
Yugoslav Journal of Operations Research
26 (2016), Number 2, 159–171
DOI: 10.2298/YJOR141217015G

WEAKLY AND STRONGLY POLYNOMIAL
ALGORITHMS FOR COMPUTING THE MAXIMUM

DECREASE IN UNIFORM ARC CAPACITIES

Mehdi GHIYASVAND
Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran

mghiyasvand@basu.ac.ir

Received: December 2014 / Accepted: May 2015

Abstract: In this paper, a new problem on a directed network is presented. Let
D be a feasible network such that all arc capacities are equal to U. Given a τ > 0,
the network D with arc capacities U − τ is called the τ-network. The goal of the
problem is to compute the largest τ such that the τ-network is feasible. First, we
present a weakly polynomial time algorithm to solve this problem, which runs
in O(log(nU)) maximum flow computations, where n is the number of nodes.
Then, an O(m2n) time approach is presented, where m is the number of arcs.
Both weakly and strongly polynomial algorithms are inspired by McCormick and
Ervolina(1994).

Keywords: Optimal Witness, Feasible Flow, Maximum Flow.

MSC: 90B18.

1. INTRODUCTION

A directed network D = (N,A) is given, where N is a set of nodes and A is a set
of ordered pairs of nodes, called arcs. We denote an arc from node i to node j by
(i, j) and define the flow on arc (i, j) by xi j. Let di be the demand at node i (if di < 0,
then −di is a supply). In this paper, we suppose that all arc capacities are equal to
U. A flow x is called a feasible flow if it satisfies the following constraints:∑

j∈N

x ji −
∑
j∈N

xi j = di, ∀ i ∈ N, (1)

160 M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms

0 ≤ xi j ≤ U, ∀ (i, j) ∈ A. (2)

Network D is called feasible if there exists a flow x satisfying the conditions (1)
and (2). For a given τ > 0, we define the network D with arc capacities U − τ as
the τ-network. In this paper, we compute the value τ∗, which is the largest value
of τ, such that the τ-network is feasible. Thus, τ∗ is the maximum decrease in all
arc capacities such that the new network is still feasible (we call this problem the
MDUAC-problem). In this paper, we present weakly and strongly polynomial time
algorithms to solve this problem. These algorithms are inspired by McCormick
and Ervolina[10].

The most vital arc problem[2,3,4,5,6,8,9,11,12,14,15] is defined for the shortest
path and maximum flow problems. In the shortest path problem, the most vital
arc is an arc whose removal yields the greatest increase in the shortest distance
between two given nodes. In the maximum flow problem, the most vital arc is
an arc whose deletion causes the largest decrease in the maximum flow value.
Hence, the main difference between the most vital arc and the MDUAC-problems
is as follows: in the most vital arc problem, the capacity of one arc(which is the
most vital arc) is decreased to zero, but, in the MDUAC-problem, the capacities
of all arcs is decreased by τ∗.

This paper consists of four sections in addition to Introduction section. Section
2 reviews some results used in the subsequent sections. In Section 3, the smallest
average cut is defined and the relationship between these cuts and the value of
the maximum decrease in all arc capacities is proved. A weakly polynomial and a
strongly polynomial time algorithm to solve the problem are presented in Sections
4 and 5, respectively.

The MDUAC-problem arises in numerous applications: transportation net-
works, electrical and power networks, telephone networks, national highway
systems, rail networks, airline service networks, manufacturing and distribution
networks, computer networks, airline reservation systems, etc In all of these net-
works, we wish to move some entity (electricity, a consumer product, a person
or a vehicle, a message) from one point to another in an underlying network.
Networks may have equal capacities where having a big capacity produce a big
cost. In MDUAC-problem, the minimum capacity is computed so that the given
network can move the given entities among nodes. Thus, our result can be use-
ful for economic reasons. For example, a production and distribution company
sends its productions from warehouses (as supply nodes) to retailers (as demand
nodes). Each warehouse i has a certain supply, and each retailer has a certain
demand. For doing this, the company hires U units of space of the lorries which
are traveling between two nodes (i.e. an arc). For economic reasons, the manager
of this company wants to decrease the hired space of the lorries. He/she asks to

M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms 161

have maximum decrease in the hired space U such that the company still can send
all productions from warehouses to retailers.

