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Abstract: In this paper, we propose two new diving heuristics for finding a
feasible solution for a mixed integer programming problem, called variable neigh-
bourhood (VN) diving and single neighbourhood (SN) diving, respectively. They
perform systematic hard variable fixing (i.e. diving) by exploiting the information
obtained from a series of LP relaxations in order to generate a sequence of sub-
problems. Pseudo cuts are added during the search process to avoid revisiting
the same search space areas. VN diving is based on the variable neighbourhood
decomposition search framework. Conversely, SN diving explores only a single
neighbourhood in each iteration: if a feasible solution is not found, then the next



reference solution is chosen using the feasibility pump principle and the search
history. Moreover, we prove that the two proposed algorithms converge in a finite
number of iterations (i.e. either return a feasible solution of the input problem, or
prove its infeasibility).We show that our proposed algorithms significantly out-
perform the CPLEX 12.4 MIP solver and the recent variants of feasibility pump
regarding the solution quality.
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1. INTRODUCTION

The mixed integer programming (MIP) problem can be formulated as follows:
(P) min{c’x | x € X}, €))

where

X={xeR"|Ax<b,x;j€ (0,1} forje B,x;je Z* for je G,l; <xj<ujfor je CUG}
(8, G, C respectively constitute the index sets for the binary (0-1), integer (non-
binary) and continuous variables) is the feasible set, c’x is the objective function,
and x € X are the feasible solutions. In the special case when G = 0, the resulting
MIP problem is called the 0-1 MIP problem (0-1 MIP). The LP-relaxation of prob-
lem P, denoted as LP(P), is obtained from the original formulation by relaxing the
integer requirements on x:

LP(P)  minf{c"x|x € X]}, 2)

where X = {x e R" | Ax < bli<xj<ujforje GUC,x;€[0,1] for j € B}.

Many real-world problems can be modelled as MIP problems [5, 6]. However,
a number of special cases of MIP problem are proven to be NP-hard [11] and
cannot be solved to optimality within acceptable time/space with existing exact
methods. This is why various heuristic methods have been designed in attempt to
find good near-optimal solutions of hard MIP problems. Most of them start from
a given feasible solution and try to improve it. Still, finding a feasible solution of
0-1 MIP is proven to be NP-complete [28] and for a number of instances finding
a feasible solution remains hard in practice. This calls for the development of
efficient constructive heuristics which can attain feasible solutions in short time.
Over the last decade, a number of heuristics that address the problem of MIP
feasibility have been proposed. The feasibility Pump (FP) heuristic was proposed
for the special case of pure 0-1 MIP problem in [8]. It generates a sequence of
linear programming problems, whose objective function represents the infeasi-
bility measure of the initial MIP problem. The solution of each subproblem is
used to define the objective function of the next subproblem, so that the infeasi-
bility measure is reduced in each iteration [8]. This approach was extended in
[3] for the case of general MIP problems. The FP heuristic is quite efficient in
terms of computational time, but usually provides poor-quality solutions. In [1],
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objective FP was proposed with the aim to improve the quality of the feasible
solutions obtained. However, the computational time was increased on average,
compared to the basic version of FP. Another approach, proposed in [10], applies
the Local Branching (LB) heuristic [9] to near-feasible solutions obtained from
FP in order to locate feasible solutions. LB is applied to a modified problem in
which the original objective function is replaced by an infeasibility measure tak-
ing into account a weighted combination of the degree of violation of the single
linear constraints. This heuristic provides feasible solutions very fast, but those
solutions are again usually of poor quality since the original objective function is
completely discarded.

The concept of variable fixing in order to find solutions to MIP problems was
conceived in the late 1970s and early 1980s, when the first methods of this type
were proposed [2, 26]. Subproblems are iteratively generated by fixing a certain
number of variables in the original problem according to the solution of the linear
programming relaxation of the original problem. This approach is also referred
to as a core approach, since the subproblems so obtained are sometimes called core
problems [2,25]. The terms hard variable fixing or diving, which are used throughout
this paper, are also present in the literature (see, for example, [7]). The critical
issue in this type of methods is the way in which the variables to be fixed are
chosen. Depending on the selection strategy and the way of manipulating the
obtained subproblems, different MIP solution methods are obtained. The basic
strategy was initially proposed in [2], for solving the multidimensional knapsack
problem. A number of its successful extensions were proposed over the years.
For example, a greedy strategy for determining the core is developed in [23],
whereas in [25] the core is defined according to a chosen efficiency function.
Another iterative scheme, again for the 0-1 multidimensional knapsack problem,
was developed in [27]. This scheme, which is based on a dynamic fixation of
the variables, uses the search history to build up feasible solutions and to select
variables for a permanent/temporary fixation. Variable neighbourhood search
was combined with a very large scale neighbourhood search approach to select
variables for fixing (binding sets) for the general assignment problem [20, 22]. This
approach was further extended for 0-1 mixed integer programming in general
[21].

With the expansion of general-purpose MIP solvers over the last decade, dif-
ferent hybridisations of MIP heuristics with commercial solvers are becoming
increasingly popular. A number of efficient heuristics that perform some kind
of variable fixing at each node of the Branch and Bound tree in the CPLEX MIP
solver have been developed. Relaxation induced neighbourhood search (RINS)
[7] fixes the values of the variables, which are the same in the current continuous
(i.e. LP) relaxation and in the incumbent integral solution. Besides considering
the values of variables in the current LP relaxation solution, Distance induced
neighbourhood search [12] performs a more sophisticated fixation taking into ac-
count the solution of the LP relaxation in the root of the Branch-and-Bound tree
and the counts of occurrences of different values. Relaxation enforced neighbour-
hood search [4] is an extension of RINS, which additionally performs a large-scale
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neighbourhood search over the set of general integer variables by an intelligent
rebounding according to the current LP relaxation solution. In [19], variable fix-
ation is performed in a variable neighbourhood decomposition search manner
[15].

