Yugoslav Journal of Operations Research
26 (2016), Number 2, 131-157
DOI: 10.2298/YJOR140417027L

VARIABLE AND SINGLE NEIGHBOURHOOD
DIVING FOR MIP FEASIBILITY

Jasmina LAZIC
Brunel University, West London UB8 3PH, UK
Mathematical Institute, Serbian Academy of Sciences and Arts
Jasmina.Lazic@brunel.ac.uk

Raca TODOSIJEVIC
LAMIH - Université de Valenciennes,
ISTV 2 Le Mont Houy, 59313 Valenciennes Cedex 9, France
Mathematical Institute, Serbian Academy of Sciences and Arts
raca.todosijevic@gmail.com

Said HANAFI
LAMIH - Université de Valenciennes,

ISTV 2 Le Mont Houy, 59313 Valenciennes Cedex 9, France
CNRS, FRE 3304, 59313 Valenciennes Cedex 9, France
Université Lille Nord de France, 59000 Lille, France
said.hanafi@univ-valenciennes.fr

Nenad MLADENOVIC
Mathematical Institute, Serbian Academy of Sciences and Arts
nenad@mi.sanu.ac.rs

Received: April 2014 / Accepted: September 2014

Abstract: In this paper, we propose two new diving heuristics for finding a
feasible solution for a mixed integer programming problem, called variable neigh-
bourhood (VN) diving and single neighbourhood (SN) diving, respectively. They
perform systematic hard variable fixing (i.e. diving) by exploiting the information
obtained from a series of LP relaxations in order to generate a sequence of sub-
problems. Pseudo cuts are added during the search process to avoid revisiting
the same search space areas. VN diving is based on the variable neighbourhood
decomposition search framework. Conversely, SN diving explores only a single
neighbourhood in each iteration: if a feasible solution is not found, then the next

reference solution is chosen using the feasibility pump principle and the search
history. Moreover, we prove that the two proposed algorithms converge in a finite
number of iterations (i.e. either return a feasible solution of the input problem, or
prove its infeasibility).We show that our proposed algorithms significantly out-
perform the CPLEX 12.4 MIP solver and the recent variants of feasibility pump
regarding the solution quality.

Keywords: Mixed Integer Programming, Constructive Heuristics, Feasibility Pump, CPLEX.
MSC: 90B06, 90C05, 90C08.

1. INTRODUCTION

The mixed integer programming (MIP) problem can be formulated as follows:
(P) min{c’x | x € X}, €))

where

X={xeR"|Ax<b,x;j€ (0,1} forje B,x;je Z* for je G,l; <xj<ujfor je CUG}
(8, G, C respectively constitute the index sets for the binary (0-1), integer (non-
binary) and continuous variables) is the feasible set, c’x is the objective function,
and x € X are the feasible solutions. In the special case when G = 0, the resulting
MIP problem is called the 0-1 MIP problem (0-1 MIP). The LP-relaxation of prob-
lem P, denoted as LP(P), is obtained from the original formulation by relaxing the
integer requirements on x:

LP(P) minf{c"x|x € X]}, 2)

where X = {x e R" | Ax < bli<xj<ujforje GUC,x;€[0,1] for j € B}.

Many real-world problems can be modelled as MIP problems [5, 6]. However,
a number of special cases of MIP problem are proven to be NP-hard [11] and
cannot be solved to optimality within acceptable time/space with existing exact
methods. This is why various heuristic methods have been designed in attempt to
find good near-optimal solutions of hard MIP problems. Most of them start from
a given feasible solution and try to improve it. Still, finding a feasible solution of
0-1 MIP is proven to be NP-complete [28] and for a number of instances finding
a feasible solution remains hard in practice. This calls for the development of
efficient constructive heuristics which can attain feasible solutions in short time.
Over the last decade, a number of heuristics that address the problem of MIP
feasibility have been proposed. The feasibility Pump (FP) heuristic was proposed
for the special case of pure 0-1 MIP problem in [8]. It generates a sequence of
linear programming problems, whose objective function represents the infeasi-
bility measure of the initial MIP problem. The solution of each subproblem is
used to define the objective function of the next subproblem, so that the infeasi-
bility measure is reduced in each iteration [8]. This approach was extended in
[3] for the case of general MIP problems. The FP heuristic is quite efficient in
terms of computational time, but usually provides poor-quality solutions. In [1],

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 133

objective FP was proposed with the aim to improve the quality of the feasible
solutions obtained. However, the computational time was increased on average,
compared to the basic version of FP. Another approach, proposed in [10], applies
the Local Branching (LB) heuristic [9] to near-feasible solutions obtained from
FP in order to locate feasible solutions. LB is applied to a modified problem in
which the original objective function is replaced by an infeasibility measure tak-
ing into account a weighted combination of the degree of violation of the single
linear constraints. This heuristic provides feasible solutions very fast, but those
solutions are again usually of poor quality since the original objective function is
completely discarded.

The concept of variable fixing in order to find solutions to MIP problems was
conceived in the late 1970s and early 1980s, when the first methods of this type
were proposed [2, 26]. Subproblems are iteratively generated by fixing a certain
number of variables in the original problem according to the solution of the linear
programming relaxation of the original problem. This approach is also referred
to as a core approach, since the subproblems so obtained are sometimes called core
problems [2,25]. The terms hard variable fixing or diving, which are used throughout
this paper, are also present in the literature (see, for example, [7]). The critical
issue in this type of methods is the way in which the variables to be fixed are
chosen. Depending on the selection strategy and the way of manipulating the
obtained subproblems, different MIP solution methods are obtained. The basic
strategy was initially proposed in [2], for solving the multidimensional knapsack
problem. A number of its successful extensions were proposed over the years.
For example, a greedy strategy for determining the core is developed in [23],
whereas in [25] the core is defined according to a chosen efficiency function.
Another iterative scheme, again for the 0-1 multidimensional knapsack problem,
was developed in [27]. This scheme, which is based on a dynamic fixation of
the variables, uses the search history to build up feasible solutions and to select
variables for a permanent/temporary fixation. Variable neighbourhood search
was combined with a very large scale neighbourhood search approach to select
variables for fixing (binding sets) for the general assignment problem [20, 22]. This
approach was further extended for 0-1 mixed integer programming in general
[21].

With the expansion of general-purpose MIP solvers over the last decade, dif-
ferent hybridisations of MIP heuristics with commercial solvers are becoming
increasingly popular. A number of efficient heuristics that perform some kind
of variable fixing at each node of the Branch and Bound tree in the CPLEX MIP
solver have been developed. Relaxation induced neighbourhood search (RINS)
[7] fixes the values of the variables, which are the same in the current continuous
(i.e. LP) relaxation and in the incumbent integral solution. Besides considering
the values of variables in the current LP relaxation solution, Distance induced
neighbourhood search [12] performs a more sophisticated fixation taking into ac-
count the solution of the LP relaxation in the root of the Branch-and-Bound tree
and the counts of occurrences of different values. Relaxation enforced neighbour-
hood search [4] is an extension of RINS, which additionally performs a large-scale

134 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

neighbourhood search over the set of general integer variables by an intelligent
rebounding according to the current LP relaxation solution. In [19], variable fix-
ation is performed in a variable neighbourhood decomposition search manner
[15].

In this paper we propose two new diving heuristics for MIP feasibility, which
exploit the information obtained from a series of LP relaxations. Since the vari-
ables to be fixed depend on the LP relaxation values, this approach may also be
called relaxation guided diving. Relaxation guided variable neighbourhood search
was proposed in [24], but for defining the order of neighbourhoods within VNS
(where neighbourhoods are defined by soft variable fixing) rather than selecting
the variables to be hard-fixed. The first heuristic, called variable neighbourhood
diving is based on the variable neighbourhood decomposition search principle
[15]. A similar approach was proposed in [19] for optimising 0-1 MIP problems
starting from a given initial MIP feasible solution. In this paper we propose a
modification of the algorithm from [19] for constructing feasible solutions of 0-1
MIP problems. We exploit the fact that the CPLEX MIP solver can be used not
only for finding near-optimal solutions but also as a black-box for finding a first
feasible solution for a given 0-1 MIP problem. We also extend this approach for
general MIP problems, so that fixation is performed on general integer variables
as well. The second heuristic, called single neighbourhood diving explores only a
single neighbourhood in each iteration. However, the size of the neighbourhood
is updated dynamically according to the solution status of the subproblem in
a previous iteration. The incumbent solution is updated in a feasibility pump
manner, whereas revisiting the same point in the search process is prohibited by
keeping the list of all visited reference solutions. This list is implemented as a
set of constraints in a new (dummy) MIP problem. We show that our proposed
algorithms significantly outperform the CPLEX 12.4 MIP solver and the recent
variants of the feasibility pump heuristic, both regarding the solution quality and
the computational time.

This paper is organised as follows. In Section 2, we present the necessary
notation and a brief overview of the existing approaches related to our work.
A detailed description of the two new diving heuristics for MIP feasibility is
provided in Section 3. In Section 4, we analyse the performance of the proposed
methods as compared to the commercial IBM ILOG CPLEX 12.4 MIP solver and
the basic and objective variant of the FP heuristic [1, 8]. At last, in Section 5, we
give some final remarks and conclusions.

2. PRELIMINARIES

2.1. Notation

Given an arbitrary integer solution x° of problem (1) and an arbitrary subset
J € BU G of integer variables, the problem reduced from the original problem P
and associated with x and | can be defined as:

P(°,) min{c’x |x € X, Xj = x? forjeJ} 3)

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 135

If C is a set of constraints, we will denote with (P | C) the problem obtained by
adding all constraints in C to the problem P.

