methods provided
solutions in relatively short CPU time, considering problem dimensions, but the
quality of the obtained solutions is different. From columns Best.Sol in Tables 2-4,
it can be seen that the VNS outperforms both PSO and SA in the sense of solution
quality. On all considered instances from Data sets 5-7, the VNS produced the
best solutions compared to two other methods, with exception of several cases in
which the PSO and SA produced the same solution as the VNS. The percentage
of the obtained best solutions of PSO, SA, and VNS methods on Data sets 5-7 is
as follows.

• Data set 5: PSO 50% , SA 75% and VNS 100%;

• Data set 6: PSO 45% , SA 65% and VNS 100%;

• Data set 7: PSO 47% , SA 53% and VNS 100%.

From the results presented in Tables 2-4, we can see that the VNS showed good
stability through all 20 runs when solving instances from Data sets 5-7. Although
clients’ preferences in these data sets were generated by different strategies, which
ensure various perturbation levels of initial preferences, the VNS showed excellent
performance in all three cases. Low values of average gap a1ap(%) and standard
deviationσ(%) presented in Tables 2-4 clearly indicate good stability and reliability
of the proposed VNS approach for solving the BLUFLP.

Regarding columns t(s) in Tables 2-4, we may notice that on smaller size
instances, the VNS obtains the best solutions in shortest CPU time compared to
both SA and PSO. On larger problem dimensions, the proposed PSO method has,
generally, the shortest running times (but the worst solutions’ quality), while the
VNS performs faster compared to the SA approach. In general, we may conclude
that the running times of all three proposed metaheuristics are reasonably short,
having in mind the dimensions of considered problem instances.

374 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

Table
2:R

esults
and

com
parisons

on
D

ata
set5

N
M

C
PLEX

PSO
SA

V
N

S
O

pt.Sol.
t(s)

Best.Sol.
t(s)

a
1ap(%

)
σ(%

)
Best.Sol.

t(s)
a
1ap(%

)
σ(%

)
Best.Sol.

t(s)
a
1ap(%

)
σ(%

)
50

16
489.062

0.155
opt

0.006
0.000

0.000
opt

0.021
0.000

0.000
opt

0.008
0.000

0.000
50

25
382.334

0.216
opt

0.012
0.000

0.000
opt

0.039
0.000

0.000
opt

0.009
0.000

0.000
100

33
1446.460

0.466
opt

0.027
0.000

0.000
opt

0.075
0.000

0.000
opt

0.009
0.000

0.000
50

50
299.290

0.346
opt

0.044
0.000

0.000
opt

0.090
0.000

0.000
opt

0.012
0.000

0.000
100

50
1045.440

0.755
opt

0.055
1.704

2.060
opt

0.092
0.000

0.000
opt

0.013
0.000

0.000
100

100
681.343

2.232
opt

0.180
1.365

0.829
opt

2.964
0.064

0.126
opt

0.016
0.000

0.000
500

100
24627.296

62.915
opt

0.297
0.618

0.671
opt

0.808
0.191

0.572
opt

0.103
0.000

0.000
500

160
-

-
18655.531

18.844
2.387

1.037
18510.343

47.256
1.612

1.040
18510.343

2.178
0.000

0.000
1000

200
-

-
83071.905

69.863
2.322

1.118
82611.959

120.244
1.864

0.930
82385.578

5.697
0.413

0.369
500

250
-

-
12682.472

32.177
3.141

1.844
12675.028

52.331
1.715

0.982
12675.028

4.246
0.248

0.590
1000

330
-

-
58809.450

144.446
2.992

1.160
58951.865

60.797
2.804

1.384
58357.067

95.31
0.375

0.356
500

500
-

-
8764.589

169.026
3.947

1.573
8696.023

48.427
4.022

0.997
8592.339

12.599
2.150

0.974
1000

500
-

-
45214.891

68.394
6.387

2.621
46086.846

372.246
7.004

1.985
44511.336

391.811
0.608

0.641
2000

500
-

-
248049.522

251.534
4.551

1.660
249465.893

1235.423
4.816

1.589
242959.314

666.921
0.705

0.535
1000

1000
-

-
24852.396

480.221
4.552

1.429
24243.553

752.734
4.029

1.604
24231.653

803.082
1.862

1.353
2000

1000
-

-
132320.259

316.826
8.466

2.500
135726.286

1748.054
7.392

1.561
128934.553

6820.102
1.915

1.021
2000

2000
-

-
72613.203

1334.132
9.901

1.935
70846.735

2283.885
9.599

3.576
68171.714

3880.871
4.907

2.749

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 375

Ta
bl

e
3:

R
es

ul
ts

an
d

co
m

pa
ri

so
ns

on
D

at
a

se
t6

N
M

C
PL

EX
PS

O
SA

V
N

S
O

pt
.S

ol
.

t(
s)

Be
st

.S
ol

.
t(

s)
a1

ap
(%

)σ
(%

)
Be

st
.S

ol
.

t(
s)

a1
ap

(%
)σ

(%
)

Be
st

.S
ol

.
t(

s)
a1

ap
(%

)σ
(%

)
50

16
38

3.
21

9
0.

18
4

op
t

0.
00

8
0.

00
0

0.
00

0
op

t
0.

01
1

0.
00

0
0.

00
0

op
t

0.
00

8
0.

00
0

0.
00

0
50

25
30

8.
80

5
0.

24
6

op
t

0.
01

6
0.

00
0

0.
00

0
op

t
0.

04
5

0.
00

0
0.

00
0

op
t

0.
00

9
0.

00
0

0.
00

0
10

0
33

10
72

.1
20

0.
42

5
op

t
0.

03
4

0.
00

0
0.

00
0

op
t

0.
12

6
0.

00
0

0.
00

0
op

t
0.

00
9

0.
00

0
0.

00
0

50
50

20
0.

37
1

0.
35

3
op

t
0.

05
5

0.
08

7
0.

11
9

op
t

0.
21

3
0.

00
0

0.
00

0
op

t
0.

01
1

0.
00

0
0.

00
0

10
0

50
75

6.
91

4
0.

76
6

op
t

0.
05

6
0.

00
0

0.
00

0
op

t
0.

49
5

0.
00

0
0.

00
0

op
t

0.
01

1
0.

00
0

0.
00

0
10

0
10

0
60

2.
47

0
2.

18
5

op
t

0.
18

1
0.

00
0

0.
00

0
op

t
0.

81
6

0.
00

0
0.

00
0

op
t

0.
01

8
0.

00
0

0.
00

0
50

0
10

0
15

73
9.

10
8

22
.1

83
op

t
0.

33
7

0.
00

0
0.

00
0

op
t

4.
76

2
0.

00
9

0.
02

7
op

t
0.

03
3

0.
00

0
0.

00
0

50
0

16
0

12
47

8.
80

5
45

.9
17

op
t

6.
18

1
3.

25
6

1.
90

0
op

t
15

.7
59

2.
08

4
0.

96
3

op
t

0.
72

9
0.

54
9

0.
95

0
10

00
20

0
-

-
46

24
5.

73
0

1.
10

1
0.

00
0

0.
00

0
46

24
5.

73
0

1.
47

2
0.

00
0

0.
00

0
46

24
5.

73
0

0.
12

1
0.

00
0

0.
00

0
50

0
25

0
-

-
94

45
.2

87
8.

69
2

1.
67

8
0.

39
4

94
45

.0
20

10
.2

72
1.

65
8

0.
38

0
94

45
.0

20
2.

03
5

0.
78

5
0.

86
8

10
00

33
0

-
-

35
64

7.
71

0
48

.8
20

0.
93

4
0.

59
5

35
64

7.
71

0
10

8.
82

8
1.

16
8

0.
87

4
35

64
7.

71
0

7.
76

0
0.

01
6

0.
07

2
50

0
50

0
-

-
71

49
.4

32
64

.5
87

6.
63

1
2.

42
6

71
47

.9
14

24
8.

78
4

5.
07

3
1.

59
2

69
56

.3
74

48
.7

49
2.

90
0

1.
11

2
10

00
50

0
-

-
29

05
1.

09
4

73
.3

48
2.

76
2

1.
22

0
29

06
9.

17
9

22
2.

35
5

3.
07

3
1.