In this paper we propose two new diving heuristics for MIP feasibility, which
exploit the information obtained from a series of LP relaxations. Since the vari-
ables to be fixed depend on the LP relaxation values, this approach may also be
called relaxation guided diving. Relaxation guided variable neighbourhood search
was proposed in [24], but for defining the order of neighbourhoods within VNS
(where neighbourhoods are defined by soft variable fixing) rather than selecting
the variables to be hard-fixed. The first heuristic, called variable neighbourhood
diving is based on the variable neighbourhood decomposition search principle
[15]. A similar approach was proposed in [19] for optimising 0-1 MIP problems
starting from a given initial MIP feasible solution. In this paper we propose a
modification of the algorithm from [19] for constructing feasible solutions of 0-1
MIP problems. We exploit the fact that the CPLEX MIP solver can be used not
only for finding near-optimal solutions but also as a black-box for finding a first
feasible solution for a given 0-1 MIP problem. We also extend this approach for
general MIP problems, so that fixation is performed on general integer variables
as well. The second heuristic, called single neighbourhood diving explores only a
single neighbourhood in each iteration. However, the size of the neighbourhood
is updated dynamically according to the solution status of the subproblem in
a previous iteration. The incumbent solution is updated in a feasibility pump
manner, whereas revisiting the same point in the search process is prohibited by
keeping the list of all visited reference solutions. This list is implemented as a
set of constraints in a new (dummy) MIP problem. We show that our proposed
algorithms significantly outperform the CPLEX 12.4 MIP solver and the recent
variants of the feasibility pump heuristic, both regarding the solution quality and
the computational time.

This paper is organised as follows. In Section 2, we present the necessary
notation and a brief overview of the existing approaches related to our work.
A detailed description of the two new diving heuristics for MIP feasibility is
provided in Section 3. In Section 4, we analyse the performance of the proposed
methods as compared to the commercial IBM ILOG CPLEX 12.4 MIP solver and
the basic and objective variant of the FP heuristic [1, 8]. At last, in Section 5, we
give some final remarks and conclusions.

2. PRELIMINARIES

2.1. Notation

Given an arbitrary integer solution x° of problem (1) and an arbitrary subset
J € BU G of integer variables, the problem reduced from the original problem P
and associated with x and | can be defined as:

P(°, ) min{c’x |x € X, Xj = x? forjeJ} 3)
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If C is a set of constraints, we will denote with (P | C) the problem obtained by
adding all constraints in C to the problem P.

Let x and y be two arbitrary integer solutions of the problem P. The distance
between x and y is then defined as

Ay =) kj-yj (4)

j€BUG

If ] € BUG, the partial distance between x and y, relative to |, is defined as
A x,y) =), jer | xj = yj | (obviously, A(BB U G, x,y) = A(x,y)). The linearisation
of the distance function A(x,y), as defined in (4), requires the introduction of
additional variables. More precisely, for any integer feasible vector y, function
A(x, y) can be linearised as follows [9]:

Ay = Y, -+ Y w-x)+ Y. d )

jEBUg:yl‘:Ij jeBUQ:y]:uj ng:lj<yi<Uj

where [; = 0 and u; = 1 for j € B and new variables d; = |x; — y;| need to satisfy
the following constraints :

dizxj—y;j andd; 2 y;—x; foralljelie G| <y <u}. (6)

In the special case of 0-1 MIP problems, the distance function between any
two binary vectors x and y can be expressed as:

ox,y) = Z xi(1-y) +yj(1-xj). (7)
j€eB

Furthermore, if x is a given binary vector, then formula (7) can be used to compute
the distance from x to any vector x € IR™:

6(r,®) = ) xi(1 - %)) + %1 - x)).

j€8B

As in the case of general MIP problems, the partial distance between x and X,
relative to | € B, is defined as 6(], x,X) = L xj(1 — X;j) + Xj(1 — x;). Note that the
distance function 6, as defined in (7), can also be used for general MIP problem:s,
by taking into account that 6(x, y) = A(8, x, y) for any two solution vectors x and
y of a general MIP problem (1).

The LP-relaxation of the modified problem, obtained from a MIP problem P,
as defined in (1), by replacing the original objective function ¢’ x with 6(%, x), for a
given integer vector % € {0,1)/8 x Z/9' x R, can be expressed as:

LP(%)  min{d(%, x) | x € X} (8)
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Similarly, the notation MIP(P,x) will be used to denote a modified problem, ob-
tained from P by replacing the original objective function with 6(x, x):

MIP(P,%)  min{5(% x) | x € X}. ©)

We will also define the rounding [x] of any vector x, as vector [x] = ([x];), with:

o x;+05], jeBUG

The neighbourhood structures {Ny | 1 < kyin < k < kyay < 18| + 1G]} can be
defined knowing the distance 6(x, y) between any two solutions x, vy € X. The set
of all solutions in the kth neighbourhood of x € X is defined as

Ni(x) = {y € X16(x,y) = k}. (11)

2.2. Related work

We here present a brief survey of the methods closely related to the research
reported in this paper. We provide short descriptions of the feasibility pump
heuristic [8, 1, 3] and variable neighbourhood decomposition search for 0-1 MIP
problems [19].

Feasibility Pump. Feasibility Pump (FP), introduced in [8], is a fast and sim-
ple heuristic for finding a feasible solution to 0-1 MIP. Starting from an optimal
solution of the LP-relaxation, the FP heuristic generates two sequences of solu-
tions X and X, which satisfy LP-feasibility and integrality feasibility, respectively.
The two sequences of solutions are obtained as follows: at each iteration, a new
binary solution % is obtained from the fractional x by simply rounding its integer-
constrained components to the nearest integer, i.e. ¥ = [x], while a new fractional
solution x is defined as an optimal solution of LP(P, ¥). To avoid cycling, some
random perturbations of the current solution ¥ are performed. In the original
implementation, the neighbourhood Ni(%), k € [T/2,3T/2] of the current solution
% is chosen at random (where T is an input parameter), and ¥ is replaced with
x" € Ni(X), such that 6(x",x) = maxyen, 6(y,%). The whole process is iterated
until a feasible solution is detected, or some of stopping criteria are fulfilled. The
stopping criteria usually contain a running time limit and/or the total number of
iterations. The pseudo-code of the basic FP is given in Figure 1.

The basic feasibility pump employs the distance function (7) which is defined
only on the set of binary variables. The general feasibility pump, proposed in
[3], employs the distance function (4) in which the general integer variables also
contribute to the distance. According to the computational results reported in [3,
8], the feasibility pump is usually quite effective with respect to the computational
time needed to provide the first feasible solution. However, the solution provided
is often of a poor-quality in terms of the objective value. The reason is that the
original objective function is completely discarded after solving the LP relaxation
of the original problem in order to construct the starting point for the search. In
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Procedure FP(P)
1  Setx = LPSolve(P); Set proceed = true;
2 while (proceed) do
3 if (x is integer) then return Xx;
4 Set ¥ = [x];
5 if (cycle detected) then
6 Selectk € {1,2,...,|8B| + |G|} at random,;
7 Select x* € Ni(%);
8 SetX¥ =x’;
9 endif
10 X = LPSolve(LP(P, X));
11 Update proceed;
12 endwhile

Figure 1: The basic feasibility pump.

an attempt to provide good-quality initial solutions, a modification of the basic
FP scheme, the so called objective feasibility pump was proposed in [1]. The idea of
objective FP is to include the original objective function as a part of the objective
function of the problem considered at a certain pumping cycle of FP. At each
pumping cycle, the actual objective function is computed as a linear combination
of the feasibility measure and the original objective function:

VIBUG|

An(x, %) = (1 — a)A(x, x) + T

c'x, a €[0,1], (12)
where || - || denotes the Euclidean norm. Results reported in [1] indicate that this
approach usually yields considerably higher-quality solutions than the basic FP.
However, it generally requires much longer computational time.