Let x and y be two arbitrary integer solutions of the problem P. The distance
between x and y is then defined as

Ay =) kj-yj (4)

j€BUG

If] € BUG, the partial distance between x and y, relative to |, is defined as
A x,y) =), jer | xj = yj | (obviously, A(BB U G, x,y) = A(x,y)). The linearisation
of the distance function A(x,y), as defined in (4), requires the introduction of
additional variables. More precisely, for any integer feasible vector y, function
A(x, y) can be linearised as follows [9]:

Ay = Y, -+ Y w-x)+ Y. d)

jEBUg:yl‘:Ij jeBUQ:y]:uj ng:lj<yi<Uj

where [; = 0 and u; = 1 for j € B and new variables d; = |x; — y;| need to satisfy
the following constraints :

dizxj—y;j andd; 2 y;—x; foralljelie G| <y <u}. (6)

In the special case of 0-1 MIP problems, the distance function between any
two binary vectors x and y can be expressed as:

ox,y) = Z xi(1-y) +yj(1-xj). (7)
j€eB

Furthermore, if x is a given binary vector, then formula (7) can be used to compute
the distance from x to any vector x € IR™:

6(r,®) =) xi(1 - %)) + %1 - x)).

j€8B

As in the case of general MIP problems, the partial distance between x and X,
relative to | € B, is defined as 6(], x,X) = L xj(1 — X;j) + Xj(1 — x;). Note that the
distance function 6, as defined in (7), can also be used for general MIP problem:s,
by taking into account that 6(x, y) = A(8, x, y) for any two solution vectors x and
y of a general MIP problem (1).

The LP-relaxation of the modified problem, obtained from a MIP problem P,
as defined in (1), by replacing the original objective function ¢’ x with 6(%, x), for a
given integer vector % € {0,1)/8 x Z/9' x R, can be expressed as:

LP(%) min{d(%, x) | x € X} (8)

136 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

Similarly, the notation MIP(P,x) will be used to denote a modified problem, ob-
tained from P by replacing the original objective function with 6(x, x):

MIP(P,%) min{5(% x) | x € X}. ©)

We will also define the rounding [x] of any vector x, as vector [x] = ([x];), with:

o x;+05], jeBUG

The neighbourhood structures {Ny | 1 < kyin < k < kyay < 18| + 1G]} can be
defined knowing the distance 6(x, y) between any two solutions x, vy € X. The set
of all solutions in the kth neighbourhood of x € X is defined as

Ni(x) = {y € X16(x,y) = k}. (11)

2.2. Related work

We here present a brief survey of the methods closely related to the research
reported in this paper. We provide short descriptions of the feasibility pump
heuristic [8, 1, 3] and variable neighbourhood decomposition search for 0-1 MIP
problems [19].

Feasibility Pump. Feasibility Pump (FP), introduced in [8], is a fast and sim-
ple heuristic for finding a feasible solution to 0-1 MIP. Starting from an optimal
solution of the LP-relaxation, the FP heuristic generates two sequences of solu-
tions X and X, which satisfy LP-feasibility and integrality feasibility, respectively.
The two sequences of solutions are obtained as follows: at each iteration, a new
binary solution % is obtained from the fractional x by simply rounding its integer-
constrained components to the nearest integer, i.e. ¥ = [x], while a new fractional
solution x is defined as an optimal solution of LP(P, ¥). To avoid cycling, some
random perturbations of the current solution ¥ are performed. In the original
implementation, the neighbourhood Ni(%), k € [T/2,3T/2] of the current solution
% is chosen at random (where T is an input parameter), and ¥ is replaced with
x" € Ni(X), such that 6(x",x) = maxyen, 6(y,%). The whole process is iterated
until a feasible solution is detected, or some of stopping criteria are fulfilled. The
stopping criteria usually contain a running time limit and/or the total number of
iterations. The pseudo-code of the basic FP is given in Figure 1.

The basic feasibility pump employs the distance function (7) which is defined
only on the set of binary variables. The general feasibility pump, proposed in
[3], employs the distance function (4) in which the general integer variables also
contribute to the distance. According to the computational results reported in [3,
8], the feasibility pump is usually quite effective with respect to the computational
time needed to provide the first feasible solution. However, the solution provided
is often of a poor-quality in terms of the objective value. The reason is that the
original objective function is completely discarded after solving the LP relaxation
of the original problem in order to construct the starting point for the search. In

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 137

Procedure FP(P)
1 Setx = LPSolve(P); Set proceed = true;
2 while (proceed) do
3 if (x is integer) then return Xx;
4 Set ¥ = [x];
5 if (cycle detected) then
6 Selectk € {1,2,...,|8B| + |G|} at random,;
7 Select x* € Ni(%);
8 SetX¥ =x’;
9 endif
10 X = LPSolve(LP(P, X));
11 Update proceed;
12 endwhile

Figure 1: The basic feasibility pump.

an attempt to provide good-quality initial solutions, a modification of the basic
FP scheme, the so called objective feasibility pump was proposed in [1]. The idea of
objective FP is to include the original objective function as a part of the objective
function of the problem considered at a certain pumping cycle of FP. At each
pumping cycle, the actual objective function is computed as a linear combination
of the feasibility measure and the original objective function:

VIBUG|

An(x, %) = (1 — a)A(x, x) + T

c'x, a €[0,1], (12)
where || - || denotes the Euclidean norm. Results reported in [1] indicate that this
approach usually yields considerably higher-quality solutions than the basic FP.
However, it generally requires much longer computational time.

Variable Neighbourhood Pump (VNP). The feasibility pump approach from
[8] and variable neighbourhood branching (VNB) from [16] were successfully com-
bined to provide a method for finding good quality solutions within a relatively
short computational time (see [13, 17]).

The VNP heuristic starts from an optimal solution x of the LP-relaxation of the
initial 0-1 MIP problem. It first performs one iteration of the FP pumping cycle
to the rounded vector [x] in order to obtain a near-feasible vector ¥. A determin-
istic search procedure VNB(P, &, ki, Kstep, kinax) based on variable neighbourhood
branching [16], and adjusted for 0-1 MIP feasibility as in [13, 17], is then applied
to & in an attempt to locate a feasible solution of the original problem. Procedure
VNB applies variable neighbourhood descent [14] to an initial reference solution
%, starting from the minimum neighbourhood size k,;,, with the neighbourhood
increase step Kkstp, until the maximum neighbourhood size kjuq, is reached. The
variable neighbourhood pump algorithm is based on the observation that % is

138 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

usually near-feasible, and it is very likely that feasible solution vectors can be
found in small neighbourhoods of . In addition, if VNB fails to detect a feasible
solution due to the time or neighbourhood size limitations, a pseudo-cut is added
to the current subproblem in order to change the linear relaxation solution, and the
process is iterated. If no feasible solution has been found, the algorithm reports
failure and returns the last integer (infeasible) solution. The VNP pseudo-code
for 0-1 MIP feasibility is given in Figure 2.

Procedure VNP(P)
Set proceed] = true;

2 while (proceedl) do

3 Set x = LPSolve(P); Set ¥ = [x]; Set proceed2 = true;
4 while (proceed2) do

5 if (x is integer) then return x;

6

7

8

9

[N

x = LPSolve(LP(P, %));
if (¥ # [x]) then ¥ = [x];
else Set proceed2 = false;
endif
10 endwhile
11 Kiin = L6(%, X)1; kinax = L(B| = kmin)/2]; kstep = (kmax = kmin)/5;

12 x" = VNB(P, &, kinin, kstepr Kinax);

13 if (x'=X) then //VNB failed to find the feasible solution.
14 P = (P|6(x,x) > kmin); Update proceedl;

15 else return x’;

16 endif

17 endwhile
18 Output message: “No feasible solution found.”; return %;

Figure 2: The variable neighbourhood pump heuristic pseudo-code.

Variable Neighbourhood Decomposition Search for 0-1 MIP problems. Variable
neighbourhood decomposition search (VNDS) is a two-level variable neighbour-
hood search (VNS) scheme for solving optimisation problems, based upon the
decomposition of the problem [15]. Recently, a new variant of VNDS for solving
0-1 MIP problems, called VNDS-MIP, was proposed in [19]. This method com-
bines a linear programming (LP) solver, a MIP solver, and variable neighbourhood
branching [16] in order to efficiently solve a given 0-1 MIP problem. At the begin-
ning of the algorithm, the LP-relaxation LP(P) of the original problem P is solved
in order to obtain an optimal solution X, and an initial integer feasible solution x is
generated. Then, the search for an improvement of the incumbent objective value
is performed solving a series of subproblems P(x, Jx), where subset J € BU G
corresponds to the indices of variables with k smallest [x; — x;l values, and x* is
the current incumbent solution. If the improvement occurs, VNB is performed
over the whole search space and the process is iterated. The pseudo-code of the

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 139
VNDS-MIP method can be found in [19].
3. NEW DIVING HEURISTICS FOR MIP FEASIBILITY

The new diving heuristics presented in this section are based on the systematic
hard variable fixing (diving) process, according to the information obtained from
the linear relaxation solution of the problem. They rely on the observation that
a general-purpose MIP solver can be used not only for finding (near) optimal
solutions of a given input problem, but also for finding the initial feasible solution.
For the sake of simplicity, in Subsections 3.1 and 3.2 we will first present both
algorithms for the special case of 0-1 MIP problems. Then, in Subsection 3.3, we
explain how the presented algorithms can be adapted for solving general MIP
problems.

3.1. Variable neighbourhood diving

The variable neighbourhood (VN) diving algorithm begins by obtaining the
LP-relaxation solution x of the original problem P and generating an initial integer
(not necessarily feasible) solution ¥ = [x] by rounding the LP-solution x. If the
optimal solution X is integer feasible for P, we stop and return x. At each iteration
of the VN diving procedure, we compute the distances 6; =| X; — x; | from the
current integer solution values (¥;) s to the corresponding LP-relaxation solution
values (X;)jeg and index the variables %;, j € 8 so that 61 < 6, < ... < §g). Then,
we successively solve the subproblems P(, {1, ..., k}) obtained from the original
problem P, where the first k variables are fixed to their values in the current
incumbent solution %. If a feasible solution is found by solving P(%,{1,...,k}), it
is returned as a feasible solution of the original problem P. Otherwise, a pseudo-
cut 6({1,...,k}, % x) > 1 is added in order to avoid exploring the search space of
P(x,{1,...,k}) again, and the next subproblem is examined. If no feasible solution
is detected after solving all subproblems P(%, {1, ..., k}), kuin < k < kax, kiin = Kstep,
Kinax = |B| = kstep, the linear relaxation of the current problem P, which includes
all the pseudo-cuts added during the search process, is solved and the process
is iterated. If no feasible solution has been found due to the fulfilment of the
stopping criteria, the algorithm reports failure and returns the last (infeasible)
integer solution.