05
9

28
90

6.
62

8
73

1.
57

3
1.

11
9

0.
60

8
20

00
50

0
-

-
13

74
55

.5
52

10
3.

22
7

1.
83

9
0.

72
2

13
72

13
.9

70
47

4.
51

9
1.

47
8

0.
55

9
13

66
97

.6
72

89
.1

15
0.

67
4

0.
39

7
10

00
10

00
-

-
21

50
8.

86
1

44
6.

73
2

6.
22

7
1.

54
7

21
57

7.
49

9
11

05
.4

61
6.

37
9

1.
84

6
20

75
7.

15
9

12
25

.0
38

4.
26

4
2.

07
1

20
00

10
00

-
-

97
30

8.
11

5
22

2.
57

6
4.

69
2

1.
26

3
97

72
1.

83
8

78
8.

96
8

5.
06

8
1.

36
9

95
17

7.
50

7
42

62
.4

41
2.

83
5

1.
27

2
20

00
20

00
-

-
84

82
8.

55
9

61
0.

59
3

6.
96

3
2.

10
1

83
06

0.
45

7
24

96
.2

42
6.

51
0

2.
47

6
81

59
3.

34
5

46
88

.0
81

5.
54

8
2.

69
7

376 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

Table
4:R

esults
and

com
parisons

on
D

ata
set7

N
M

C
PLEX

PSO
SA

V
N

S
O

pt.Sol.
t(s)

Best.Sol.
t(s)

a
1ap(%

)
σ(%

)
Best.Sol.

t(s)
a
1ap(%

)
σ(%

)
Best.Sol.