Variable Neighbourhood Pump (VNP). The feasibility pump approach from
[8] and variable neighbourhood branching (VNB) from [16] were successfully com-
bined to provide a method for finding good quality solutions within a relatively
short computational time (see [13, 17]).

The VNP heuristic starts from an optimal solution x of the LP-relaxation of the
initial 0-1 MIP problem. It first performs one iteration of the FP pumping cycle
to the rounded vector [x] in order to obtain a near-feasible vector ¥. A determin-
istic search procedure VNB(P, &, ki, Kstep, kinax) based on variable neighbourhood
branching [16], and adjusted for 0-1 MIP feasibility as in [13, 17], is then applied
to & in an attempt to locate a feasible solution of the original problem. Procedure
VNB applies variable neighbourhood descent [14] to an initial reference solution
%, starting from the minimum neighbourhood size k,;,, with the neighbourhood
increase step Kkstp, until the maximum neighbourhood size kjuq, is reached. The
variable neighbourhood pump algorithm is based on the observation that % is
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usually near-feasible, and it is very likely that feasible solution vectors can be
found in small neighbourhoods of . In addition, if VNB fails to detect a feasible
solution due to the time or neighbourhood size limitations, a pseudo-cut is added
to the current subproblem in order to change the linear relaxation solution, and the
process is iterated. If no feasible solution has been found, the algorithm reports
failure and returns the last integer (infeasible) solution. The VNP pseudo-code
for 0-1 MIP feasibility is given in Figure 2.

Procedure VNP(P)
Set proceed] = true;

2 while (proceedl) do

3 Set x = LPSolve(P); Set ¥ = [x]; Set proceed2 = true;
4 while (proceed2) do

5 if (x is integer) then return x;

6

7

8

9

[N

x = LPSolve(LP(P, %));
if (¥ # [x]) then ¥ = [x];
else Set proceed2 = false;
endif
10 endwhile
11 Kiin = L6(%, X)1; kinax = L(B| = kmin)/2]; kstep = (kmax = kmin)/5;

12 x" = VNB(P, &, kinin, kstepr Kinax);

13 if (x'=X) then //VNB failed to find the feasible solution.
14 P = (P|6(x,x) > kmin); Update proceedl;

15 else return x’;

16 endif

17  endwhile
18 Output message: “No feasible solution found.”; return %;

Figure 2: The variable neighbourhood pump heuristic pseudo-code.

Variable Neighbourhood Decomposition Search for 0-1 MIP problems. Variable
neighbourhood decomposition search (VNDS) is a two-level variable neighbour-
hood search (VNS) scheme for solving optimisation problems, based upon the
decomposition of the problem [15]. Recently, a new variant of VNDS for solving
0-1 MIP problems, called VNDS-MIP, was proposed in [19]. This method com-
bines a linear programming (LP) solver, a MIP solver, and variable neighbourhood
branching [16] in order to efficiently solve a given 0-1 MIP problem. At the begin-
ning of the algorithm, the LP-relaxation LP(P) of the original problem P is solved
in order to obtain an optimal solution X, and an initial integer feasible solution x is
generated. Then, the search for an improvement of the incumbent objective value
is performed solving a series of subproblems P(x, Jx), where subset J € BU G
corresponds to the indices of variables with k smallest [x; — x;l values, and x* is
the current incumbent solution. If the improvement occurs, VNB is performed
over the whole search space and the process is iterated. The pseudo-code of the
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VNDS-MIP method can be found in [19].
3. NEW DIVING HEURISTICS FOR MIP FEASIBILITY

The new diving heuristics presented in this section are based on the systematic
hard variable fixing (diving) process, according to the information obtained from
the linear relaxation solution of the problem. They rely on the observation that
a general-purpose MIP solver can be used not only for finding (near) optimal
solutions of a given input problem, but also for finding the initial feasible solution.
For the sake of simplicity, in Subsections 3.1 and 3.2 we will first present both
algorithms for the special case of 0-1 MIP problems. Then, in Subsection 3.3, we
explain how the presented algorithms can be adapted for solving general MIP
problems.

3.1. Variable neighbourhood diving

The variable neighbourhood (VN) diving algorithm begins by obtaining the
LP-relaxation solution x of the original problem P and generating an initial integer
(not necessarily feasible) solution ¥ = [x] by rounding the LP-solution x. If the
optimal solution X is integer feasible for P, we stop and return x. At each iteration
of the VN diving procedure, we compute the distances 6; =| X; — x; | from the
current integer solution values (¥;) s to the corresponding LP-relaxation solution
values (X;)jeg and index the variables %;, j € 8 so that 61 < 6, < ... < §g). Then,
we successively solve the subproblems P(, {1, ..., k}) obtained from the original
problem P, where the first k variables are fixed to their values in the current
incumbent solution %. If a feasible solution is found by solving P(%,{1,...,k}), it
is returned as a feasible solution of the original problem P. Otherwise, a pseudo-
cut 6({1,...,k}, % x) > 1 is added in order to avoid exploring the search space of
P(x,{1,...,k}) again, and the next subproblem is examined. If no feasible solution
is detected after solving all subproblems P(%, {1, ..., k}), kuin < k < kax, kiin = Kstep,
Kinax = |B| = kstep, the linear relaxation of the current problem P, which includes
all the pseudo-cuts added during the search process, is solved and the process
is iterated. If no feasible solution has been found due to the fulfilment of the
stopping criteria, the algorithm reports failure and returns the last (infeasible)
integer solution.

The pseudo-code of the proposed VN diving heuristic is given in Figure 3. The
input parameters for the VN diving algorithm are the input MIP problem P and the
parameter d, which controls the change of neighbourhood size during the search
process. In all pseudo-codes, a statement of the form y = FindFirstFeasible(P, t)
denotes a call to a generic MIP solver, an attempt to find a first feasible solution
of an input problem P within a given time limit ¢. If a feasible solution is found,
it is assigned to the variable y, otherwise y retains its previous value.