2. PRELIMINARIES

2.1. Optimal witness

If S,T ⊂ N form a nontrivial partition of N (i.e., S,T , ϕ, S ∩ T = ϕ, and
S ∪ T = N), then we define the cut (S,T) as (S,T) = {(i, j) ∈ A | i ∈ S and j ∈ T}. Let
|T→ S| be the number of arcs from set T into set S. The value of (S,T) is defined as :

V(S,T) =
∑
i∈S

di −U |(T,S)| . (3)

Theorem 1 (Hoffman Theorem [7]). A network with constraints (1) and (2) is
feasible if and only if for every cut (S,T), we have V(S,T) ≤ 0.

Theorem 1 says that a network is feasible if it does not have any cut (S,T) with
V(S,T) > 0, which is called a witness. A cut (S∗,T∗) is called an optimal witness if
it maximizes V(S,T) over all cuts. Thus V(S∗,T∗) ≤ 0 if and only if the network is
feasible.

2.2. The feasible flow procedure

The feasible flow procedure (see [1], Page 169) first chooses an initial flow x̂
satisfying (2) and computes ei =

∑
j x̂ ji −

∑
j x̂i j − di. The auxiliary network DI is

constructed as follow: A new source node s and arcs (s, k) for all nodes k that ek > 0
are added to the network. The capacity of such arcs will be ek. Also, a new sink
node t and arcs (l, t) for all nodes l such that el < 0 (with capacity −el) are added.
For each arc (i, j) in the original network, two arcs (i, j) and (j, i) with upper bounds
ri j = ui j − x̂i j and r ji = x̂i j − li j are introduced, where li j, ui j are the lower and upper
bounds on arc (i, j). Then, the maximum flow from s to t in the auxiliary network
saturates all the source and sink arcs if and only if the original network is feasi-
ble. Therefore, the feasible flow procedure takes one maximum flow computation.

Theorem 2 [7]. If D is not feasible and (s ∪ S0, t ∪ T0) is a min cut in DI, then
(T0,S0) is an optimal witness in D.

2.3. McCormick and Ervolina’s idea

In this section, we briefly explain the idea of McCormick and Ervolina[10]. Let
li j and ui j be the lower and upper bounds on arc (i, j) ∈ A. Define the parametric
network D(δ) as D with bounds

li j − δ ≤ xi j ≤ ui j + δ, for each (i, j) ∈ A.

162 M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms

A flow x is a circulation if only (1) is required. For a given circulation x, let

δ(x) = max{0,max
(i, j)∈A

{li j − xi j, xi j − ui j}},

which is the smallest δ such that x is a feasible solution of D(δ). Define δ∗ =
min{δ(x) | x is a circulation}, it is the smallest δ such that D(δ) is feasible. For each
cut (S,T), let (S,T) = {(i, j) ∈ A | i ∈ S, j ∈ T}, {S,T} = (S,T) ∪ (T,S), and

V(S,T) =

∑
(i, j)∈(S,T) li j −

∑
(i, j)∈(T,S) ui j +

∑
(i, j)∈S di

|{S,T}| .

A maximum mean cut is a cut (S∗,T∗) such that

V
∗
= V(S∗,T∗) = max

(S,T)
V(S,T).

McCormick and Ervolina[10] showed (1) that cut (S,T) is a maximum mean cut
if and only if for δ = V(S,T), and (2) δ∗ = V

∗
. Then, using these properties, they

computed a maximum mean cut (S∗,T∗) and δ∗. In the next sections, we extend
McCormick and Ervolina’s idea to present weakly and strongly polynomial time
algorithms to compute τ∗.

