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Abstract: Maxwell Boltzmann distribution with maximum entropy approach has been 

used to study the variation of political temperature and heat in a locality. We have 

observed that the political temperature rises without generating any political heat when 

political parties increase their attractiveness by intense publicity, but voters do not shift 

their loyalties. It has also been shown that political heat is generated and political entropy 

increases with political temperature remaining constant when parties do not change their 

attractiveness, but voters shift their loyalties (to more attractive parties).  
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1. INTRODUCTION  

1.1. Entropy in thermodynamics 

The first law of thermodynamics gives a generalization of the law of conservation of 

energy including heat energy according to which the total energy of the universe remains 

constant.  Every system left to itself changes spontaneously at a final state of equilibrium. 

As a well known example is the passage of heat from a hotter region to a colder until 

both regions become of the same temperature, but if we think this process to occur in 

reverse order, it cannot happen spontaneously. Here comes the concept of the second law 

of thermodynamics, in addition to the first law of thermodynamics that determines the 

direction in which a process can take place in an isolated system, a system which is 

congested with inputs of both matter and energy. Two following statements form the 

basis of the second law of thermodynamics [1]. 

Kelvin Statement: There exists no thermodynamic transformation (A Thermodynamic 

transformation is a change of state) whose sole effect is to extract a quantity of heat from 

a given heat reservoir and to convert it entirely into work. 

Clausius Statement: There exists no thermodynamic transformation whose sole effect is 

to extract a quantity of heat from a colder reservoir and to deliver it to a hotter reservoir.  
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The second law of thermodynamics enables us to define a state function S, entropy. The 

term “entropy” was introduced in thermodynamics by Clausius in nineteenth-century [2] , 

and is the theme of the second law of thermodynamics, which states that in an isolated 

thermodynamic system, entropy cannot decrease but moreover, it will stay stable or 

augment towards its maximum. This is explained by Clausius Theorem. 

Clausius Theorem: In any cyclic transformation through which the temperature is 

defined, the following inequality holds: 

0
dQ

T
  

The integral extends over one cycle of transformation. The equality holds for 

reversible cyclic transformation. 

In an isolated system, the system will steadily become more and more chaotic, until it 

reaches maximum entropy. This means that since no new heat energy can be added, the 

system can never become hotter, but can only continue to have the same temperature or 

to become colder. As it loses heat over time, its entropy increases, awaiting finally to 

reach its maximum. This state of maximum entropy is called thermodynamic equilibrium 

which prevails when the thermodynamic state of the system does not change with time. 

Such thermodynamic systems are “irreversible transformations” where heat cannot flow 

from colder to hotter parts of the system, but only from hotter to colder areas.  

 
1.2. Entropy in Information Theory 

Information theory is a new branch of probability theory with extensive potential 

applications to communication systems. It was originated by scientists, while studying 

the statistical structure of electrical communication equipment. Information Theory has 

its origin in the twentieth century itself, when Hartley tried to develop a quantitative 

measure of information to assess the capabilities of the telecommunication systems. It is 

only during the last three decades or so, that this measure of information has been 

developed and its concept has found widespread use outside the telecommunication 

engineering. Mathematical theory of communication was principally originated by 

Claude Shannon in 1948 [3]. It plays an important role in modern communication 

theories, where a communication system is formulated as a stochastic or random process. 

The maximum entropy principle of Jaynes [4] has been frequently used to derive the 

distribution of statistical mechanics by maximizing the entropy of the system subject to 

some given constraints. 