Since the VN diving procedure examines only a finite number of subproblem:s,
it is easy to prove the following proposition.
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VN-Diving(P,d)
1 Set proceedl = true, proceed2 = true; Set timeLimit for subproblems;
3 while (proceedl) do
4 x = LPSolve(P); ¥ = [x];
5 if (x = ¥) then return %;
6 0;j=|%j—Xxj|;index xjsothat6; < 6j41,j=1,...,|18| - 1;
7 Set ng =| {] €EB| 6]' #0} |, kstep = [nq/d], k =18 _kstep}
8 while (proceed2 and k > 0) do
9 Je={1,...,k}; ¥ = FindFirstFeasible(P(%, J), timeLimit);

10 if (P(%, Jx) is proven infeasible) then

11 P=(P|o(Jk % x)21);

12 if (X’ is feasible) then return x’;

13 if (k — kstep > |B| — n4) then ky,, = max{[k/2], 1};
14 Set k = k — kstep;

15 Update proceed2;

16 endwhile

17 Update proceed1;

18 endwhile
19  Output message: “No feasible solution found”; return %;

Figure 3: Variable neighbourhood diving for 0-1 MIP feasibility.

Proposition 1. Ifthe timeLimit parameter is set to infinity, the variable neighbourhood
diving algorithm finishes in a finite number of iterations and either returns a feasible
solution of the input problem, or proves the infeasibility of the input problem.

Note however that, in the worst case, the last subproblem examined by VN diving
is the original input problem. Therefore, the result of Proposition 1 does not have
any theoretical significance.

3.2. Single neighbourhood diving

In the case of variable neighbourhood diving, a set of subproblems P(%, Ji),
for different values of k, is examined in each iteration until a feasible solution
is found. In the single neighbourhood diving procedure, we only examine one
subproblem P(¥, J;) in each iteration (a single neighbourhood, see Figure 4). How-
ever, because only a single neighbourhood is examined, additional diversification
mechanisms are required. This diversification is provided through keeping the
list of constraints which ensures that the same reference integer solution x cannot
occur more than once (i.e. in more than one iteration) in the solution process. An
additional MIP problem Q is introduced to store these constraints. In the begin-
ning of the algorithm, Q is initialised as an empty problem (see line 4 in Figure 4).
Then, in each iteration, if the current reference solution x is not feasible (see line
8 in Figure 4), constraint 6(x, x) > [6(x, X)] is added to Q (line 9). This guarantees
that future reference solutions can not be the same as the current one, since the
next reference solution is obtained by solving the problem MIP(Q, [x]) (see line 17),
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which contains all constraints from Q, (see definition (9)). The variables to be fixed
in the current subproblem are chosen among those which have the same value as
in the linear relaxation solution of the modified problem LP(P, %), where x is the
current reference integer solution (see lines 7 and 10). The number of variables to
be fixed is controlled by the parameter « (line 10). After initialisation (line 5), the
value of a is updated in each iteration, depending on the solution status returned
from the MIP solver. If the current subproblem is proven infeasible, the value of
is increased in order to reduce the number of fixed variables in the next iteration
(see line 16), and thus provide better diversification. Otherwise, if the time limit
allowed for subproblem is exceeded without reaching a feasible solution or prov-
ing the subproblem infeasibility, the value of « is decreased. Decreasing the value
of a, increases the number of fixed variables in the next iteration (see line 17), and
thus reduces the size of the next subproblem. In the feasibility pump, the next
reference integer solution is obtained by simply rounding the linear relaxation
solution X of the modified problem LP(P,x). However, if [x] is equal to some of
the previous reference solutions, the solution process is caught in a cycle. In order
to avoid this type of cycling, we determine the next reference solution as the one
which is at the minimum distance from [x] (with respect to binary variables) and
satisfies all constraints from the current subproblem Q (see line 19). This way we
guarantee the convergence of the variable neighbourhood diving algorithm, as
stated in the following proposition.

Proposition 2. If the timeLimit parameter is set to infinity, the single neighbourhood
diving algorithm finishes in a finite number of iterations and either returns a feasible
solution of the input problem, or proves the infeasibility of the input problem.

Proof. Let X' be the reference solution at the beginning of the ith iteration, obtained
by solving the MIP problem MIP(Q;, [x]) and let j > i+ 1. The problem Q; contains
all constraints from Q;.1. If the algorithm has reached the jth iteration, it means
that in the ith iteration feasible solution was not found and cut 6(x', x) > [6(x, )]
(line 9 in Figure 4) was added to Q;;1. Hence, the problem MIP(Q)j, [x]) contains
6(x',x) > [6(x',X)]. Furthermore, because [6(x',X)] > 0 (otherwise, ¥ would
be feasible and the algorithm would stop in the ith iteration), this implies that
X(B) # ¥/(B). Since this reasoning holds for any two iterations j > i > 0, the total
number of iterations of the single neighbourhood diving algorithm is limited by
the number of possible sub vectors x'(8), which is 2. Therefore, the single
neighbourhood diving algorithm finishes in a finite number of iterations.

The single neighbourhood diving algorithm can only return a solution vector
as a result if either [5(x,X)] = 0, therefore X' being feasible for P, or if a feasible
solution of the reduced problem P(, J;) is found. Since a feasible solution of
P(x', J;) is also feasible for P, this means that any solution vector returned by
single neighbourhood diving algorithm must be feasible for P.

Finally, we will prove that any feasible solution of P has to be feasible for
Q;, for any iteration i > 0. Moreover, we will prove that any feasible solution
of P has to satisfy all constraints in Q;, for any iteration i > 0. Since Qg does
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Procedure SN-Diving(P)
1 Setx =LPSolve(P);
2 Seti=0;Setx?=[x];
3 if (x = x¥) then return x°;
4 SetQy=0;
5 Set proceed = true; Set timeLimit for subproblems; Set value of a;
6 while (proceed) do
7 X = LPSolve(LP(P,x)));
8 if ([86(x',X)] = 0) then return x';

9 Qir1 = (Qi | 6(, x) > [6(x, X)1);
10 k=|{jeB:x;=§j}I/a;]k:{l,...,k};

11 x’ = FindFirstFeasible(P(X!, J), timeLimit);

12 if (feasible solution found) then

13 return x’;

14 if (P(x', J;) is proven infeasible) then

15 Qi1 = Qi 181, T,%) = 1); P = (P | 8(Ji, T, %) > 1);
16 a=3a/2;

17 else if (time limit for subproblem exceeded)

18 a = max(1,a/2);