The pseudo-code of the proposed VN diving heuristic is given in Figure 3. The
input parameters for the VN diving algorithm are the input MIP problem P and the
parameter d, which controls the change of neighbourhood size during the search
process. In all pseudo-codes, a statement of the form y = FindFirstFeasible(P, t)
denotes a call to a generic MIP solver, an attempt to find a first feasible solution
of an input problem P within a given time limit ¢. If a feasible solution is found,
it is assigned to the variable y, otherwise y retains its previous value.

Since the VN diving procedure examines only a finite number of subproblem:s,
it is easy to prove the following proposition.

140 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

VN-Diving(P,d)
1 Set proceedl = true, proceed2 = true; Set timeLimit for subproblems;
3 while (proceedl) do
4 x = LPSolve(P); ¥ = [x];
5 if (x = ¥) then return %;
6 0;j=|%j—Xxj|;index xjsothat6; < 6j41,j=1,...,|18| - 1;
7 Set ng =| {] €EB| 6]' #0} |, kstep = [nq/d], k =18 _kstep}
8 while (proceed2 and k > 0) do
9 Je={1,...,k}; ¥ = FindFirstFeasible(P(%, J), timeLimit);

10 if (P(%, Jx) is proven infeasible) then

11 P=(P|o(Jk % x)21);

12 if (X’ is feasible) then return x’;

13 if (k — kstep > |B| — n4) then ky,, = max{[k/2], 1};
14 Set k = k — kstep;

15 Update proceed2;

16 endwhile

17 Update proceed1;

18 endwhile
19 Output message: “No feasible solution found”; return %;

Figure 3: Variable neighbourhood diving for 0-1 MIP feasibility.

Proposition 1. Ifthe timeLimit parameter is set to infinity, the variable neighbourhood
diving algorithm finishes in a finite number of iterations and either returns a feasible
solution of the input problem, or proves the infeasibility of the input problem.

Note however that, in the worst case, the last subproblem examined by VN diving
is the original input problem. Therefore, the result of Proposition 1 does not have
any theoretical significance.

3.2. Single neighbourhood diving

In the case of variable neighbourhood diving, a set of subproblems P(%, Ji),
for different values of k, is examined in each iteration until a feasible solution
is found. In the single neighbourhood diving procedure, we only examine one
subproblem P(¥, J;) in each iteration (a single neighbourhood, see Figure 4). How-
ever, because only a single neighbourhood is examined, additional diversification
mechanisms are required. This diversification is provided through keeping the
list of constraints which ensures that the same reference integer solution x cannot
occur more than once (i.e. in more than one iteration) in the solution process. An
additional MIP problem Q is introduced to store these constraints. In the begin-
ning of the algorithm, Q is initialised as an empty problem (see line 4 in Figure 4).
Then, in each iteration, if the current reference solution x is not feasible (see line
8 in Figure 4), constraint 6(x, x) > [6(x, X)] is added to Q (line 9). This guarantees
that future reference solutions can not be the same as the current one, since the
next reference solution is obtained by solving the problem MIP(Q, [x]) (see line 17),

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 141

which contains all constraints from Q, (see definition (9)). The variables to be fixed
in the current subproblem are chosen among those which have the same value as
in the linear relaxation solution of the modified problem LP(P, %), where x is the
current reference integer solution (see lines 7 and 10). The number of variables to
be fixed is controlled by the parameter « (line 10). After initialisation (line 5), the
value of a is updated in each iteration, depending on the solution status returned
from the MIP solver. If the current subproblem is proven infeasible, the value of
is increased in order to reduce the number of fixed variables in the next iteration
(see line 16), and thus provide better diversification. Otherwise, if the time limit
allowed for subproblem is exceeded without reaching a feasible solution or prov-
ing the subproblem infeasibility, the value of « is decreased. Decreasing the value
of a, increases the number of fixed variables in the next iteration (see line 17), and
thus reduces the size of the next subproblem. In the feasibility pump, the next
reference integer solution is obtained by simply rounding the linear relaxation
solution X of the modified problem LP(P,x). However, if [x] is equal to some of
the previous reference solutions, the solution process is caught in a cycle. In order
to avoid this type of cycling, we determine the next reference solution as the one
which is at the minimum distance from [x] (with respect to binary variables) and
satisfies all constraints from the current subproblem Q (see line 19). This way we
guarantee the convergence of the variable neighbourhood diving algorithm, as
stated in the following proposition.

Proposition 2. If the timeLimit parameter is set to infinity, the single neighbourhood
diving algorithm finishes in a finite number of iterations and either returns a feasible
solution of the input problem, or proves the infeasibility of the input problem.

Proof. Let X' be the reference solution at the beginning of the ith iteration, obtained
by solving the MIP problem MIP(Q;, [x]) and let j > i+ 1. The problem Q; contains
all constraints from Q;.1. If the algorithm has reached the jth iteration, it means
that in the ith iteration feasible solution was not found and cut 6(x', x) > [6(x,)]
(line 9 in Figure 4) was added to Q;;1. Hence, the problem MIP(Q)j, [x]) contains
6(x',x) > [6(x',X)]. Furthermore, because [6(x',X)] > 0 (otherwise, ¥ would
be feasible and the algorithm would stop in the ith iteration), this implies that
X(B) # ¥/(B). Since this reasoning holds for any two iterations j > i > 0, the total
number of iterations of the single neighbourhood diving algorithm is limited by
the number of possible sub vectors x'(8), which is 2. Therefore, the single
neighbourhood diving algorithm finishes in a finite number of iterations.

The single neighbourhood diving algorithm can only return a solution vector
as a result if either [5(x,X)] = 0, therefore X' being feasible for P, or if a feasible
solution of the reduced problem P(, J;) is found. Since a feasible solution of
P(x', J;) is also feasible for P, this means that any solution vector returned by
single neighbourhood diving algorithm must be feasible for P.

Finally, we will prove that any feasible solution of P has to be feasible for
Q;, for any iteration i > 0. Moreover, we will prove that any feasible solution
of P has to satisfy all constraints in Q;, for any iteration i > 0. Since Qg does

142 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

Procedure SN-Diving(P)
1 Setx =LPSolve(P);
2 Seti=0;Setx?=[x];
3 if (x = x¥) then return x°;
4 SetQy=0;
5 Set proceed = true; Set timeLimit for subproblems; Set value of a;
6 while (proceed) do
7 X = LPSolve(LP(P,x)));
8 if ([86(x',X)] = 0) then return x';

9 Qir1 = (Qi | 6(, x) > [6(x, X)1);
10 k=|{jeB:x;=§j}I/a;]k:{l,...,k};

11 x’ = FindFirstFeasible(P(X!, J), timeLimit);

12 if (feasible solution found) then

13 return x’;

14 if (P(x', J;) is proven infeasible) then

15 Qi1 = Qi 181, T,%) = 1); P = (P | 8(Ji, T, %) > 1);
16 a=3a/2;

17 else if (time limit for subproblem exceeded)

18 a = max(1,a/2);

19 X'*! = FindFirstFeasible(MIP(Q;,1, [X]), timeLimit);
20 if (MIP(Qi41, [X]) is proven infeasible) then

21 Output message: “Problem P is proven infeasible”; return;
22 i=i+1;

23 endwhile

Figure 4: Single neighbourhood diving for 0-1 MIP feasibility.

not contain any constraints, this statement is obviously true for i = 0. Let us
assume that the statement is true for some i > 0, i.e. that for some i > 0 every
feasible solution of P satisfies all constraints in Q;. The problem Qj,; is obtained
from Q; by adding constraints 6(x, x) > [6(x,X)] and 6(Js, ¥, x) > 1. According to
the definition of [6(x',X)], there cannot be any feasible solution of P satisfying
the constraint 5(x',x) < [6(x),X)]. In other words, all feasible solutions of P
must satisfy the constraint 6(x',x) > [6(x',X)]. Furthermore, if the constraint
5(Jx,x',x) > 1) is added to Qjs1, this means that the problem P(¥',J;) = (P |
5(Jx,x',x) = 0) is proven infeasible, and therefore no feasible solution of P can
satisfy the constraint 5(Jk, ¥, x) = 0. Therefore, any feasible solution of P satisfies
the constraints added to Q; in order to obtain Q;;; and hence any feasible solution
of P satisfies all constraints in Q;,;. This proves that any feasible solution of P
satisfies all constraints in Q;, for any i > 0. In other words, any feasible solution of
Pis feasible for Q;, for any i > 0. Since MIP(Q;.1, [x]) has the same set of constraints
as Q;, this means that any feasible solution of P is feasible for MIP(Q;, [x]). As a
consequence, if MIP(Q;, [x]) is proven infeasible for some i > 0, this implies that
the original problem P is infeasible. m

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 143

3.3. Extension to a general MIP case

Obviously, fixing a certain number of variables can be performed for general
MIP problems, as well as for 0-1 MIP problems. We here explain how the previ-
ously presented algorithms can be adapted and employed for solving the general
MIP problems. In the case of VN diving, we compute the distances A; =| X; — X; |,
j € BUG, for all integer variables (not just the binaries). Then, we successively
solve subproblems P(%, Jx), Jx = {1,...,k}, k =| {j e BUG : X; = Xj} |, where X is
the current reference integer solution and x is the solution of the LP relaxation of
the original problem LP(P). If a feasible solution is found by solving P(¥, Ji), for
somek, 0 < k < |BU G|, itis returned as a feasible solution of the original problem
P. In the VN diving variant for 0-1 MIP problems, a pseudo-cut is added to P if
a subproblem P(%, Ji) is proven infeasible. In the case of general MIP problems
however, generating an appropriate pseudo-cut would require operating with
extended problems, which contain significantly more variables and constraints
than the original problem P. More precisely, the input problem would have to
contain additional variables d;, j € G, and additional constraints (see definition
©G):

uj—d;<xj<d;+1; foralljelie G| <y <uy.