3. THE MAXIMUM DECREASE IN ALL ARC CAPACITIES

3.1. Smallest average cuts

Given a cut (S,T), define the average of cut (S,T) as follows:

ψ(S,T) =

U |T→ S| −
∑
i∈S

di

|T→ S| = U −
∑

i∈S di

|T→ S| . (4)

A smallest average cut (S∗,T∗) is defined by the following:

ψ∗ = ψ(S∗,T∗) = min
(S,T)

ψ(S,T).

3.2. A relationship between τ∗ and a smallest average cut

Given a τ ≥ 0, let Vτ(S,T) be the value of cut (S,T) in τ-network, the following
lemma shows a relationship between Vτ(S,T) and V(S,T).

Lemma 3. For each cut (S,T), we have Vτ(S,T) = V(S,T) + τ |T→ S|.

Proof. By (3) and the definition of τ-network, we have

M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms 163

Vτ(S,T) =
∑
i∈S

di − (U − τ) |T→ S| = V(S,T) + τ |T→ S|.

Theorem 4. τ∗ = ψ∗.

Proof. By (3) and the definition of ψ∗, for each cut (S,T), we have

ψ∗ ≤
U |T→ S| −

∑
i∈S

di

|T→ S| =
−V(S,T)
|T→ S| ,

which means, by Lemma 3,

Vψ∗(S,T) ≤ V(S,T) +
−V(S,T)
|T→ S| |T→ S| = 0, for each cut (S,T).

Thus, by Theorem 1, ψ∗-network is feasible, but τ∗ is the largest τ such that the
τ-network is feasible. Hence, ψ∗ ≤ τ∗.

Now, it is enough that we prove ψ∗ ≥ τ∗. Define

β(S,T) = U |T→ S| −
∑
i∈S

di =
∑

(i, j)∈(T,S)

U −
∑
i∈S

di. (5)

Consider an arbitrary τ such that the τ-network is feasible. Let x be a feasible flow
in it. Thus, by (1), for each cut (S,T), we get

∑
(i, j)∈(T,S)

xi j −
∑

(i, j)∈(S,T)

xi j =
∑
i∈S

di, or

∑
(i, j)∈(S,T)

xi j −
∑

(i, j)∈(T,S)

xi j +
∑
i∈S

di = 0.

Hence, by (5), we get

β(S,T) =
∑

(i, j)∈(S,T)

xi j +
∑

(i, j)∈(T,S)

(U − xi j). (6)

x is a feasible flow in the τ-network, so, 0 ≤ xi j ≤ U − τ, for each (i, j) ∈ A. Thus,
by (6),

β(S,T) ≥
∑

(i, j)∈(S,T)

xi j + τ|T→ S| ≥ τ|T→ S|,

which means β(S,T)
|T→S| ≥ τ. Hence, by (4), we get ψ(S,T) ≥ τ. Since (S,T) is an arbi-

trary cut, we get ψ∗ ≥ τ. On the other hand, τ is arbitrary, which means ψ∗ ≥ τ∗.

By Theorem 4, in order to compute τ∗, it is enough that we compute the value of
a smallest average cut ψ∗.

164 M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms

Theorem 5. A cut (S,T) is a smallest average cut if and only if the ψ(S,T)-network
is feasible.

Proof. Let (S,T) be a smallest average cut (i.e. ψ∗ = ψ(S,T)). By Theorem 4, we
get that the ψ(S,T)-network is feasible. Now, supposing that the ψ(S,T)-network
is feasible. By definition of τ∗, it is the largest τ such that the the τ-network is
feasible. Hence, by Theorem 4, cut (S,T) should be a smallest average cut.