19 X'*! = FindFirstFeasible(MIP(Q;,1, [X]), timeLimit);
20 if (MIP(Qi41, [X]) is proven infeasible) then

21 Output message: “Problem P is proven infeasible”; return;
22 i=i+1;

23 endwhile

Figure 4: Single neighbourhood diving for 0-1 MIP feasibility.

not contain any constraints, this statement is obviously true for i = 0. Let us
assume that the statement is true for some i > 0, i.e. that for some i > 0 every
feasible solution of P satisfies all constraints in Q;. The problem Qj,; is obtained
from Q; by adding constraints 6(x, x) > [6(x,X)] and 6(Js, ¥, x) > 1. According to
the definition of [6(x',X)], there cannot be any feasible solution of P satisfying
the constraint 5(x',x) < [6(x),X)]. In other words, all feasible solutions of P
must satisfy the constraint 6(x',x) > [6(x',X)]. Furthermore, if the constraint
5(Jx,x',x) > 1) is added to Qjs1, this means that the problem P(¥',J;) = (P |
5(Jx,x',x) = 0) is proven infeasible, and therefore no feasible solution of P can
satisfy the constraint 5(Jk, ¥, x) = 0. Therefore, any feasible solution of P satisfies
the constraints added to Q; in order to obtain Q;;; and hence any feasible solution
of P satisfies all constraints in Q;,;. This proves that any feasible solution of P
satisfies all constraints in Q;, for any i > 0. In other words, any feasible solution of
Pis feasible for Q;, for any i > 0. Since MIP(Q;.1, [x]) has the same set of constraints
as Q;, this means that any feasible solution of P is feasible for MIP(Q;, [x]). As a
consequence, if MIP(Q;, [x]) is proven infeasible for some i > 0, this implies that
the original problem P is infeasible. m
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3.3. Extension to a general MIP case

Obviously, fixing a certain number of variables can be performed for general
MIP problems, as well as for 0-1 MIP problems. We here explain how the previ-
ously presented algorithms can be adapted and employed for solving the general
MIP problems. In the case of VN diving, we compute the distances A; =| X; — X; |,
j € BUG, for all integer variables (not just the binaries). Then, we successively
solve subproblems P(%, Jx), Jx = {1,...,k}, k =| {j e BUG : X; = Xj} |, where X is
the current reference integer solution and x is the solution of the LP relaxation of
the original problem LP(P). If a feasible solution is found by solving P(¥, Ji), for
somek, 0 < k < |BU G|, itis returned as a feasible solution of the original problem
P. In the VN diving variant for 0-1 MIP problems, a pseudo-cut is added to P if
a subproblem P(%, Ji) is proven infeasible. In the case of general MIP problems
however, generating an appropriate pseudo-cut would require operating with
extended problems, which contain significantly more variables and constraints
than the original problem P. More precisely, the input problem would have to
contain additional variables d;, j € G, and additional constraints (see definition
©G):

uj—d;<xj<d;+1; foralljelie G| <y <uy.

Consequently, all subproblems derived from the so extended input problem
would have to contain these additional variables and constraints. In order to
save the memory consumption and computational time for solving subproblem:s,
we therefore decide not to add any pseudo-cuts in the VN diving variant for gen-
eral MIP problems, although that implies possible repetitions in the search space
exploration. This means that we only perform decomposition with respect to the
LP relaxation solution of the initial problem. In this aspect, VN diving for general
MIP problems is similar to the VNDS algorithm for 0-1 MIP problems from [19].

In order to avoid memory and time consumption when dealing with large
problems, the implementation of the SN diving algorithm for general MIP prob-
lems is the same as for 0-1 MIP problems. In other words, all distance values are
computed with respect to the distance function 6 (which takes into account only
binary variables), and general integer variables are handled by the generic MIP
solver itself.

4. COMPUTATIONAL RESULTS

In this section we present the computational results for single and variable
neighbourhood diving algorithms. We compare our proposed methods with the
following existing methods CPLEX MIP solver without feasibility pump (CPLEX
for short), the standard feasibility pump heuristic (standard FP), the objective
feasibility pump (Objective FP) and the variable neighbourhood pump (VNP).
Since the feasibility pump is already included as a primal heuristic in the employed
version of the CPLEX MIP solver, we use the appropriate parameter settings to
control the use of FP and to chose the version of FP. All results reported are
obtained on a computer with a 4.5GHz Intel Core i7-2700K Quad-Core processor
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and 32GB RAM, using the general purpose MIP solver IBM ILOG CPLEX 12.4.
Both algorithms were implemented in C++ and compiled within Microsoft Visual
Studio 2010. For comparison purposes, we consider 83 0-1 MIP instances [8])
previously used for testing the performance of the basic FP (see Table 1 and
34 general MIP instances previously used in [3] (see Table 2). In Tables land2,
columns denoted by # represent the total number of variables, whereas columns
denoted by |B| and m show the number of binary variables and the number
of constraints, respectively. Additionally, the column denoted by |G| in Table 2
provides the number of general integer variables for a given instance.

In both proposed diving heuristics, the CPLEX MIP solver is used as a black-
box for solving subproblems to feasibility. For this special purpose, the parameter
CPX_PARAM_MIP_EMPHASISis setto FEASIBILITY, the parameter CPX_PARAM_INTSOLLIM
is set to 1 and the parameter CPX_PARAM_FPHEUR was set to -1. All other pa-
rameters are set to their default values, unless otherwise specified. Results
for the CPLEX MIP solver without FP were obtained by setting the parameter
CPX_PARAM_FPHEUR to -1. The feasibility pump heuristics are tested through the
calls to the CPLEX MIP solver with the settings CPX_PARAM_FPHEUR=1 for stan-
dard FP and CPX_PARAM_FPHEUR=2 for objective FP. All tested methods (CPLEX
MIP without FP, standard FP, objective FP and both proposed diving heuristics)
were allowed 100 seconds of total running time on 0-1 MIP test instances, while
on General MIP instances maximum running time, for all methods, was set to
150 seconds. In addition, the time limit for solving subproblems within variable
neighbourhood diving and single neighbourhood diving was set to 10 seconds
for all instances.