Consequently, all subproblems derived from the so extended input problem
would have to contain these additional variables and constraints. In order to
save the memory consumption and computational time for solving subproblem:s,
we therefore decide not to add any pseudo-cuts in the VN diving variant for gen-
eral MIP problems, although that implies possible repetitions in the search space
exploration. This means that we only perform decomposition with respect to the
LP relaxation solution of the initial problem. In this aspect, VN diving for general
MIP problems is similar to the VNDS algorithm for 0-1 MIP problems from [19].

In order to avoid memory and time consumption when dealing with large
problems, the implementation of the SN diving algorithm for general MIP prob-
lems is the same as for 0-1 MIP problems. In other words, all distance values are
computed with respect to the distance function 6 (which takes into account only
binary variables), and general integer variables are handled by the generic MIP
solver itself.

4. COMPUTATIONAL RESULTS

In this section we present the computational results for single and variable
neighbourhood diving algorithms. We compare our proposed methods with the
following existing methods CPLEX MIP solver without feasibility pump (CPLEX
for short), the standard feasibility pump heuristic (standard FP), the objective
feasibility pump (Objective FP) and the variable neighbourhood pump (VNP).
Since the feasibility pump is already included as a primal heuristic in the employed
version of the CPLEX MIP solver, we use the appropriate parameter settings to
control the use of FP and to chose the version of FP. All results reported are
obtained on a computer with a 4.5GHz Intel Core i7-2700K Quad-Core processor

144 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

and 32GB RAM, using the general purpose MIP solver IBM ILOG CPLEX 12.4.
Both algorithms were implemented in C++ and compiled within Microsoft Visual
Studio 2010. For comparison purposes, we consider 83 0-1 MIP instances [8])
previously used for testing the performance of the basic FP (see Table 1 and
34 general MIP instances previously used in [3] (see Table 2). In Tables land2,
columns denoted by # represent the total number of variables, whereas columns
denoted by |B| and m show the number of binary variables and the number
of constraints, respectively. Additionally, the column denoted by |G| in Table 2
provides the number of general integer variables for a given instance.

In both proposed diving heuristics, the CPLEX MIP solver is used as a black-
box for solving subproblems to feasibility. For this special purpose, the parameter
CPX_PARAM_MIP_EMPHASISis setto FEASIBILITY, the parameter CPX_PARAM_INTSOLLIM
is set to 1 and the parameter CPX_PARAM_FPHEUR was set to -1. All other pa-
rameters are set to their default values, unless otherwise specified. Results
for the CPLEX MIP solver without FP were obtained by setting the parameter
CPX_PARAM_FPHEUR to -1. The feasibility pump heuristics are tested through the
calls to the CPLEX MIP solver with the settings CPX_PARAM_FPHEUR=1 for stan-
dard FP and CPX_PARAM_FPHEUR=2 for objective FP. All tested methods (CPLEX
MIP without FP, standard FP, objective FP and both proposed diving heuristics)
were allowed 100 seconds of total running time on 0-1 MIP test instances, while
on General MIP instances maximum running time, for all methods, was set to
150 seconds. In addition, the time limit for solving subproblems within variable
neighbourhood diving and single neighbourhood diving was set to 10 seconds
for all instances.

The value of the neighbourhood change control parameter d in the VN diving
algorithm (see Figure 3) is set to 10, meaning that, in each iteration of VN diving,
10 + [1 +log, [x; €{0,1}: j € BIJ subproblems (i.e. neighbourhoods) are explored,
where ¥ is the LP relaxation solution of the current problem. The neighbourhood
size control parameter « in the SN diving algorithm (see Figure 4) is set to 2.5,
meaning that 5= X 100 = 40 percent of the variables with integer values in X are
initially fixed to those values to obtain the first subproblem. Those values of d
and a are based on brief experimental analysis.

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

145

No Instance n 18| m No. Instance n |B| m
name name
1 | 10teams 2025 1800 230 43 | bg512142 792 240 1307
2 | aflow30a 842 421 479 44 | dg012142 2080 640 6310
3 | aflow40b 2728 1364 1442 45 | blp-ar98 16021 | 15806 1128
4 | air04 8904 8904 823 46 | blp-ic97 9845 9753 923
5 | air05 7195 7195 426 47 | blp-ic98 13640 | 13550 717
6 | cap6000 6000 6000 2176 48 | blp-ir98 6097 6031 486
7 | dano3mip 13873 552 3202 49 | CMS750-4 11697 7196 | 16381
8 | danoint 521 56 664 50 | berlin5.8.0 1083 794 1532
9 | ds 67732 | 67732 656 51 | railway.8.1.0 1796 1177 2527
10 | fast0507 63009 | 63009 507 52 | glass4 322 302 396
11 | fiber 1298 1254 363 53 | netl2 14115 1603 | 14021
12 | fixnet6 878 378 478 54 | nsrand.ipx 6621 6620 735
13 | harp2 2993 2993 112 55 | tr12-30 1080 360 750
14 | liu 1156 1089 2178 56 | van 12481 192 | 27331
15 | marksharel 62 50 6 57 | biellal 7328 6110 1203
16 | markshare2 74 60 7 58 | NSR8K 38356 | 32040 6284
17 | mas74 151 150 13 59 | rail507 63019 | 63009 509
18 | mas76 151 150 12 60 | rail2536¢ 15293 | 15284 2539
19 | misc07 260 259 212 61 | rail2586¢ 13226 | 13215 2589
20 | mkc 5325 5323 3411 62 | rail4284c 21714 | 21705 4284
21 | mod011 10958 96 4480 63 | rail4872c 24656 | 24645 4875
22 | modglob 422 98 291 64 | Al1CI1S1 3648 192 3312
23 | momentuml 5174 2349 42680 65 | A2Ci1S1 3648 192 3312
24 | nw04 87482 | 87482 36 66 | B1C1S1 3872 288 3904
25 | optl2l7 769 768 64 67 | B2C1S1 3872 288 3904
26 | p2756 2756 2756 755 68 | sp97ar 14101 | 14101 1761
27 | pkl 86 55 45 69 | sp97ic 12497 | 12497 1033
28 | ppO8a 240 64 136 70 | sp98ar 15085 | 15085 1435
29 | pp08aCUTS 240 64 246 71 | sp98ic 10894 | 10894 825
30 | protfold 1835 1835 2112 72 | usAbbrv.8.25.70 2312 1681 3291
31 | qiu 840 48 1192 73 | manpowerl 10565 | 10564 | 25199
32 | rd-rplusc-21 622 457 | 125899 74 | manpower2 10009 | 10008 | 23881
33 | setlch 712 240 492 75 | manpower3 10009 | 10008 | 23915
34 | seymour 1372 1372 4944 76 | manpower3a 10009 | 10008 | 23865
35 | swath 6805 6724 884 77 | manpower4 10009 | 10008 | 23914
36 | t1717 73885 | 73885 551 78 | manpowerda 10009 | 10008 | 23866
37 | vpm2 378 168 234 79 | ljb2 771 681 1482
38 | dclc 10039 8380 1649 80 | Ijb7 4163 3920 8133
39 | dcll 37297 | 35638 1653 81 | 1jb9 4721 4460 9231
40 | doloml 11612 9720 1803 82 | Ijbl0 5496 5196 | 10742
41 | sienal 13741 | 11775 2220 83 | ljbl2 4913 4633 9596
42 | trentol 7687 6415 1265

Table 1: Benchmark instances for 0-1 MIP.

146 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

No Instance n 2] Gl m
name
1 arki001 1388 415 123 | 1048
2 atlanta-ip 48738 | 46667 106 | 21732
3 gesa2 1224 240 168 | 1392
4 gesa2-o 1224 384 336 | 1248
5 ic97_potential 728 450 73 | 1046
6 ic97_tension 703 176 4 319
7 icir97 potential 2112 1235 422 | 3314
8 icir97 tension 2494 262 573 | 1203
9 manna8l 3321 18 | 3303 | 6480
10 momentum?2 3732 1808 1 24237
11 momentum3 13532 6598 1 56822
12 msc98-ip 21143 | 20237 53 | 15850
13 mzzvll 10240 9989 251 | 9499
14 mzzv42z 11717 | 11482 235 | 10460
15 neos?7 1556 434 20 | 1994
16 neos8 23228 | 23224 4 | 46324
17 neos10 23489 | 23484 5 | 46793
18 neosl6 377 336 41 1018
19 noswot 128 75 25 182

20 rococoB10-011000 4456 4320 136 | 1667
21 rococoB10-011001 4456 4320 136 1677
22 rococoB11-010000 12376 | 12210 166 | 3792
23 rococoB11-110001 12431 12265 166 | 8148
24 rococoB12-111111 9109 8910 199 8978
25 rococoC10-001000 3117 2993 124 | 1293
26 rococoC10-100001 5864 5740 124 | 7596
27 rococoC11-010100 12321 | 12155 166 | 4010
28 rococoC11-011100 6491 6325 166 | 2367
29 rococoC12-100000 17299 | 17112 187 | 21550
30 rococoC12-111100 8619 8432 187 | 10842

31 rout 556 300 15 | 291
32 timtab1 397 64 107 | 171
33 timtab2 675 113 181 294
34 rol13000 1166 246 492 | 2295

Table 2: Benchmark instances for general MIP.