t(s)
a
1ap(%

)
σ(%

)
50

16
648.697

0.381
opt

0.010
0.000

0.000
opt

0.016
0.000

0.000
opt

0.010
0.000

0.000
50

25
438.800

0.572
opt

0.018
0.112

0.275
opt

0.025
0.000

0.000
opt

0.020
0.000

0.000
100

33
1601.799

1.517
opt

0.026
0.000

0.000
opt

0.044
0.000

0.000
opt

0.009
0.000

0.000
50

50
312.208

0.697
opt

0.081
1.395

1.342
opt

0.077
0.000

0.000
opt

0.014
0.000

0.000
100

50
1260.401

4.958
1263.813

0.062
0.816

0.916
opt

0.084
0.000

0.000
opt

0.011
0.000

0.000
100

100
885.697

6.631
opt

0.248
0.410

0.173
opt

0.635
0.260

0.060
opt

0.159
0.000

0.000
500

100
24580.796

242.911
opt

4.045
0.056

0.041
opt

5.168
0.001

0.005
opt

0.057
0.000

0.000
500

160
-

-
18211.576

46.407
0.115

0.075
18211.576

2.992
0.050

0.042
18211.576

0.881
0.003

0.011
1000

200
-

-
63644.060

41.304
0.139

0.117
63644.060

2.847
0.088

0.115
63644.060

1.265
0.000

0.000
500

250
-

-
13791.713

46.555
0.856

0.379
13791.713

28.756
0.774

0.390
13786.470

17.554
0.049

0.137
1000

330
-

-
48908.837

57.080
0.282

0.103
48882.177

114.904
0.264

0.121
48856.078

59.315
0.032

0.026
200

500
-

-
157220.468

193.478
0.162

0.073
157146.871

619.103
0.173

0.084
157120.856

139.351
0.006

0.005
500

500
-

-
9379.777

248.546
1.018

0.325
9366.054

194.565
1.074

0.335
9315.699

127.354
0.215

0.147
1000

500
-

-
38188.045

239.389
0.418

0.177
38229.335

303.063
0.414

0.182
38158.741

120.820
0.038

0.032
1000

1000
-

-
26854.283

907.240
1.053

0.274
26857.898

845.434
1.051

0.219
26678.550

1650.404
0.163

0.121
2000

1000
-

-
110784.751

858.785
0.840

0.190
110693.008

1482.923
0.667

0.206
110352.541

4641.535
0.160

0.114
2000

2000
-

-
75741.422

1566.246
1.665

0.317
75521.000

5024.576
1.366

0.289
74886.285

15132.015
0.339

0.217

M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP 377

5. CONCLUSIONS

In this paper, we proposed the Particle Swarm Optimization, Simulated An-
nealing, and a combination of Reduced and Basic Variable neighborhood search
method for solving the Bilevel Uncapacitated Facility Location Problem - BLUFLP.
Binary solution encoding was used in all three methods, and an efficient strategy
for calculating objective function was implemented. These common elements
represent a good basis for possible future hybridization of these methods. Other
constructive elements of the proposed metaheuristic approaches were adapted to
the problem under consideration. All three metaheuristics were subject to broad
computational experiments on several modified data sets from the literature and
newly generated data sets with up to 2000 clients and 2000 potential facilities. The
obtained results indicate that the combination of Reduced and Basic VNS outper-
forms both PSO and SA methods, especially in the cases of large-scale problem
instances. The VNS-based method shows excellent performance regarding so-
lution quality, stability and running times. It obviously represents a promising
metaheuristic for solving the BLUFLP, and has a potential to be applied to solving
similar facility location problems.

Acknowledgements: This research was partially supported by Serbian Min-
istry of Education, Science and Technological Development under the grants no.
174010 and 47017.

REFERENCES

[1] Alekseeva, E.V., and Kochetov, Y.A., “Genetic Local Search for the p-Median Problem with
Clients’ Preferences”, Diskret. Anal. Issled. Oper., 14 (2007) 3–31.

[2] Beasley, J.E., “Obtaining test problems via internet”, Journal of Global Optimization, 8 (1996) 429–
433.

[3] Brimberg, J., Mladenović, N., Urošević, D., and Ngai, E., “Variable neighborhood search for the
heaviest k-subgraph”, Computers and Operations Research, 36 (2009) 2885–2891.

[4] Cánovas, L., Garcı́a, S., Labbé, M., and Marı́n, A., “A Strengthened Formulation for the Simple
Plant Location Problem with Order”, Operations Research Letters, 35 (2007) 141–150.

[5] Cornuejols, G., Nemhauser, G.L., and Wolsey, L.A., “The uncapacitated facility location prob-
lem”, In: Mirchandani, P.B., and Francis, R.L. (eds.), Discrete Location Theory, New York: Wiley-
Interscience, 1990, 119–171.

[6] Dekkers, A., and Aarts, E., “Global optimization and simulated annealing”, Mathematical Pro-
gramming, 50 (1991) 367–393.

[7] Dempe, S., Foundations of bilevel programming, Dordrecht: Kluwer Academic Publishers, 2002.
[8] Eglese, R.W., “Simulated annealing: a tool for operational research”, European Journal of Opera-

tional Research, 46 (1990) 271–281.
[9] Garcı́a-López, F., Melián-Batista, B., Moreno-Pérez, J.A., and Moreno-Vega, J.M., “The parallel

variable neighborhood search for the p-median problem”, Journal of Heuristics, 8 (2002) 375–388.
[10] Gorbachevskaya, L.E., Polynomially solvable and NP-hard bilevel standardization problems, PhD The-

sis, Sobolev Institute of Mathematics, Novosibirsk, (in Russian), 1998.
[11] Hanjoul, P., and Peeters, D., “A Facility Location Problem with Clients’ Preference Ordering”,

Regional Science and Urban Economies, 17 (1987) 451–473.
[12] Hansen, P., and Mladenović, N., “Variable neighborhood search for the p-median”, Location

Science, 5 (1997) 207–226.
[13] Hansen, P., and Mladenović, N., “An Introduction to Variable Neighborhood Search”, In: Voss

S., Martello, S., Osman, I.H., and Roucairol, C. (eds.), Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization, Kluwer Academic Publishers, 1999, 433–458.

378 M. Marić, et al. / Metaheuristic Approaches for Solving the BLUFLP

[14] Hansen, P., and Mladenović, N., “Variable neighborhood search: Principles and applications”,
European Journal of Operational Research, 130 (2001) 449–467.

[15] Hansen, H., Kochetov, Y.A., and Mladenović, N., “Lower bounds for the uncapacitated facility
location problem with user preferences”, Preprint G − 2004 − 24, GERAD-HEC, Montreal, 2004.