The value of the neighbourhood change control parameter d in the VN diving
algorithm (see Figure 3) is set to 10, meaning that, in each iteration of VN diving,
10 + [1 +log, [x; €{0,1}: j € BIJ subproblems (i.e. neighbourhoods) are explored,
where ¥ is the LP relaxation solution of the current problem. The neighbourhood
size control parameter « in the SN diving algorithm (see Figure 4) is set to 2.5,
meaning that 5= X 100 = 40 percent of the variables with integer values in X are
initially fixed to those values to obtain the first subproblem. Those values of d
and a are based on brief experimental analysis.
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No Instance n 18| m No. Instance n |B| m
name name
1 | 10teams 2025 1800 230 43 | bg512142 792 240 1307
2 | aflow30a 842 421 479 44 | dg012142 2080 640 6310
3 | aflow40b 2728 1364 1442 45 | blp-ar98 16021 | 15806 1128
4 | air04 8904 8904 823 46 | blp-ic97 9845 9753 923
5 | air05 7195 7195 426 47 | blp-ic98 13640 | 13550 717
6 | cap6000 6000 6000 2176 48 | blp-ir98 6097 6031 486
7 | dano3mip 13873 552 3202 49 | CMS750-4 11697 7196 | 16381
8 | danoint 521 56 664 50 | berlin5.8.0 1083 794 1532
9 | ds 67732 | 67732 656 51 | railway.8.1.0 1796 1177 2527
10 | fast0507 63009 | 63009 507 52 | glass4 322 302 396
11 | fiber 1298 1254 363 53 | netl2 14115 1603 | 14021
12 | fixnet6 878 378 478 54 | nsrand.ipx 6621 6620 735
13 | harp2 2993 2993 112 55 | tr12-30 1080 360 750
14 | liu 1156 1089 2178 56 | van 12481 192 | 27331
15 | marksharel 62 50 6 57 | biellal 7328 6110 1203
16 | markshare2 74 60 7 58 | NSR8K 38356 | 32040 6284
17 | mas74 151 150 13 59 | rail507 63019 | 63009 509
18 | mas76 151 150 12 60 | rail2536¢ 15293 | 15284 2539
19 | misc07 260 259 212 61 | rail2586¢ 13226 | 13215 2589
20 | mkc 5325 5323 3411 62 | rail4284c 21714 | 21705 4284
21 | mod011 10958 96 4480 63 | rail4872c 24656 | 24645 4875
22 | modglob 422 98 291 64 | Al1CI1S1 3648 192 3312
23 | momentuml 5174 2349 42680 65 | A2Ci1S1 3648 192 3312
24 | nw04 87482 | 87482 36 66 | B1C1S1 3872 288 3904
25 | optl2l7 769 768 64 67 | B2C1S1 3872 288 3904
26 | p2756 2756 2756 755 68 | sp97ar 14101 | 14101 1761
27 | pkl 86 55 45 69 | sp97ic 12497 | 12497 1033
28 | ppO8a 240 64 136 70 | sp98ar 15085 | 15085 1435
29 | pp08aCUTS 240 64 246 71 | sp98ic 10894 | 10894 825
30 | protfold 1835 1835 2112 72 | usAbbrv.8.25.70 2312 1681 3291
31 | qiu 840 48 1192 73 | manpowerl 10565 | 10564 | 25199
32 | rd-rplusc-21 622 457 | 125899 74 | manpower2 10009 | 10008 | 23881
33 | setlch 712 240 492 75 | manpower3 10009 | 10008 | 23915
34 | seymour 1372 1372 4944 76 | manpower3a 10009 | 10008 | 23865
35 | swath 6805 6724 884 77 | manpower4 10009 | 10008 | 23914
36 | t1717 73885 | 73885 551 78 | manpowerda 10009 | 10008 | 23866
37 | vpm2 378 168 234 79 | ljb2 771 681 1482
38 | dclc 10039 8380 1649 80 | Ijb7 4163 3920 8133
39 | dcll 37297 | 35638 1653 81 | 1jb9 4721 4460 9231
40 | doloml 11612 9720 1803 82 | Ijbl0 5496 5196 | 10742
41 | sienal 13741 | 11775 2220 83 | ljbl2 4913 4633 9596
42 | trentol 7687 6415 1265

Table 1: Benchmark instances for 0-1 MIP.
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No Instance n 2] Gl m
name
1 arki001 1388 415 123 | 1048
2 atlanta-ip 48738 | 46667 106 | 21732
3 gesa2 1224 240 168 | 1392
4 gesa2-o 1224 384 336 | 1248
5 ic97_potential 728 450 73 | 1046
6 ic97_tension 703 176 4 319
7 icir97 potential 2112 1235 422 | 3314
8 icir97 tension 2494 262 573 | 1203
9 manna8l 3321 18 | 3303 | 6480
10 momentum?2 3732 1808 1 24237
11 momentum3 13532 6598 1 56822
12 msc98-ip 21143 | 20237 53 | 15850
13 mzzvll 10240 9989 251 | 9499
14 mzzv42z 11717 | 11482 235 | 10460
15 neos?7 1556 434 20 | 1994
16 neos8 23228 | 23224 4 | 46324
17 neos10 23489 | 23484 5 | 46793
18 neosl6 377 336 41 1018
19 noswot 128 75 25 182

20 rococoB10-011000 4456 4320 136 | 1667
21 rococoB10-011001 4456 4320 136 1677
22 rococoB11-010000 12376 | 12210 166 | 3792
23 rococoB11-110001 12431 12265 166 | 8148
24 rococoB12-111111 9109 8910 199 8978
25 rococoC10-001000 3117 2993 124 | 1293
26 rococoC10-100001 5864 5740 124 | 7596
27 rococoC11-010100 12321 | 12155 166 | 4010
28 rococoC11-011100 6491 6325 166 | 2367
29 rococoC12-100000 17299 | 17112 187 | 21550
30 rococoC12-111100 8619 8432 187 | 10842

31 rout 556 300 15 | 291
32 timtab1 397 64 107 | 171
33 timtab2 675 113 181 294
34 rol13000 1166 246 492 | 2295

Table 2: Benchmark instances for general MIP.
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CPLEX |Standard FP|Objective FPJVNP _ |VN Diving|SN Diving

Solution quality
Instances solved 82 83
Avg. gap from LP relaxation obj. w.r.t. all instances (%) |49665.28|49666.96 49649.94 - 6620.55 17890.24
Avg. gap from LP relaxation obj. w.r.t. 82 instances solved by VNP (%)||48002.46|48029.48 48003.82 4683.57|4542.36 16086.52
Number of wins||18 32 44
Computational time
Average w.r.t. all instances(sec)||4.05
Average w.r.t. 82 instances solved by VNP|3.74
Number of wins||42

=3
e8]

3.85
3.45
50

429
3.79
48

14
6.01
2

5.09
4.83
8

6.63
6.65
19

Table 5: Summarised results for 0-1 MIP instances.