4. A WEAKLY POLYNOMIAL TIME ALGORITHM

If τ∗ is an integer, then, it can be computed using a binary search in [0,U].
In this case, τ∗ is computed using O(log U) maximum flow computations. But
it is possible that τ∗ is in range [0,1], so, in binary search, a finishing condition
is necessary. In this section, we compute τ∗ for general case that it can be any
number in range [0,U].

In Section 3, computing the value of the maximum decrease in arc capacities is
reduced to computing a smallest average cut. In this section, we present a weakly
polynomial time algorithm to find a smallest average cut.

Lemma 6. Let (S1,T1) and (S2,T2) be two cuts with different averages. If U
and di’s are integer, then |ψ(S1,T1) − ψ(S2,T2)| ≥ 1

m2 .

Proof. The cuts (S1,T1) and (S2,T2) have two different averages, so, ψ(S1,T1) ,
ψ(S2,T2), which means

(U |T1 → S1| −
∑
i∈S1

di) |T2 → S2| , (U |T2 → S2| −
∑
i∈S2

di) |T1 → S1|.

Since U and di’s are integers, we get

| (U |T1 → S1| −
∑
i∈S1

di) |T2 → S2| − (U |T2 → S2| −
∑
i∈S2

di) |T1 → S1| | ≥ 1.

Thus, we have

|ψ(S1,T1) − ψ(S2,T2)| =
| (U |T1→S1 |−

∑
i∈S1

di) |T2→S2 |−(U |T2→S2 |−
∑
i∈S2

di) |T1→S1 | |

|T1→S1 | |T2→S2 |

≥ 1
m2 .

M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms 165

Our algorithm to compute τ∗ is presented in Algorithm 1. The algorithm main-
tains two bounds ∇ and ∆, such that the ∇-network is feasible, but ∆-network is
infeasible. Since 0-network is feasible, but U-network is infeasible, initialization
is ∇ = 0 and ∆ = U. In each iteration, the interval [∇,∆] is reduced by half using
τ := ∇+∆2 . If τ-network is feasible, then the algorithm lets ∇ = τ, but if it is infeasi-
ble, the algorithm lets ∆ = τ. This continues until ∆−∇ ≤ 1

m2 . In the next lemmas,
we show that Algorithm 1 computes τ∗.

Computing τ∗:
Begin

Let ∇ := 0 and ∆ := U;
Do until (∆ − ∇ ≤ 1

m2);
Begin

Let τ := ∇+∆2 ;
If τ-network is feasible then ∇ = τ;
Else ∆ = τ;

End;
Let τ0 = ∆;
Let (s ∪ S0, t ∪ T0) be a min cut in the feasible flow procedure w.r.t. τ0-

network;
Let τ1 = ψ(T0,S0);

End.

Algorithm 1. Computing τ∗.

Lemma 7. Let τ0-network be infeasible and τ1 = ψ(T0,S0), where (s∪ S0, t∪ T0) is
a minimum cut in the feasible flow procedure corresponding to τ0-network, then
τ1 < τ0.

Proof. Since (s ∪ S0, t ∪ T0) is a minimum cut in the feasible flow procedure
corresponding to τ0-network, we get, by Theorem 2, (T0,S0) as an optimal wit-
ness in τ0-network. Vτ0 (T0,S0) is the value of the cut (T0, S0) in τ0-network and
τ0-network is infeasible, so, by Theorem 1, we have

Vτ0 (T0,S0) > 0. (7)

By Lemma 3, for cut (T0,S0) in τ0-network, we have Vτ0 (T0,S0) = V(T0,S0) +
τ0 |S0 → T0|, or

Vτ0 (T0,S0)
|S0→T0 | =

V(T0,S0)
|S0→T0)| + τ0, which means, by (3) and (4),

Vτ0 (T0, S0)
|S0 → T0|

= −ψ(T0,S0) + τ0.

Hence, by (7), we get −ψ(T0, S0) + τ0 > 0, or τ1 < τ0.

166 M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms

Lemma 8. At the end of Algorithm 1, we have τ∗ = τ1.