147

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

*SOOUBISUT JTIN [-0 X0J Sonjea 2And3[qQ :¢ d[qeL

SUIM (|00 TTLTIL8EYY |L0°61TEBB6TY |L0°61CEB86CY |10 LETTIT6FLS |T0LETTIIT6VLS |T0LETTIIT6VLS ¥
0T9 09 09 T6'L 16T 16T €8||LT°E6164TLTE |SL'SISISTITL|SL'SISISTITL| L8 TFES6609S |L8°TFES6609S |8 1FES6609S 4
€L 1€ €L €91 €91 €91 T8||ETLPEPOTI98T |9 TLTS8666L 9L LLTS8666L|CH 99507998CT |TH99907998¢C |Th95507998¢€C oF
8t'6 8’6 8¥'6 WL Wl L 18(|00°85916SL9S€ET | 1ST6I8F0LL LS TOLBILIT |64 STFSTLIFIIL|6L STFBTLYFIIL |64 STHETLTFIIL 6€
19'8 19'8 198 L8°0 L8°0 L8°0 08/S€'9€888169TT |TI'9601LTIT |S6'TOE6L6ST |8E L06ESL8TIT |8 L06ESLETIT |8E€L06ESLBTIT 8¢
¥TL voL YL 880 880 88°0 6L||0S°ST sL6l [e7A<1 S 00°£1T 00°ZL 00°ZT L8
009 009 009 009 009 009 82||00°29181C 0095502€ 00°6£0Cce 007€685C 007685 007€685C 9¢
009 004 009 009 009 009 LL]|96'SS61 60°CLS 1T¢IL 1T€1L 1T 1ceis 4195
009 009 009 009 009 009 9£||00°C€9 00°€L¥ 00°€LY 00999 00999 00999 ¥e
009 009 009 009 009 009 S£||05'780S€T 00°L8¥LL 00°1€068¢ SL'SEL6LY SL'SEL6LY SLSEL6LY &
009 009 009 009 009 009 PL|| 78768591 88°CETLLL - 60°CELT8T 19070781 8T°Z11981 €
009 004 009 009 006 009 CL||TTLLST A i 1698¢ 81°6081 816081 81°6081L 1€
00°TEL 00°TEL 00FFL 0000 0000 0000 <L||00€T- 00°ZT- 0091~ 00°€T- 00°€T- 00°€T- 0€
9GFEEG08L9ET || F0'66481T859 |9€°LIETOSSES | TS 6£0999969T |TS6£09999691 |G 6409595691 T£{|00°028TT 00°0¥60T 00°0sc8 00°069€T 00°069€T 00°069€T 6C
09°19965C95F¥ || 87°995070€68 | T6'S00S9Y6YET |F0°SEC8TOTLET |F0°SEC8T6TLET |F0'SET8T6YLET 0£|[00°0915T 0009201 00°0%16 0008042 0008042 0008042 8¢
88°06CCESTIET || TL'L6STIPLYL |TL'L6SIIPLYL |88°0€C60ETITT |88°0EC60ETIVT |88°0€C60ETITL 69|/00°8L 00°'8L 00°8L 00°T€L 00°1€L 00°1€2 LT
0°€88LT81¥C9|| PTSS8IL86FLL|TH'8LS61S98CLT | TH F48ELVI8CIL | T F48ELFISTLL | Ch 48ELFISTIL 89||00°T1LE 00°I€ETE 00828 00°60LE 00°604¢ 00°604¢ 9T
°G'8LE0L TPLYLT 87°G880¢ §'SLS0L T9'SLS0L TG'6L80L £9]|000 00°9T- 0091~ 000 000 000 14
CS'E€E669 T°LPE08T $6'86.8C °G€E669 T9'€E669 °9€E669 99||00°8¢ctT 0076461 00T6L61 0070041 00'70041T 0070041 4
§9°6290¢ 6V 161CL 9TPE6LL £€6980C £€'9980C £€€°9980¢ G9|| 7S L6€0OET £9°18€2LE €L8EETLE 0L°SSSPLIE 0r'ssShIe 01°sSSP1IE €T
19729681 09°65TTL €T180€T 16'8€8ST €7°'50061 €C°80061 19|/88'880LF1SE 88'880LPISE (88°880LPISE |CE T1S08T9E TETIS0819¢ ¢ET1S0819¢ [44
00°00¥¢ 00°%19L 00°719T 00°194€ 00°194€ 00°194¢ €9//00°0 000 000 000 000 000 1
00°608¢ 00°9Z1L 00°9Z1T 00°104C 00°104T 00°104C 9| 1T SL19T- 000 000 000 000 0T
00°8¥€C 00°T00T 00°T00T 00°g6€C 00°g6€C 00°96€C 19||00°¢LE€ 00°0€€€ 00°029¢ 00°S¥ee 00°99¢¥ 000££€ 6L
00°6881L 00°'ITZ 00°ILL 008691 008691 008691 09|/ 19°00¥611 9TYLLEY 9TLLEY 197€LST 19°%¥€LST 197¥ELST 8T
00°86€ 00°181 00181 00°1s7 00°1S% 00°1S% 65|/ €8'6€LECT L8TLEDL L8'TLEVL 197¥€LST 19°%¥€LST 197¥ELST LT
6L°80L0THFEIT| | 6T 6£6C196ET9 | VT 676£5T9€€9 | L€ 090STTL00S |LE090STTLO0S |£E090STTL00S 86|/00°8€€ 00°8€€ 00°8€€ 00C1S0T 00CIS0T 00CIS0T 91
TOF9L09F91TT ||€9°SSS6EPEL |€9°SSS6EVEL SG0LTCIISy 9G°04TTIISy 68'04CTIISy £S]|00°0€T 00°0€T 00°0€T 00'98¢£ 009824 009824 ST
0079 (4334 19°¢h 0079 0079 0079 96/00°C948 0072948 002948 000579 00°05¥9 00°0S¥9 41
00°€€6LET 00°CL6PEL 009%1L61 00°8¥CHST 00°£¥.58C 00672071 GS||00°CIOPFOFS- |00°LL9PLITL- |00°8FELEICY- |00°ST6ECITF- |00°GT6ECITFF- |00°STOECITH- €1l
00°0z65¢C 00°00TS6L 0009419¢ 00°0¥¥19C 00°0¥¥719C 00°0¥¥19¢ ¥S||007709 00'T298 00°50S¥ 00°50S¥ 00°50ST 00°50S¥ 48
00°S6C 00°95¢ 0096 00°%1C 00°2€€ 00°7IC €8||9T'76£809 TL'L0800FT |TET8YETL 96'948CSL 1L°8079¢Y 0T°69L1S% 1T
£9'998769990€ || 00°0STTTO0S8T |00°00697000CS | €ECECI6ITEIE €€ ECEIBITHIE | €E ECEIEIT69E 76||00°98S 00°18T 00181 00°¢€L 00°€eL 00°€€L U8
00°80% 00°€T¥ 0091% 00008 00005 00005 18|/ 127007 P8°€LST 99819 9G°81¥S 99°81¥%S 99°81¥S 6
0029 00°€L 000 00001 00°00T 00°00T 0S|/05°69 00°£2 00°€8 0599 0064 0599 8
00°s€e 00'85¢ 00°85C 00°€66 00°€66 00°€66 6¥|/00°000S 8€'89L 8€'89L TTLTL TTLIL TTLTL /4
LLYL6E ¥ ar8c LL919T 0Tv6ce 9r'101€ o] A8 2193 74 8%||00°02081¢ET- 00°SLITSHT- |00°004SFFC- |00°FC0901- 00%20901~ 00%20901~ 9
°E869¢€1 8L7TLE0T 6L€6¥S T6°TH0S 16°TH0S 16°TP0S L¥||00°£L06T 00'8861¢ 00°8861¢€ 00°8886C 00°8886¢ 00°8886¢ S
66767 1¥'996¥ 66'SPLY 69597 T6'9997 °6'959% 9%||00'7€86S 00°5€99S 00°S¥16S 00'8cSLS 00°82SLS 00°82SLS i4
08vcv6 T804 119892 TL0L69 TL°0169 TL°0169 SF||00°cL6T 00°0LET 00€991 00°19¢T 00°€0L¥ 00C0ST €
09°SP690FEST || 0S°SP690TEST |0S'SP690FEST | 00'6£SSS8TOCT |00°6£5SS8TOCT |00°6£S5S8C0CT ¥¥||00°6LET 00°CFET 006091 00°7¥CL 00°F¥CL 00°F¥CL ©
00°6998€L0TL ||00°G998€L0TL [00°S998EL0CL |00°GOLSSEST6 |00°S0LSSEST6 — |00°S0LSSESTO €¥||00°956 00766 00'8%6 00796 00'2S6 00'Cs6 L
Sulaiq Sulaiq dd EES Suiq Suiiq dd dd
NS NA ANA 2a122(90 piepuris X31dD [3POIA || NS NA ANA 2a122(90 prepuris X31dD PPOIN