The results obtained by all 6 solvers, for the first 83 benchmark 0-1 MIP in-
stances, which was first used in [8], are presented in Tables 3 and 4. Table 3
provides the objective values obtained by all 6 methods and Table 4 provides
the corresponding execution time. The summarized results for this benchmark,
including the variable neighbourhood pump heuristic [13, 17], are presented in
Table 5. In the solution quality block of Table 5, we provide the number of in-
stances solved by each of the 6 methods, the average percentage gap from the LP
relaxation objective value regarding all 83 instances, the average percentage gap
from the LP relaxation objective value regarding the instances solved by VNP,
and the number of times that each of the methods managed to obtain the best
objective value among the others (including ties). For each method, a percentage

gap for a particular instance was computed according to the formula ﬂ;{;f % 100,

where f is the objective function value for the observed instance obtained by that
method, and f;p is the objective function value of the LP relaxation of the observed
instance. The exceptions are instances marksharel, markshare2 and mod011, for
which the gap value was computed as (f — frp) X 100, since the LP relaxation
objective value is equal to O for all three instances. In the computational time
block of the Table 5, we provide the average computational time over all instances
in the benchmark for each of the 6 methods compared, the average computational
time over all instances solved by VND, as well as the number of times that each of
the methods managed to obtain a solution in shortest time.
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From Tables 3 and 5, we can see that all methods except VNP are able to solve
all 83 instances. VNP does not manage to solve just one test instance. Therefore,
the comparison of performances of CPLEX MIP solver, standard FP, objective
FP, VN diving and SN diving has been done regarding all 83 instances, while
the performances of VNP has been evaluated relatively to the performances of
the previous five methods regarding 82 instances solved by VNP. It appears that
VN diving clearly outperforms all other methods regarding the solution quality.
Indeed, it manages to solve all 83 instances from the benchmark and has the
smallest average gap (6620.55%) from the LP relaxation objective. In addition,
VN diving provides the best objective values among all 6 methods in 44 out of 83
instances That is much more than number of times that VNP (32 times), CPLEX
MIP solver(18 times), objective FP(17 times) or standard FP(17 time) succeeds to
reach best objective value. The second best among methods able to solve all 83
instances is SN diving with an average gap from the LP relaxation of 17890.24%. It
is followed by objective FP (49649.94%), standard FP (49666.96 %) and CPLEX MIP
solver (49665.28 %). On the other hand, regarding 82 instances solved by VNP,
VNP has much smaller average gap from LP relaxation objective (4683.57%) in
comparison with SN diving (16086.52%), CPLEX MIP solver(48002.46%), objective
FP (48003.82 %)and standard FP (48029.48 %). However with respect to the
average gap from LP relaxation objective, VNP is the second best method. Its
average gap is slightly greater than the average gap of VN diving whose gap is
4542.36%.

From Tables 4 and 5, we can observe that the shortest average computational
time of 3.85s is reported by standard FP, whereas objective FP and CPLEX MIP
solver are only slightly slower with the average computational time of 4.29s and
4.05s, respectively. They are followed by VN diving, whose average computa-
tional time is 5.09s, whereas SN diving and VNP are the slowest, with 6.63s and
7.14s average computational time, respectively. Note, that in computation of av-
erage computational time of VNP, we include the time of its failed run. Also,
note that on one instance (i.e., ds), we allowed to SNdiving more than 100s of
computational time and counted that run as successful. However, if we consider
the average computational time of all six methods over all instances solved suc-
cessfully by each of them (82 instances solved by VNP), the ranking of methods is
almost unchanged besides that VNP is now faster than SN diving. Regarding the
number of wins, the objective FP, the standard FP, and the CPLEX MIP manage
to obtain a solution in the shortest time most often, in 50, 48 and 42 cases, respec-
tively. The SN diving and VN diving follow, obtaining a solution in the shortest
time in 19, and 8 cases, respectively. The VNP has the worst performance in this
respect, since it finds a solution before other methods in just two cases.

The objective function values and the corresponding execution time for the
second benchmark of 34 general MIP instances [3] are presented in Table 6. Sum-
marised results for this benchmark are presented in Table 7. For each method, a
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CPLEX | Standard FP | Objective FP | VNP | VN Diving | SN Diving

Solution quality
Instances solved || 34 34 34 31 34 34
Avg. ga{s from LP relaxation obj. w.r.t all instances(%) | | 403.44 | 454.18 407.46 - 383.28 381.08
Avg. gap from LP relaxation obj. w.r.t instances solved by VNP(%) || 437.31 |492.95 441.72 431.42 | 413.00 406.69
Number of wins | [ 5 3 4 9 17 7
Computational time
9.98 2.92

2.29
7

6.47
1

Average w.r.t instances solved bg VNP(sec) | | 2.72

Average w.r.t all instances(sec) [ [ 9.58 9.25 9.02 19.14
Number of wins | | 5

1.99
10

4.62 2.09
9 14

Table 7: Summarised results for general MIP instances.

percentage gap for a particular instance was computed according to the formula

f—=fir
| ool

where f is the objective function value for the observed instance obtained by that
method, and f;p is the objective function value of the LP relaxation of the observed
instance. Note that for this benchmark set, there is no exception to this rule since
there is no instance whose LP objectives is equal to 0.

From Tables 6 and 7, we can see that again only the VNP is not able to solve all
34 instances. Therefore, the comparison of performances of CPLEX without FP,
standard FD, objective FP, VN diving, and SN diving has been done in the same
way as for the previous benchmark set. From Tables 3 and 5, we conclude that
VN diving and SN diving have best performances regarding the solution quality.
The SN diving heuristic achieves the smallest average gap from the LP objective
(381.08%) and obtains the best objective among all 6 methods in 7 cases. The VN
diving has a slightly worse average gap of 383.28%, but obtains the best objective
among all methods in 17 cases. If we take into account the average computational
time of these two methods, we may conclude that SN diving is the best method
for the general MIP problem. The third best method appears to be the CPLEX
MIP solver without FP, with 403.44% average LP relaxation gap and 5 wins,
followed by objective FP with 407.46% average gap and 4 wins. The standard FP
heuristics have a significantly higher gap from the LP relaxation (454.18% ) and
only 3 objective wins, indicating that FP is the worst choice quality-wise for the
general MIP benchmark. Moreover, the ranking of CPLEX without FP, standard
FP, objective FP, VN diving, and SN diving regarding solution quality on instances
solved by VNP is the same. However, on these instances, VNP manifests much
better behavior than CPLEX without FP, standard FP, objective FP regarding the
average gap from the LP value. Additionally, VNP has 9 objective wins, indicating
that VNP is the second best method, after VN diving, regarding the number of
wins.