[16] Henderson, D., Sheldon, H., Jacobson, H., and Johnson, A. W, “The Theory and Practice of
Simulated Annealing”, In: Glover F., and Kochenberger, G.A., (eds.), Handbook of metaheuristics,
New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers, (2003) 287–321.

[17] Kennedy, J., and Eberhart, R.C., “Particle swarm optimization”, Proceedings of the IEEE Interna-
tional Conference on Neural Networks, Perth, Australia, (1995) 1942–1948.

[18] Kennedy, J., and Eberhart, R.C., “A discrete binary version of the particle swarm algorithm”,
Proceedings of the IEEE International Conference Systems, Man and Cybernetic, (1997) 4104–4108.

[19] Kennedy, J., and Eberhart, R.C. Swarm Intelligence, San Francisco, CA: Morgan-Kaufmann, 2001.
[20] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., “Optimization by simulated annealing”, Science,

220 (1983) 671–680.
[21] Koulamas, C., Anthony, S.R., and Jaen, R., “A survey of simulated annealing application to

operations-research problems”, OMEGA International Journal of Management, 22 (1994) 41–56.
[22] Liang, Y.C., Lo, M.H., and Chen, Y.C., “Variable neighbourhood search for redundancy allocation

problems”, IMA Journal of Management Mathematics, 18 (2007) 135–155.
[23] Marić, M., “An efficient genetic algorithm for solving the multi-level uncapacitated facility

location problem”, Computing and Informatics, 29 (2010) 183–201.
[24] Marić M., Stanimirović, Z., and Stanojević, P., “An efficient memetic algorithm for the uncapaci-

tated single allocation hub location problem”, Soft Computing, 17 (2013) 445–466.
[25] Marić M., Stanimirović, Z., and Milenković, N., “Metaheuristic Methods for Solving the Bilevel

Uncapacitated Facility Location Problem with Clients Preferences”, Electronic Notes in Discrete
Mathematics, 39 (2012) 43–50.

[26] Mladenović N., Tododijević, R., and Urošević D., “An efficient General Variable Neighborhood
Search for large Travelling Salesman Problem with Time Windows”, The Yugoslav Journal of
Operations Research, 23 (2013), DOI : 10.2298/YJOR120530015M.

[27] Pérez Pérez, M., Almeida Rodrı́guez, F., and Moreno-Vega, J.M., “A hybrid VNS–path relinking
for the p-hub median problem”, IMA Journal of Management Mathematics, 18 (2007) 157–171.

[28] Pulido, G.T., Coello, C.A.C., and Lechuga, M.S., “Handling multiple objectives with particle
swarm optimization”, IEEE Transactions on Evolutionary Computation, 8 (2004) 256–279.

[29] Raidl, G.R., and Gottlieb, J., “Empirical analysis of locality, heritability and heuristic bias in
evolutionary algorithms: A case study for the multidimensional knapsack problem”, Evolutionary
Computation, 13 (2005) 441–475.

[30] Resende, M.G.C., and Werneck, R.F., “A fast swap-based local search procedure for location
problems”, Annals of Operations Research, 150 (2007) 205–230.

[31] Reyes-Sierra, C., and Coello, C.A.C., “Multi-objective particle swarm optimizers: A survey of
the state-of-the-art”, International Journal of Computational Intelligence Research, 2 (2006) 287–308.

[32] Schwengerer, M., Pirkwieser, S., and Raidl, G., “A variable neighborhood search approach for the
two-echelon location-routing problem”, Evolutionary Computation in Combinatorial Optimization,
(2012) 13–24.

[33] Suman, B., and Kumar, P., “A survey of simulated annealing as a tool for single and multiobjective
optimization”, Journal of the Operational Research Society, 57 (2006) 1143–1160.

[34] Vasilev, I.L., and Klimentova, K.B., “The Branch and Cut Method for the Facility Location Problem
with Clients’ Preferences”, Journal of Applied and Industrial Mathematics, 4 (2010) 441–454.

[35] Vasilev, I.L., Klimentova, K.B., and Kochetov, Y.A., “New Lower Bounds for the Facility Location
Problem with Clients’ Preferences”, Computational Mathematics and Mathematical Physics, 49 (2009)
1010–1020.