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibili

148

'sadURISUT JTIN T-(10J (SPU0Das UT) sanjeA awr Uuonndaxy :f a[qer,

€99 60°S WA 6CY a8'e S0F ERZIEER LST [y 00 00 700 r44
180 980 960 8T'0 8T°0 8T°0 e8| 1Le i SLL 8CT €T w$T 154
L €Ut €T °wo vTo €C0 8| [4L8°T e Ire 0r'o 0r'o 0r'o [0}
0£0 L0 a80 L0 61°0 61°0 18| [ceT 0ST 86'G Prail Frail 90 6€
L850 8C°0 <990 10 710 ST'0 08f|cLt L8T fras L0°0 L00 L0°0 8¢
€00 €00 €00 100 100 100 64||10°0 200 200 100 100 100 LE
804 %<6 Tl |T6'S L8°S 60'S 84 || 4501 a8yl <88 T9°00T 87001 Q1001 9¢
IL'Y ¥9°L 79Tl |LLE 0L¢ €r'e LL|]9€°0T L1°0T 00 900 90°0 90°0 ag
s <06 €OvL |8F'S LES 09°% 9L (290 650 6L°T 00 00 00 e
LSY WL 096 6L LLY 76'¢ Gz (| 100 100 700 100 100 100 €€
6S°L 899 ¥L0T |99°9 79'¢ s V.|| 68F L¥'9T 90°00T |SS¥¥ c0°LE 19°6C 49
rar4 98T or's €60 °6°0 €Tl €L (900 660 1 00 00 00 1e
860 izt 67'cl | €00 €00 €00 ¢L[|98T 6901 Sy 9¢91 €e91 ¥091 0¢
150 940 65T Fral vTo feral} 14| [100 100 S0°0 100 100 100 6C
660 L0T QLT €0 €0 ae0 04 (000 100 €00 000 000 000 8¢
S0 ego0 £8°0 120 120 <o 6911000 000 000 000 000 000 LT
060 ac1 6L°¢ 9€'0 9€°0 9€°0 89410 ve0 200 00 Y00 00 9¢
600 €rot 6691 | 400 L0°0 L0°0 £9||100 000 100 100 100 000 o4
0r’o 10T 9T6L |L00 900 900 9 (| 170 wo 090 0¢'T €Tl Q0’1 i74
600 6001 LU¥T [90°0 900 900 Q9291 8T 10°ST |sSz'0 <aLo LL0 €T
920 LE0T I8°GT | €10 150 €10 #9000 000 100 000 000 000 (14
8TV e 9¢'8 15 40) 070 1540 €9 (700 Y00 S00 700 00 00 1%
808 128 667l |SE0 €0 €0 29|00 800 €ro 00 00 00 0C
€8T 76’1 1Te 00 610 00 19| 100 700 600 L00 S0°0 vI°0 61
LET YT SI'Y (1] (U] (U] 09 (000 000 000 000 000 000 8T
80T 0S'T 0r'e €0 €0 €0 6511000 000 000 000 000 000 LT
6¥'6C 6L7¢ LL9Y |ELEL QLel LLET 8¢S (000 000 000 000 000 000 91
0S0 650 880 ¥0°0 00 00 £S (000 000 000 000 000 000 18
€0'8 26°CL 6L°00L |96'LY €C'8Y 90°8% 96 (|00 €00 €00 100 10°0 10°0 i
aeo €001 0S'8L | ¥0°0 00 980 ag (100 o 700 100 100 100 €1
o 8¢0 €ro 1o o 710 G| | 10°0 200 200 100 100 100 <t
04T 1€T LE9 8T°0¢ 88’1 ¢9'6C €9 |200 100 €00 200 100 200 1T
100 €ro 00 100 100 100 ¢S |[|¥8°0 260 i 920 970 970 or
820 L aLe 200 €00 200 16| [69F9¢ 8L°8L or'er | 2F0 50 o 6
ferall] 790 70 100 100 100 os||oT0 <00 feral} 890 o 9¢°0 8
€9 7L 9F'1IE |0TO 0o <o 67 || 1TET €9°¢ €8 0009 1209 8965 L
<ro L80 790 00 810 9¢°0 8% [[£0°0 0c0 900 90°0 90°0 90°0 9
6L°0 o €01 07’0 6€0 o Ly ||S€0 L0 o Lo yL'o Lo S
€0 89°G L0 6L°0 6L°0 00 9% (950 860 1T €90 670 870 4
0Lt 84701 65T €€T 8T e av [|¥T0 1ce as0 €ro 400 izl €
8T0 810 €0 100 100 100 ¥ [|S0°0 €C0 <00 200 00 600 @
<00 S00 800 100 100 100 €7 11070 <s0 190 0CT €CT 960 T
Suraiq ||Suraiq a1 a1 Suiaiq [Suraiq a1 a1

NS NA __|dNA[2a123[qQ [prepueis | XAT1dD|[PPOW| (NS [NA |dNA[2A193(q0 | prepuels | xg1dD || PPoW

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 149

CPLEX |Standard FP|Objective FPJVNP _ |VN Diving|SN Diving

Solution quality
Instances solved 82 83
Avg. gap from LP relaxation obj. w.r.t. all instances (%) |49665.28|49666.96 49649.94 - 6620.55 17890.24
Avg. gap from LP relaxation obj. w.r.t. 82 instances solved by VNP (%)||48002.46|48029.48 48003.82 4683.57|4542.36 16086.52
Number of wins||18 32 44
Computational time
Average w.r.t. all instances(sec)||4.05
Average w.r.t. 82 instances solved by VNP|3.74
Number of wins||42

=3
e8]

3.85
3.45
50

429
3.79
48

14
6.01
2

5.09
4.83
8

6.63
6.65
19

Table 5: Summarised results for 0-1 MIP instances.

The results obtained by all 6 solvers, for the first 83 benchmark 0-1 MIP in-
stances, which was first used in [8], are presented in Tables 3 and 4. Table 3
provides the objective values obtained by all 6 methods and Table 4 provides
the corresponding execution time. The summarized results for this benchmark,
including the variable neighbourhood pump heuristic [13, 17], are presented in
Table 5. In the solution quality block of Table 5, we provide the number of in-
stances solved by each of the 6 methods, the average percentage gap from the LP
relaxation objective value regarding all 83 instances, the average percentage gap
from the LP relaxation objective value regarding the instances solved by VNP,
and the number of times that each of the methods managed to obtain the best
objective value among the others (including ties). For each method, a percentage

gap for a particular instance was computed according to the formula ﬂ;{;f % 100,

where f is the objective function value for the observed instance obtained by that
method, and f;p is the objective function value of the LP relaxation of the observed
instance. The exceptions are instances marksharel, markshare2 and mod011, for
which the gap value was computed as (f — frp) X 100, since the LP relaxation
objective value is equal to O for all three instances. In the computational time
block of the Table 5, we provide the average computational time over all instances
in the benchmark for each of the 6 methods compared, the average computational
time over all instances solved by VND, as well as the number of times that each of
the methods managed to obtain a solution in shortest time.

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibili

150

"S90UR)SUI JTJA [erouas 103 aduewrroyad awm Suruuni pue Lpenb uonniog :9 ajqer

26T 86'6 yl6l 206 ac6 896 Sy’ L1 6 hd I3 g SUIM
870 86T 96T 10T S0l v.20 € || 0067091 00°S60€T 0065291 00°058ST 0005851 0005851 ¥e
8T°0 S0°0T 280 LT €9°C L0 €€ || 0019¢ST6¥T | 00°08STECL | 00'0TFI69T 00°ZCT¥PST 00°¢¥8€0¥ 1 00°99€6¥ST &e
800 4" 69°0 <00 cro 9Ir'0 C¢ || 00198€SS0T | 00°L01978 00°ZT9STLL 00°€evvILIL 00°0€1986 006060701 69
800 810 <00 100 100 100 1€ | | 86°€8ET 8ELETL GC'eLET §TSLET GC'eLET GC'GLET 1€
€90 870 19T 80'T 80T €40 0¢ | | 00°€8ELY 00°€6SSTL 00°'TETOTT 00°8%8C8 00'8%878 00742201 0g
160 .0 wW6'C 6C°¢ 6L'¢ 16T 6¢ | | 00C0C¥L 00'FLLLTT 00°08%€9 00°681CS 00°681¢S 00°681¢S 6C
610 24} LL0 €C0 ¥T0 ¥T0 8¢ | | 00F7CS9PT 00°0948¢C1 00°€98€8 00729971 00%CS9¥1 00%2S9¥1 14
LE0 €0 LTl 0r'o0 070 Y0 42 || 0072971 00°0LLEVL 00729971 0029971 00725971 00729971 4Z
erat) ST0 Cras 880 8¢0 26T 92 | | 00F7S0CTE 0005869 00°TTSLE 00°5608C 00°€9548 00756¥€ 9C
600 80°0 €0 80°0 80°0 600 G2 | | 0072900¢€ 00°0€4ET 00°€¥8LL 00°€€99C 00€€99¢C 00€€99¢C 14
6% €O'1T vLTL £€9°CE 16'9¢ 6805 ¥ || 00°€SPES 00729087 00C5T99 00°2€L9S 00°6€16S 0099499 i
<60 69°0 L1T A\ aL0 040 €C || 00°CS166 00'TZL66 009€€66 00'9¢€66 009€€66 009€€66 0
050 se0 €T 6€0 8¢0 9¢0 CC || 00°C6996 00'2€696 009€€66 00°9¢€66 009€€66 009€€66 [44
170 90 090 810 810 L0 1T || 00°€L9LE 00'9262S 0092119 00°05€6S 00°05€6S 00°05€6S 1T
610 910 a8'0 810 8T'0 L10 02 | | 00890%¢ 0092625 00°0€€TE 00°04£2SS 00°0£TSsS 00°0£TSS 0C
000 000 000 100 100 100 6L || 00FE- 00°¥¢- 00%¢- 00°0%- 00°0%- 00°0%- 6L
LL 6L €l <S6'8 S6'1L 89'1L 1T€eT 8T || 00°0S¥ 00°0S¥ 00°9%¥% 00 1% 00" 2% 00°2¥¥ 8T
66'T aLT 00°¢ <ro €ro ¥10 411100C 00°CS6- 00T 00T 00T 00T L1
S6F (744 L1'8 vI'o yr'o yr'o 91 || 000 00°6TLE- 000 000 000 000 9L
€10 ¥1°0 61°0 600 400 €C0 QL | | 00°FE6ETL 00'668€81Y | 00'FE6ETL 09°90¥¢S8 006681749 00F€6€TL [}
VAR 4 oLt crot 18°0 18°0 €80 ¥1 || 002506~ 00°04€02- 000 000 000 000 VL
8C¢ LUL LV'8 140 940 140 €T || 000 0084061~ 000 000 000 000 €l
86'F L971 CI0ST | 10'S8 1998 18°¢8 CL || T0°6S020S9C | 10°9TE6LSTT | - 10°8¥£L0€€C 10°87220€€T | 10°8%£L0€ET L
0r'6C 84°6¢€ 8679 STL 9’1l LTT TT || I¥'9L9967 TL'P81STE 00°0005¢S 00°0005¢CS 00°0005CS 00°0005CS 1T
88°€L cT9el €0°0ST | 8€'SE 65°GE YLvE 0L || 25'02LsC 65'91C1C - L6'8TTST L6'81TS1 L6'81TS1 0L
900 900 110 100 100 10°0 6 || 007669~ 007669~ 007669~ 000 000 000 6
84T ST'TT 10°CC <ee0 L19 L9Y 8 || 000€99 007659 00°Z1%9 004899 00°04£%9 00'TS%9 8
o 801 C0'1e <90 690 €0l £ || 00°5¥89 006779 008804 0079969 009969 002804 L
ST0 €40 9T S0 S0 L1°0 9 || 00°F70¥ 009207 00"980% 00°220% 00°220% 00 %807 9
<o [p 8¢0C | L¥0 o L0°0 G || 00°64TF 00°CH0¥ 00°64T¥ 00'902¥ 0090T¥ 00€9Ty S
<00 70°0 600 <00 ¥0°0 700 ¥ || 1€6¥8ST8ST | €CTISFEEIT | $S €00T6LST | F£°8807S89C 68°'1CL6186C | S €00T6LST 4
200 0°0 900 200 10°0 200 € || TH'TEBLIBYY | €TTISTEEIT | €I FETLO6999T | F1°160888E8 P1'160888¢€8 | #1°160888¢8 €
<LST ey 80°0ST | €S¥CL et 88°CCl ¢ || 10°8CT 10°46 - 10901 10901 10901 @
€€°0 201 hardl} 780 80 00 11162209209, 12°€L6919, € LSTERSL 00°CT6E£8S, 00°TT6€8S, 00°TT6£8S, 1
Suraiq |3uralq di1 dd Sulaiq |Sunaig di1 dd1