Proof. Since ∇-network is feasible, but ∆-network is infeasible, by the defini-
tion of τ∗, we have

∇ ≤ τ∗ < ∆. (8)

At the end of Algorithm 1, τ0 = ∆ and τ1 = ψ(S0,T0), where (s ∪ S0, t ∪ T0) is a
minimum cut in the feasible flow procedure corresponding to τ0-network, so, by
Lemma 7,

τ1 < τ0 = ∆. (9)

Supposing that (for the sake of contradiction), τ1-network is infeasible, which
means τ∗ < τ1. Thus, by (8) and (9), we get

∇ ≤ τ∗ < τ1 < ∆. (10)

At the end of Algorithm 1, ∆−∇ < 1
m2 . Hence, by (10), τ1 − τ∗ < 1

m2 , contradicting
Lemma 6 (note, τ1 = ψ(T0,S0) and τ∗ = ψ∗). Consequently, τ1-network is feasible,
which means, by Theorem 5, (T0, S0) is a smallest average cut. Thus, by Theorem
4, τ∗ = ψ(T0,S0).

The next theorem presents the running time of Algorithm 1.

Theorem 9. Algorithm 1 runs in O(log(nU)) maximum flow computations.

Proof. Starting values are ∇ = 0 and ∆ = U. The algorithm finishes when
∆ − ∇ < 1

m2 , so, the number of iterations is O(log(m2U)) = O(log(nU)). In each
iteration, the algorithm computes a min cut, which needs a maximum flow com-
putation.

5. A STRONGLY POLYNOMIAL TIME ALGORITHM

In this section, we extend the idea of McCormick, and Ervolina[10] to present
a strongly polynomial time algorithm to compute τ∗. Algorithm 2 shows the
method. It computes cuts (S0,T0), (S1,T1),..., (Sk,Tk),... and values τ0, τ1,...,τk,...
so that (Sk,Tk) is an optimal witness in τk-network. It is obvious that if ψ(Si,Ti)-
network is feasible, then, by Theorems 4 and 5, we have τ∗ = ψ(Si,Ti).

By definitions, Vx(S,T) is the value of cut (S,T) in x-network. For notational
convenience, for each i = 1, 2, ..., define

M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms 167

vk(x) = Vx(Sk,Tk),
nk = |Tk → Sk|, and
vk = −V(Sk,Tk).

Thus, by Algorithm 2,

τk+1 =
vk

nk
, (11)

and, by Lemma 3,

vk(x) = −vk + x nk. (12)

Also, define

θk =
vk(τk)

vk−1(τk−1)
. (13)

Some properties of (11), (12), and (13) are presented in the next lemma, which plays
an important role to prove that Algorithm 2 is indeed a strongly polynomial-time
algorithm.

Lemma 10.
a. τi is strictly decreasing during Algorithm-2.
b. vk(τk−1) > vk(τk).
c. vk−1(τk) = 0.
d. vk−1(τk−1) ≥ vk(τk−1).
e. 0 < θk < 1.

Proof.
a. For each i, τi-network is infeasible and τi+1 = ψ(T0,S0), where (s∪S0, t∪T0) is a
minimum cut in the feasible flow procedure corresponding to τi-network, so, by
Lemma 7, τi+1 < τi.

b. By (12), vk(x) decreases linearly as x decreases, so, by (a), vk(τk−1) > vk(τk).

c. By (12), vk−1(τk) = −vk−1 + τk nk−1, so, by (11), vk−1(τk) = 0.

d. By Algorithm 2 and Theorem 2, (Sk−1,Tk−1) is an optimal witness in τk−1-
network. On the other hand, vk−1(τk−1) = Vτk−1 (Sk−1,Tk−1) and vk(τk−1) = Vτk−1 (Sk,Tk)
are the values of cuts (Sk−1,Tk−1) and (Sk,Tk) in τk−1-network. Thus, vk−1(τk−1) ≥
vk(τk−1).