 

1.3. Entropy in MB distribution 

In thermodynamics, a system of identical and distinguishable particles of any  

spin obey the MB Distribution law and we get information how a total fixed amount of  

energy is distributed among the various members of the aforementioned system in the  

most probable distribution. In Information Theory, Jaynes derived the distribution in a 

manner totally different from the classical derivations. The central idea of the distribution 

is to predict the distribution of the microstates which are the particles of the system on 

the basis of the knowledge of some macroscopic data. The macroscopic data аre specified 

in the form of simple moment constraint. One distribution differs from another in the way 

in which the constraints are specified, and Maxwell-Boltzman distribution is obtained 

when there is only one constraint on the system that prescribes the expected energy per 

particle of the system [5], using Shannon entropy measure. Bose-Einstein (B.E.) 

distribution, Fermi-Dirac (F.D.) distribution, and Intermediate statistics (I.S.) 

distributions are obtained by maximizing the entropy subject to two constraints, (see 

Forte and Sempi [6],  J. N. Kapur [5, 7], and Kapur and Kesavan [8,9]). Though these 

distributions arose in the first instance in statistical mechanics (Amritansu Ray, S. K. 
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Majumder [10]), they are widely applicable in urban and regional planning, 

transportation studies (S.K.Mazumder [11]), finance, banking, and economics (Kapur [5], 

Kapur and Kesavan [8,9], W. Ximing[12]). 

The paper is organised as follows: In Section 2, we describe our model; in Section 3 

we derive the MB distribution function, followed by some results. In Section 4, we give 

the application of this MB Distribution in political entropy.  

 

2. MODEL 

In the present study we have considered a locality, where n political parties are there 

with different attractiveness. We find Maximum Entropy Probability Distribution 

(MEPD) for the proportion of voters voting for different political parties in this locality 

by using the concept of MB Distribution. Here, the input information of MB Distribution 

is the expected average attractiveness of the political parties in lieu of expected energy. 

The total proportion of voters is 1, which is the constraint of the distribution. Using this 

model, we will provide the concept of political entropy, political heat, and political 

temperature in this locality, which will serve as an isolated system without any 

transformation of voters and political parties from an external source. 

 
3. RESULT AND DISCUSSION 

3.1. The Maxwell – Boltzmann (MB) distribution: 

Let 
1 2, ,..., np p p  be the probabilities that a particle in a system has energies 

1 2, ,..., n    , respectively. Suppose that the only information about the system is that 

the expected energy of the particles of the system is ̂ , i.e. we are given the information 

1

1

ˆ

1, 0, 1,2,...,

n

i i

i

n

i i

i

p

p p i n

 






   




 

Now, applying Jaynes’ Maximum Entropy principle we choose that probability 

distribution that maximizes
1

ln
n

i i

i

p p


 , subject to the above constraints, the Lagrangian 

is 

1 1 1

ˆln ( 1)( 1) ( )
n n n

i i i i i

i i i

L p p p p   
  

          

Setting the derivative of the Lagrangian with respect to 
1 2, ,..., np p p equal to zero, we 

get 

1
   ln . ( 1) 0                   1,2,...,

ln 1 1 0

ln

ln                          

i i i

i

i i

i i

i i

p p i n
p

p

p

p

 

 

 

 

      

      

   

   

 (1) 

   i

ip e
  

   (2) 

Applying the natural constraint, we get, 
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1

 i

n

i

e e
 



  (3) 

Now from equation (1), we get, 

1

           1,2,...,
i

i

i n

i

e
p i n

e











 


 

The discrete –variate distribution is called the Maxwell – Boltzmann distribution of 

statistical mechanics. 

The Lagrange Multiplier   is determined from, 

1

1

ˆ( ) [ ] 0   

i

i

n

i

i

n

i

e

f

e




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
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
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 (4) 
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( ) ( ) [( )( ) ( ) ]

          =( ) [( ) ( )( )]
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( ) 0f    by Cauchy – Schwarz’s inequality, equality holds if and only if 

1 2

2 2 2

1 1 2 2

....
( ) ( ) ( )

n

n n

aa a

a a a  
    

i.e., if and only if 

1 2 .... n     . 