NS NA _ [dNA [3a1323[qQ | prepuess | Xq1dD || PPOW || NS NA dANA 2A13(qQ | prepuels | Xd1dD || BPow

SOWIT} SUTUUN

sanfea aAdIqO

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 151

From Tables 3 and 5, we can see that all methods except VNP are able to solve
all 83 instances. VNP does not manage to solve just one test instance. Therefore,
the comparison of performances of CPLEX MIP solver, standard FP, objective
FP, VN diving and SN diving has been done regarding all 83 instances, while
the performances of VNP has been evaluated relatively to the performances of
the previous five methods regarding 82 instances solved by VNP. It appears that
VN diving clearly outperforms all other methods regarding the solution quality.
Indeed, it manages to solve all 83 instances from the benchmark and has the
smallest average gap (6620.55%) from the LP relaxation objective. In addition,
VN diving provides the best objective values among all 6 methods in 44 out of 83
instances That is much more than number of times that VNP (32 times), CPLEX
MIP solver(18 times), objective FP(17 times) or standard FP(17 time) succeeds to
reach best objective value. The second best among methods able to solve all 83
instances is SN diving with an average gap from the LP relaxation of 17890.24%. It
is followed by objective FP (49649.94%), standard FP (49666.96 %) and CPLEX MIP
solver (49665.28 %). On the other hand, regarding 82 instances solved by VNP,
VNP has much smaller average gap from LP relaxation objective (4683.57%) in
comparison with SN diving (16086.52%), CPLEX MIP solver(48002.46%), objective
FP (48003.82 %)and standard FP (48029.48 %). However with respect to the
average gap from LP relaxation objective, VNP is the second best method. Its
average gap is slightly greater than the average gap of VN diving whose gap is
4542.36%.

From Tables 4 and 5, we can observe that the shortest average computational
time of 3.85s is reported by standard FP, whereas objective FP and CPLEX MIP
solver are only slightly slower with the average computational time of 4.29s and
4.05s, respectively. They are followed by VN diving, whose average computa-
tional time is 5.09s, whereas SN diving and VNP are the slowest, with 6.63s and
7.14s average computational time, respectively. Note, that in computation of av-
erage computational time of VNP, we include the time of its failed run. Also,
note that on one instance (i.e., ds), we allowed to SNdiving more than 100s of
computational time and counted that run as successful. However, if we consider
the average computational time of all six methods over all instances solved suc-
cessfully by each of them (82 instances solved by VNP), the ranking of methods is
almost unchanged besides that VNP is now faster than SN diving. Regarding the
number of wins, the objective FP, the standard FP, and the CPLEX MIP manage
to obtain a solution in the shortest time most often, in 50, 48 and 42 cases, respec-
tively. The SN diving and VN diving follow, obtaining a solution in the shortest
time in 19, and 8 cases, respectively. The VNP has the worst performance in this
respect, since it finds a solution before other methods in just two cases.

The objective function values and the corresponding execution time for the
second benchmark of 34 general MIP instances [3] are presented in Table 6. Sum-
marised results for this benchmark are presented in Table 7. For each method, a

152 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

CPLEX | Standard FP | Objective FP | VNP | VN Diving | SN Diving

Solution quality
Instances solved || 34 34 34 31 34 34
Avg. ga{s from LP relaxation obj. w.r.t all instances(%) | | 403.44 | 454.18 407.46 - 383.28 381.08
Avg. gap from LP relaxation obj. w.r.t instances solved by VNP(%) || 437.31 |492.95 441.72 431.42 | 413.00 406.69
Number of wins | [5 3 4 9 17 7
Computational time
9.98 2.92

2.29
7

6.47
1

Average w.r.t instances solved bg VNP(sec) | | 2.72

Average w.r.t all instances(sec) [[9.58 9.25 9.02 19.14
Number of wins | | 5

1.99
10

4.62 2.09
9 14

Table 7: Summarised results for general MIP instances.

percentage gap for a particular instance was computed according to the formula

f—=fir
| ool

where f is the objective function value for the observed instance obtained by that
method, and f;p is the objective function value of the LP relaxation of the observed
instance. Note that for this benchmark set, there is no exception to this rule since
there is no instance whose LP objectives is equal to 0.

From Tables 6 and 7, we can see that again only the VNP is not able to solve all
34 instances. Therefore, the comparison of performances of CPLEX without FP,
standard FD, objective FP, VN diving, and SN diving has been done in the same
way as for the previous benchmark set. From Tables 3 and 5, we conclude that
VN diving and SN diving have best performances regarding the solution quality.
The SN diving heuristic achieves the smallest average gap from the LP objective
(381.08%) and obtains the best objective among all 6 methods in 7 cases. The VN
diving has a slightly worse average gap of 383.28%, but obtains the best objective
among all methods in 17 cases. If we take into account the average computational
time of these two methods, we may conclude that SN diving is the best method
for the general MIP problem. The third best method appears to be the CPLEX
MIP solver without FP, with 403.44% average LP relaxation gap and 5 wins,
followed by objective FP with 407.46% average gap and 4 wins. The standard FP
heuristics have a significantly higher gap from the LP relaxation (454.18%) and
only 3 objective wins, indicating that FP is the worst choice quality-wise for the
general MIP benchmark. Moreover, the ranking of CPLEX without FP, standard
FP, objective FP, VN diving, and SN diving regarding solution quality on instances
solved by VNP is the same. However, on these instances, VNP manifests much
better behavior than CPLEX without FP, standard FP, objective FP regarding the
average gap from the LP value. Additionally, VNP has 9 objective wins, indicating
that VNP is the second best method, after VN diving, regarding the number of
wins.

From Tables 6 and 7, we can see that SN diving achieves the impressive average
execution time of 2.92s. The next method, according to the average execution time,
is the objective FP heuristic which is more than three times slower, with average
computational time of 9.02s. It is followed by standard FP with 9.25s average
time, the CPLEX MIP solver without FP with 9.58s average time, VN diving(
9.98s), and finally the VNP heuristic, which is the slowest method with 19.14s

x 100,

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 153

average computational time. Moreover, the ranking of methods remains the
same even in case that the average computational times are computed regarding
instances solved by VNP. Regarding number of wins, the SN diving manages to
obtain a solution in the shortest time in 14 cases. The objective FP, VN diving,
standard FP, and CPLEX MIP solver follow by obtaining a solution in the shortest
time in 10, 9, 7, 5 cases, respectively. The VNP has the worst performance, since
it manages to find a solution before other methods in just one case.

According to the experimental analysis above, our two proposed diving
heuristics generally provide solutions of a better quality than the CPLEX MIP
solver and the two FP heuristics, within a similar or shorter computational time.
Although the VNP heuristic proves to be highly competitive for the 0-1 MIP bench-
mark, it shows a rather poor performance for the general MIP benchmark. We may
therefore claim that, in overall, VN diving heuristic and SN diving outperform
all four state-of-the-art solvers which were used for comparison purposes regard-
ing solution quality. Additionally, we may claim that SN diving significantly
outperforms all tested methods regarding average computational time needed to
provide a feasible solution for the instances from General MIP benchmark.

4.1. Influence of the time limit on the performances of all six methods

In this section we check the imposed time limit influence on the number of
solved instances by each method. The results are given in Table 8 and Figure 5 for
0-1 MIP instances, and Table 6 and Figure 6 for General MIP benchmark instances.

Time limit || CPLEX | Standard FP | Objective FP | VNP | VN Diving | SN Diving

(s)

1 67 67 67 40 43 54

5 74 74 73 58 58 70
10 76 77 76 66 67 77
20 78 79 78 78 78 80
30 80 79 78 79 81 82
40 80 80 79 80 82 82
50 81 81 81 81 82 82
60 82 81 82 81 82 82
70 82 82 82 81 82 82
80 82 82 82 81 83 82
90 82 82 82 81 83 82
100 83 83 83 82 83 82

Table 8: Number of solved instances by 6 methods as a function of time limit - 0-1 MIP

It appears that CPLEX MIP solver, standard FP, and objective FP perform better
if the time limit is less than 10s. However, increasing the time limit, the number of
solved instances by the other methods grows dramatically. Consequently, when
the time limit is set to 20 seconds, SN diving becomes the method with the most
solved instances, keeping the first place until time limit is extended to 80 seconds,
when VN diving becomes the best method able to solve all instances.