168 M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms

e. If vk(τk) = −vk + τk nk ≤ 0, then vk
nk
≥ τk, so, by (11), we get τk+1 ≥ τk, con-

tradicting (a). Thus, vk(τk) > 0. Similarly, vk−1(τk−1) > 0, so, by (14), θk > 0.
If θk ≥ 1, then vk−1(τk−1) ≤ vk(τk) contradicting (b) and (d).

The next theorem presents an upper bound for the number of iterations in Algo-
rithm 2.

Theorem 11. Algorithm 2 terminates after at most m iterations.

Proof. By (12), we get:

vk−1(τk−1) = −vk−1 + τk−1 nk−1,
vk−1(τk) = −vk−1 + τk nk−1.

Thus, vk−1(τk−1) − vk−1(τk) = (τk−1 − τk)nk−1, which means

nk−1 =
vk−1(τk−1) − vk−1(τk)

τk−1 − τk
. (14)

By Lemma 10(a), the denominator of (14) is not zero. Similarly,

nk =
vk(τk−1) − vk(τk)

τk−1 − τk
.

Hence, by (14), we have

nk−1 = nk
vk−1(τk−1) − vk−1(τk)

vk(τk−1) − vk(τk)
.

By Lemma 10(b), the denominator here can not be zero. Thus, by Lemma 10(c,d),

nk−1 ≥ nk
vk−1(τk−1)

vk−1(τk−1) − vk(τk)
.

Now, by (13), we get

nk−1 ≥ nk
vk−1(τk−1)

vk−1(τk−1)(1 − θk)
=

nk

1 − θk
,

which means nk ≤ nk−1(1−θk). Therefore, by Lemma 10(e), we get nk < nk−1. Since
the nk’s are integers and n0 is at most m, Algorithm 2 terminates after at most m
iterations.

Algorithm 2:
Begin

Let τ0 = U and i = 0;

M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms 169

Construct τi-network;
Do until (the τi-network is feasible);
Begin

Let (s ∪ S0, t ∪ T0) be a min cut in the feasible flow procedure w.r.t. τi-
network;

Let (Si,Ti) = (T0,S0) and τi+1 = ψ(Si,Ti);
Let i = i + 1;

End
τ∗ = τi;

End.

Algorithm 2. Strongly polynomial time algorithm to compute τ∗.

By Theorem 11, Algorithm 2 terminates after at most m maximum flow com-
putations. Recently, Orlin[14] presented an O(mn) time algorithm to solve the
maximum flow problem. Therefore, our algorithm runs in O(m2n) time.

Example 1. In this example, an implementation of Algorithm 1 for the network
in Fig. 1 is presented. We have ∆ = U = 8, ∇ = 0, 1

m2 = 1/64 = 0.015625, and
∆−∇ = 8 > 1

m2 . Let τ = ∇+∆2 = 4. The 4-network is infeasible, so, we get ∆ = 4 and
τ = ∇+∆2 =

0+4
2 = 2. In 2-network (see Fig. 2), the following is a feasible flow:

x23 = x31 = x25 = x54 = 5, x35 = 2, x12 = x42 = x34 = 0, (15)

which means 2-network is feasible. Hence, ∇ = 2 and τ = ∇+∆2 = 2+4
2 = 3. Fig. 3

shows 3-network, which is feasible (since (15) is also a feasible flow in 3-network),
which means ∇ = 3 and τ = ∇+∆

2 = 3+4
2 = 3.5. The 3.5-network is infeasible.