We shall assume that the energy levels are all different so that ( ) 0f   . So, ( )f   is 

a strictly decreasing function of  . Without loss of generality, we can assume that 

1 2 .... n      

So that 

1 2 3 ...              0na a a a when       

1 2 3 ...              0na a a a when       

When
1 2 1,   , ,...,n na a a a    

So that ˆ( ) nf      

Similarly, 
1

ˆ( )f      

1 2

1
ˆ(0) ( ... )

ˆ        =

nf
n
   

 

    



 

If 
1̂  , then ( )f  will be positive throughout, and if ˆ

n  , then ( )f  will be 

negative throughout. In either case, solution of ( )f  does not exist; ( )f  will have a 

solution only when 
1 n    . 
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3.2. Some results based on MB distribution 

Result 1: ˆ( )f   is ratio of two convex functions of  . 

From equation (2), we get 
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Now, we shall show that 
1( )f   and 

2 ( )f  are two convex functions of  . 
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So, 
1( )f  is a convex function of  . 
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So, 
2 ( )f   is a convex function of  . 

Result 2: 
2 2
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Result 3: If ( )f  vanishes at  =0, it vanishes everywhere. 

Using equation (3) and making it equal to 0, we get 

2 2

1 1

2 2

2
1 1

2

1

2

1

1 2

1 1
( ) 0

1 1

( 1) 0

0

...

n n

i i

i i

n n

i i

i i

n

i

i

n

i

i

n

n n

nn

n

 

 





  

 

 





  

 

  

 

   

 

 





 

i.e., ( )f  =0 everywhere. 

Result 4: For MB Distribution 0
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Hence, 
0 is a convex function of 

1 . 



S.Bhadra, S.K.Majumder / MB Distribution and Its Application 195 

Result 5: max
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So, 
maxS  is a concave function of ̂ . 

 

4. APPLICATION OF MB DISTRIBUTION IN POLITICAL ENTROPY 

Let 
1 2, ,..., np p p  be the proportions of voters voting towards the political parties 

having attractive indices 
1 2, ,..., na a a  , respectively. Suppose that the only information 

about the system is that the average attractiveness is â , i.e. we are given the information 
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Setting the derivative of the Lagrangian with respect to 
1 2, ,..., np p p equal to zero, we 
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The distribution is the same as MB Distribution. 

The Lagrange Multiplier   is determined from 
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By using Cauchy – Schwarz’s inequality, we find that 
ˆ

0
da

d
  , unless 

1 2 ... na a a   i.e. all the political parties have the same attractiveness, which is not the 

case. So, â  is a monotonically decreasing function of  . 

Using the constraints, we get 

1 1

ˆ
n n

i i i i

i i

da p da a dp
 

    (11) 

Now, 
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max

1

1 1

1

ln

       = ( ln )

ˆ       = a+ln                   

i

i

n

i i

i

n n
a

i i

i i

n
a

i

S p p

p a e

e













 





 

  



 



 (12) 

Political Temperature: 

We take 
1

kT
  where T may be defined as Political Temperature, and T is a 

monotonically increasing function of â , i.e. average attractiveness. So, the greater the 

values of average attractiveness, the higher the political temperature is. 

 
Case 1. If the political parties increase their attractiveness by intense publicity, but 

voters do not shift their loyalties: 

In that case, 
idp becomes zero but 

ida is increasing, so ˆda  will increase, i.e., average 

attractiveness will increase, so political temperature will also increase. 

From equation (10), we get 

1

max

1

ˆ ˆ. .

ˆ ˆ ˆ         = . . .

ˆ         = .

i

i

n
a

i

i

n
a

i

a e

dS d a da d

e

d a da a d

da





  

  











  

 




 

So, in this case political temperature will rise but political heat will not be generated. 

 
Case 2. If parties do not change their attractiveness, but voters shift their loyalties to 

more attractive parties: 

Using equation (9), we get 

max

1 1

1
( ) 

n n

i i i i

i i

dS p da a dp
kT  

    (13) 

Here 
ida becomes zero. 

From equation (11), we get 

max

1

1

         =

n

i i

i

dS a dp
kT

H

kT








 

In that case political temperature will rise and political heat is also generated. 
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