154

10 20

30 40 50

60 70

a0

ECPLEX
P
HOFP
HVNP

B VNdiving

W SNdiving

100

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

Figure 5: Number of solved instances by 6 methods as a function of time limit - 0-1 MIP

Time limit | | CPLEX | Standard FP | Objective FP | VNP | VN Diving | SN Diving
(s)
1 24 23 24 12 17 23
5 29 28 29 22 22 30
10 29 29 29 25 23 31
20 30 30 30 27 31 33
30 30 30 30 29 31 34
40 31 32 32 30 32 34
50 31 32 32 30 33 34
60 32 32 32 31 33 34
70 32 32 32 31 33 34
80 32 32 32 31 33 34
90 33 33 33 31 33 34
100 33 33 33 31 33 34
110 33 33 33 31 33 34
120 33 33 33 31 33 34
130 34 34 34 31 33 34
140 34 34 34 31 34 34
150 34 34 34 31 34 34

Table 9: Number of solved instances by 6 methods as a function of time limit - General MIP

From Table 9 and Figure 6, we conclude that CPLEX MIP solver, standard FP,
objective FP, and SN diving are able to find a feasible solution within 1 second. The
CPLEX MIP solver and objective FP manage to solve 24 instances out of 34 within
1 second, while standard FP and SN diving succeed to get 23 out of 34 instances

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 155

35

30 7

25 7
W CPLEX

P
30 4 = OFP
HVNP
B VNdiving

15 A
M SNdiving

10 7

Figure 6: Number of solved instances by 6 methods as a function of time limit - General MIP

in less than 1 second. Furthermore, it appears that SN diving outperforms all
other methods if the time limits is greater than 1s. Moreover, SN diving solves
all instances when the time limit is adjusted to 30 seconds; that is the smallest
time limit that one method needs to solve all instances. Taking into account our
previous observations, one can conclude that SN diving is the best heuristic for
finding initial feasible solution for general MIP instances.

5. CONCLUSION

In this paper we propose two new heuristics for finding initial feasible solu-
tions of mixed integer programs (MIPs). The proposed heuristics, called variable
neighbourhood diving (VN diving) and single neighbourhood diving (SN diving), per-
form systematic hard variable fixing (i.e. diving) in order to generate smaller
subproblems whose feasible solution (if one exists) is also feasible for the orig-
inal problem. In VN diving, this fixing is performed according to the rules of
variable neighbourhood decomposition search (VNDS) [15]. This means that a
number of subproblems (neighbourhoods) generated in a VNDS manner are ex-
plored in each iteration. Also, pseudo-cuts are added during the search process
in order to prevent exploration of already visited search space areas. However,
a feasible solution is usually obtained in the first iteration. In SN diving, only
one neighbourhood is explored in each iteration. However, we introduce a new

156 Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

mechanism to avoid the already visited solutions. It consists of memorising a set
of constraints in a new MIP problem, which is then solved instead of the original
problem in order to obtain the new reference solution. Our experiments show that
this mechanism generally provides much better diversification than the addition
of pseudo-cuts alone. Moreover, we have proved that the SN diving algorithm
converges to a feasible solution, if one exists, or proves the infeasibility in a fi-
nite number of iterations. Both methods use the generic CPLEX MIP solver as a
black-box for tackling the subproblems generated during the search.

The proposed heuristics are tested on two established sets of benchmark in-
stances, proven to be difficult: the set first contains 83 0-1 MIP instances [8], and
the second contains 34 general MIP instances [3]. We compare our heuristics with
the IBM ILOG CPLEX 12.4 MIP solver, the two variants of the feasibility pump
(FP) heuristic (standard FP and objective FP), and the variable neighbourhood
pump (VNP) heuristic [13, 17, 18]. According to an extensive experimental anal-
ysis, both VN and SN diving clearly outperform the CPLEX MIP solver and the
two FP heuristics regarding the solution quality, within a similar or shorter com-
putational time. Additionally, on the instances from General MIP benchmark,
SN diving performs better than any other method tested in this paper, regarding
not only solution quality but also the time needed to find a feasible solution.
The results reported in this paper are also competitive with those obtained by
the recent variable neighbourhood pump heuristic and its extensions [13, 17, 18].
Besides improving the basic variable neighbourhood pump, our future work may
consist of designing a multi-objective VNS heuristic, which would tackle both
infeasibility and original objective quality during the search process.
Acknowledgement: The present research work has been supported by Interna-
tional Campus on Safety and Intermodality in Transportation, the Nord-Pas-de-
Calais Region, the European Community, the Regional Delegation for Research
and Technology, the French Ministry of Higher Education and Research, and the
French National Center for Scientific Research. The presented research has also
been supported by the project No. 174010 “Large scale optimization models and
methods with applications”, funded by the Serbian Ministry of Science. We also
thank to anonymous reviewers for their valuable comments and suggestions. All
contributions are gratefully acknowledged.

REFERENCES

[1] Achterberg, T., and Berthold, T., “Improving the feasibility pump”, Discrete Optimization, 4 (2007)
77-86.

[2] Balas,E., and Zemel, E., “An algorithm for large zero-one knapsack problems”, Operations Re-
search, (1980) 1130-1154.

[3] Bertacco, L., Fischetti, M., and Lodi, A., “A feasibility pump heuristic for general mixed-integer
problems”, Discrete Optimization, 4 (2007) 63-76.

[4] Berthold, T., “RENS - relaxation enforced neighborhood search”,Technical report, ZIB-07-28,
Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, 2008.

[5] Brucker, P, Burke, E., and Groenemeyer, S., “A mixed integer programming model for the cyclic
job-shop problem with transportation”, Discrete Applied Mathematics, 160 (13)(2012) 1924-1935.

[6] Collet, G., Andonov, R., Yanev, N., and Gibrat, J., “Local protein threading by Mixed Integer
Programming”, Discrete Applied Mathematics, 159 (16)(2011) 1707-1716.

(71
[8]

9]
(10]

(1]

[12]

(13]
[14]
[15]
[16]
(17]
(18]
[19]
[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

(28]

Lazi¢ et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 157

Danna, E., Rothberg, E., and Le Pape, C., “Exploring relaxation induced neighborhoods to
improve mip solutions”, Mathematical Programming, 102 (1)(2005) 71-90.

Fischetti, M., Glover, E, and Lodi, A., “The feasibility pump”, Mathematical Programming, 104
(2005) 91-104.

Fischetti, M., and Lodi, A., “Local branching”, Mathematical Programming, 98 (2)(2003) 23-47.
Fischetti, M., and Lodi, A., “Repairing mip infeasibility through local branching”, Computers &
OR, 35 (2008) 1436-1445.

Garey, M., and Johnson, D., Computers and Intractability: A Guide to the Theory of NP-completeness.
WH Freeman, San Francisco, 1979.

Ghosh, S., “DINS, a MIP improvement heuristic”, in: M. Fischetti and D.P.Williamson, (eds.),
Proceedings of the Integer Programming and Combinatorial Optimization, vol.4513 Lecture Notes in
Computer Science, Springer, 2007, 310-323.

Hanafi, S., Lazi¢, J. and Mladenovi¢, N., “Variable neighbourhood pump heuristic for 0-1 mixed
integer programming feasibility”, Electronic Notes in Discrete Mathematics, 36 (2010) 59-766.
Hansen, P., and Mladenovi¢, N., “Variable neighborhood search: Principles and applications”,
European Journal of Operational Research, 130 (3) (2001) 449-467.

Hansen, P.,, Mladenovi¢, N., and Perez-Britos, D., “Variable neighborhood decoposition search”,
Journal of Heuristics, 7 (4) (2001) 335-350.

Hansen, P., Mladenovi¢, N., and Urogevi¢, D., “Variable neighborhood search and local branch-
ing”, Computers & OR, 33 (10) (2006) 3034-3045.

Lazi¢, J., “New variants of variable neighbourhood search for mixed integer programming and clustering”,
PhD thesis, Brunel University, West London, UK, 2010.

Lazi¢, J., Hanafi, S. and Mladenovi¢, N., “Different variants of variable neighbourhood pump for
0-1 MIP feasibility”, 2010.(In preparation)

Lazi¢, J., Hanafi, S., Mladenovi¢, N., and Urosevi¢, D., “Variable neighbourhood decomposition
search for 0-1 mixed integer programs”, Computers & OR 37, (6) (2010) 1055-1067.
Mitrovi¢-Mini¢, S., and Punnen, A., “Very large-scale variable neighborhood search for the
generalized assignment problem”, Journal of Interdisciplinary Mathematics, 6 (4) (2009) 370-377.
Mitrovi¢-Mini¢, S., and Punnen, A., “Variable Intensity Local Searcah”, in: V., Maniezzo, T.,
Stiitzle, and S., VoS3, (eds.) Matheuristics: Hybridizing Metaheuristics and Mathematical Programming,
Springer, 2009, 245-252.

Mitrovi¢-Mini¢, S., and Punnen, A., “Very large-scale variable neighborhood search for the multi-
resource generalized assignment problem”, Discrete Optimization 6, (4) (2009) 370-377.

Pisinger, D., “ An expanding-core algorithm for the exact 0-1 knapsack problem”, European Journal
of Operational Research 87, (1) (1995) 175-187.

Puchinger, J., and Raidl, G.R., “Bringing order into the neighborhoods: Relaxation guided
variable neighborhood search”, Journal of Heuristics 14, (5) (2008) 457-472.

Puchinger, J., Raidl, G.R., and Pferschy, U., “The core concept for the multidimensional knapsack
problem”, Lecture Notes in Computer Science, 3906 (2006) 195-208.

Soyster, A.L., Lev, B, and Slivka, W., “Zero-one programming with many variables and few
constraints”, European Journal of Operational Research, 2,3 (1978) 195-201.

Wilbaut, C., Salhi, S., and Hanafi, S., “An iterative variable-based fixation heuristic for the 0-1
multidimensional knapsack problem”, European Journal of Operational Research, 199 (2) (2009)
339-348.

Wolsey, L., and Nemhauser, G., Integer and Combinatorial Optimization, 1999.