In a similar way, the 3.125-network, the 3.125-network, the 3.0625-network, the
3.03125-network, and the 3.015626-network are infeasible. Thus, ∆ = 3.015625
and τ = ∇+∆2 =

3+3.015625
2 = 3.0078125, which means ∆ = 3.0078125. Current values

are
∇ = 3 and ∆ = 3.0078125,

which means ∆ − ∇ = 0.0078125 < 1
m2 = 0.015625. Hence, by Algorithm 1, current

iteration is the final one. By the feasible flow procedure, a minimum cut is

(s ∪ S0, t ∪ T0) = (s ∪ {2}, t ∪ {1, 3, 4, 5}).

Therefore,

τ∗ = ψ(T0, S0) = U −
∑

i∈T0
di

|S0 → T0|
= 8 − 10

2
= 3.

170 M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms

hh

hh
h66

-

-

6�
�

�
�

��	

HHHHHHj
�������

6

1 2

3 4

5

5
−10

2

5
−2

8

8

8

88
8

8
8

Figure 1: An example network

hh

hh
h66

-

-

6�
�

�
�

��	

HHHHHHj
�������

6

1 2

3 4

5

5
−10

2

5
−2

6

6

6

66
6

6
6

Figure 2: The 2-network.

hh

hh
h66

-

-

6�
�

�
�

��	

HHHHHHj
�������

6

1 2

3 4

5

5
−10

2

5
−2

5

5

5

55
5

5
5

Figure 3: The 3-network.

Acknowledgements: I would like to express great appreciation to Reviewer-B
for his/her valuable comments and suggestions, which have helped to improve
the quality and presentation of this paper.

REFERENCES

[1] Ahuja,R.K., Magnanti, T.L., and Orlin, J.B., Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] Aneja, Y.P., Chandrasekaran, R., and Nair, K.P.K., “Maximizing residual flow under an arc
destruction”, Networks, 38 (2001) 194-198.

[3] Ball, M.O., Golden, B.L., and Vohra, R.V., “Finding the most vital arcs in a network”, Operations
Research Letters, 8 (1989) 73-76.

[4] Bar-Noy, A., Khuller, S., and Schieber, B., “The complexity of finding most vital arcs and nodes”,
TR CS-TR-3539, Institute for Advanced Studies, University of Maryland, College Park, MD, 1995.

M. Ghiyasvand /Weakly and Strongly Polynomial Algorithms 171

[5] Barton, A.J., “Addressing the problem of finding a single vital edge in a maximum flow graph”,
NRC/ERB-1129, 2005.

[6] Corley, H.W., and Sha, D.Y., “Most vital links and nodes in weighted networks”, Operations
Research Letters, 1 (1982), 157-160.

[7] Hoffman, A.J., “Some recent applications of the theory of linear inequalities to extremal combi-
natorial analysis”, American Mathematical Society, 10 (1960) 113-127.

[8] Ivanchev,D., “Finding the k most vital elements of an s-t planar directed network”, Yugoslav
Journal of Operations Research, 10 (2000) 13-26.

[9] Malik, K., Mittal, A.K., and Gupta, S.K., “The K most vital arcs in the shortest path problem”,
Operations Research Letters, 8 (1989) 223-227.

[10] McCormick, S.T., and Ervolina, T.R., “Computing Maximum Mean Cuts”, Discrete Applied Math,
52 (1994) 53-70.

[11] Nardelli, E., Proietti, G., and Widmayer, P., “Finding the detour-critical edge of a shortest path
between two nodes”, Information Processing Letters, 67 (1998) 51-54.

[12] Nardelli, E., Proietti, G., and Widmayer, P., “A faster computation of the most vital edge of a
shortest path between two nodes”, Information Processing Letters, 79 (2001) 81-85.

[13] Nardelli, E., Proietti, G., and Widmayer, P., “Finding the most vital node of a shortest path”,
Theoretical Computer Science, 296 (2003) 167-177.

[14] Orlin, J.B., “Max flows in O(mn) time, or better”, STOC (2013) 765-774.
[15] Ratliff, D., Sicilia, T., and Lubore, H., “Finding the n most vital links in flow networks”, Manage-

ment Science, 21 (1975) 531-539.