From Tables 6 and 7, we can see that SN diving achieves the impressive average
execution time of 2.92s. The next method, according to the average execution time,
is the objective FP heuristic which is more than three times slower, with average
computational time of 9.02s. It is followed by standard FP with 9.25s average
time, the CPLEX MIP solver without FP with 9.58s average time, VN diving(
9.98s), and finally the VNP heuristic, which is the slowest method with 19.14s

x 100,
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average computational time. Moreover, the ranking of methods remains the
same even in case that the average computational times are computed regarding
instances solved by VNP. Regarding number of wins, the SN diving manages to
obtain a solution in the shortest time in 14 cases. The objective FP, VN diving,
standard FP, and CPLEX MIP solver follow by obtaining a solution in the shortest
time in 10, 9, 7, 5 cases, respectively. The VNP has the worst performance, since
it manages to find a solution before other methods in just one case.

According to the experimental analysis above, our two proposed diving
heuristics generally provide solutions of a better quality than the CPLEX MIP
solver and the two FP heuristics, within a similar or shorter computational time.
Although the VNP heuristic proves to be highly competitive for the 0-1 MIP bench-
mark, it shows a rather poor performance for the general MIP benchmark. We may
therefore claim that, in overall, VN diving heuristic and SN diving outperform
all four state-of-the-art solvers which were used for comparison purposes regard-
ing solution quality. Additionally, we may claim that SN diving significantly
outperforms all tested methods regarding average computational time needed to
provide a feasible solution for the instances from General MIP benchmark.

4.1. Influence of the time limit on the performances of all six methods

In this section we check the imposed time limit influence on the number of
solved instances by each method. The results are given in Table 8 and Figure 5 for
0-1 MIP instances, and Table 6 and Figure 6 for General MIP benchmark instances.

Time limit || CPLEX | Standard FP | Objective FP | VNP | VN Diving | SN Diving

(s)

1 67 67 67 40 43 54

5 74 74 73 58 58 70
10 76 77 76 66 67 77
20 78 79 78 78 78 80
30 80 79 78 79 81 82
40 80 80 79 80 82 82
50 81 81 81 81 82 82
60 82 81 82 81 82 82
70 82 82 82 81 82 82
80 82 82 82 81 83 82
90 82 82 82 81 83 82
100 83 83 83 82 83 82

Table 8: Number of solved instances by 6 methods as a function of time limit - 0-1 MIP

It appears that CPLEX MIP solver, standard FP, and objective FP perform better
if the time limit is less than 10s. However, increasing the time limit, the number of
solved instances by the other methods grows dramatically. Consequently, when
the time limit is set to 20 seconds, SN diving becomes the method with the most
solved instances, keeping the first place until time limit is extended to 80 seconds,
when VN diving becomes the best method able to solve all instances.
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Figure 5: Number of solved instances by 6 methods as a function of time limit - 0-1 MIP

Time limit | | CPLEX | Standard FP | Objective FP | VNP | VN Diving | SN Diving
(s)
1 24 23 24 12 17 23
5 29 28 29 22 22 30
10 29 29 29 25 23 31
20 30 30 30 27 31 33
30 30 30 30 29 31 34
40 31 32 32 30 32 34
50 31 32 32 30 33 34
60 32 32 32 31 33 34
70 32 32 32 31 33 34
80 32 32 32 31 33 34
90 33 33 33 31 33 34
100 33 33 33 31 33 34
110 33 33 33 31 33 34
120 33 33 33 31 33 34
130 34 34 34 31 33 34
140 34 34 34 31 34 34
150 34 34 34 31 34 34

Table 9: Number of solved instances by 6 methods as a function of time limit - General MIP

From Table 9 and Figure 6, we conclude that CPLEX MIP solver, standard FP,
objective FP, and SN diving are able to find a feasible solution within 1 second. The
CPLEX MIP solver and objective FP manage to solve 24 instances out of 34 within
1 second, while standard FP and SN diving succeed to get 23 out of 34 instances
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Figure 6: Number of solved instances by 6 methods as a function of time limit - General MIP

in less than 1 second. Furthermore, it appears that SN diving outperforms all
other methods if the time limits is greater than 1s. Moreover, SN diving solves
all instances when the time limit is adjusted to 30 seconds; that is the smallest
time limit that one method needs to solve all instances. Taking into account our
previous observations, one can conclude that SN diving is the best heuristic for
finding initial feasible solution for general MIP instances.

5. CONCLUSION

In this paper we propose two new heuristics for finding initial feasible solu-
tions of mixed integer programs (MIPs). The proposed heuristics, called variable
neighbourhood diving (VN diving) and single neighbourhood diving (SN diving), per-
form systematic hard variable fixing (i.e. diving) in order to generate smaller
subproblems whose feasible solution (if one exists) is also feasible for the orig-
inal problem. In VN diving, this fixing is performed according to the rules of
variable neighbourhood decomposition search (VNDS) [15]. This means that a
number of subproblems (neighbourhoods) generated in a VNDS manner are ex-
plored in each iteration. Also, pseudo-cuts are added during the search process
in order to prevent exploration of already visited search space areas. However,
a feasible solution is usually obtained in the first iteration. In SN diving, only
one neighbourhood is explored in each iteration. However, we introduce a new
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mechanism to avoid the already visited solutions. It consists of memorising a set
of constraints in a new MIP problem, which is then solved instead of the original
problem in order to obtain the new reference solution. Our experiments show that
this mechanism generally provides much better diversification than the addition
of pseudo-cuts alone. Moreover, we have proved that the SN diving algorithm
converges to a feasible solution, if one exists, or proves the infeasibility in a fi-
nite number of iterations. Both methods use the generic CPLEX MIP solver as a
black-box for tackling the subproblems generated during the search.

The proposed heuristics are tested on two established sets of benchmark in-
stances, proven to be difficult: the set first contains 83 0-1 MIP instances [8], and
the second contains 34 general MIP instances [3]. We compare our heuristics with
the IBM ILOG CPLEX 12.4 MIP solver, the two variants of the feasibility pump
(FP) heuristic (standard FP and objective FP), and the variable neighbourhood
pump (VNP) heuristic [13, 17, 18]. According to an extensive experimental anal-
ysis, both VN and SN diving clearly outperform the CPLEX MIP solver and the
two FP heuristics regarding the solution quality, within a similar or shorter com-
putational time. Additionally, on the instances from General MIP benchmark,
SN diving performs better than any other method tested in this paper, regarding
not only solution quality but also the time needed to find a feasible solution.
The results reported in this paper are also competitive with those obtained by
the recent variable neighbourhood pump heuristic and its extensions [13, 17, 18].
Besides improving the basic variable neighbourhood pump, our future work may
consist of designing a multi-objective VNS heuristic, which would tackle both
infeasibility and original objective quality during the search process.
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