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Abstract: In this article, we study inventory models to determine the optimal special 

order and maximum saving cost of imperfective items when the supplier offers a 

temporary discount. The received items are not all perfect and the defectives can be 

screened out by the end of 100% screening process. Three models are considered 

according to the special order that occurs at regular replenishment time, non-regular 

replenishment time, and screening time of economic order quantity cycle. Each model 

has two sub-cases to be discussed. In temporary discount problems, in general, there are 

integer operators in objective functions. We suggest theorems to find the closed-form 

solutions to these kinds of problems. Furthermore, numerical examples and sensitivity 

analysis are given to illustrate the results of the proposed properties and theorems. 
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1. INTRODUCTION 

The economic order quantity (EOQ) model is popular in supply chain management. 

The traditional EOQ inventory model supposed that the inventory parameters (for 

example: cost per unit, demand rate, setup cost or holding cost) are constant during sale 

period. Schwarz [32] discussed the finite horizon EOQ model, in which the costs of the 

model were static and the optimal ordering number could be found during the finite 

horizon. In real life, there are many reasons for suppliers to offer a temporary price 
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discount to retailers. The retailers may engage in purchasing additional stock at reduced 

price and sell at regular price later. Lev and Weiss [22] considered the case where the 

cost parameters may change, and the horizon may be finite as well as infinite. However, 

the lower and upper bounds they used did not guarantee that the boundary conditions 

could be met. Tersine and Barman [35] incorporated quantity and freight discounts into 

the lot size decision in a deterministic EOQ system. Ardalan [3] investigated optimal 

ordering policies for a temporary change in both price and demand, where demand rate 

was not constant. Tersine [34] proposed a temporary price discount model, the optimal 

EOQ policy was obtained by maximizing the difference between regular EOQ cost and 

special ordering quantity cost during sale period. Martin [26] revealed that Tersine’s [34] 

representation of average inventory in the total cost was flawed, and suggested the true 

representation of average inventory. But Martin [26] sacrificed the closed-form solution 

in solving objective function, and used search methods to find special order quantity and 

maximum gain. Wee and Yu [38] assumed that the items deteriorated exponentially with 

time and temporary price discount purchase occurred at the regular and non-regular 

replenishment time. Sarker and Kindi [31] proposed five different cases of the discount 

sale scenarios in order to maximize the annual gain of the special ordering quantity. 

Kovalev and Ng [21] showed a discrete version of the classic EOQ problem, they 

assumed that the time and product were continuously divisible and demand occurred at a 

constant rate. Cárdenas-Barrón [6] pointed out that there were some technical and 

mathematical expression errors in Sarker and Kindi [31] and presented the closed form 

solutions for the optimal total gain cost. Li [23]presented a solution method which 

modified Kovalev and Ng’s [21]search method to find the optimal number of orders. 

Cárdenas-Barrónet al. [8] proposed an economic lot size model where the supplier was 

offered a temporary discount, and they specified a minimum quantity of additional units 

to purchase. García-Lagunaet al. [16] illustrated a method to obtain the solution of the 

classic EOQ and economic production quantity models when the lot size must be an 

integer quantity. They obtained a rule to discriminate between the situation in which the 

optimal solution is unique and the situation when there are two optimal solutions. Chang 

et al. [13] used closed-form solutions to solve Martin’s [26] EOQ model with a 

temporary sale price and Wee and Yu’s [38] deteriorating inventory model with a 

temporary price discount. Chang and Lin [12] deal with the optimal ordering policy for 

deteriorating inventory when some or all of the cost parameters may change over a finite 

horizon. Taleizadeh et al. [33] developed an inventory control model to determine the 

optimal order and shortage quantities of a perishable item when the supplier offers a 

special sale. Other authors also considered similar issues, see Abad [1], Khoujaand Park 

[20], Wee et al. [37], Cárdenas-Barrón [5], Andriolo et al.[2], etc. 

In traditional EOQ model, the assumption that all items are perfect in each ordered lot 

is not pertinent. Because of defective production or other factors, there may be a 

percentage of imperfect quantity in received items. Salameh and Jaber [30] investigated 

an EOQ model which contains a certain percentage of defective items in each lot. The 

percentage is a continuous random variable with known probability density function. 

Their model assumes that shortage of stock is not allowed. Cárdenas-Barrón [7] modified 

the expression of optimal order size in Salameh and Jaber [30]. Goyal and Cárdenas-

Barrón [17] presented a simple approach to determine Salameh and Jaber’s [30] model. 

Papachristos and Konstantaras [29] pointed out that the proportion of the imperfects is a 

random variable, and that the sufficient condition to avoid shortage may not really 
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prevent occurrence in Salameh and Jaber [30]. Wee et al. [39] and Eroglu and Ozdemir 

[15] extended imperfect model by allowing shortages backordered. Maddah and Jaber 

[25] proposed a new model and used renewal-reward theorem to derive the exact 

expression for the expected profit per unit time in Salameh and Jaber [30]. Hsu and Yu 

[18] investigated an EOQ model with imperfective items under a one-time-only sale, 

where the defective rate is known. However, Hsu and Yu’s [18] representation of holding 

cost is true whenever the ratio of special order quantity to economic order quantity is an 

integer value. Ouyang et al.[27]developed an EOQ model where the supplier offers the 

retailer trade credit in payment, products received are not all perfect, and the defective 

rate is known. Wahab and Jaber[36] extended Maddah and Jaber [25] by introducing 

different holding cost for the good and defective items. Chang [10] present a new model 

for items with imperfect quality, where lot-splitting shipments and different holding costs 

for good and defective items are considered. Other authors also considered similar issues, 

see Chang [9], Chung and Huang [14], Chang and Ho [11], Lin [24], Khan et al. [19], 

Bhowmick and Samanta [4], Ouyang et al.[28], etc. 

In this article, we extend Hsu and Yu [18], considering that the end of special order 

process is not coincident with the regular economic order process. We also propose 

theorems to find closed form solutions when integer operators are involved in objective 

function. The remainder of this paper is organized as follows. In Section 2, we described 

the notation and assumptions used throughout this paper. In Section 3, and Section 4, we 

establish mathematical models and propose theorems to find maximum saving cost and 

optimal order quantity. In Section 5, we give numerical examples to illustrate the 

proposed theorems and the results. In Section 6, we summarize and conclude the paper. 

 

2. NOTATION AND ASSUMPTIONS 

Notation: 

  the demand rate 

c  the purchasing cost per unit 

b  the holding cost rate per unit/per unit time 

a  the ordering cost per order 

p  the defective percentage for each order 

w  the screening cost per unit 

s  the screening rate, s . 

k  the discount price of purchasing cost per unit 

pQ  the order size for purchasing cost c  per unit 
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sjQ  the special order quantity, 1,2, ,6j   . 

pT  EOQ model’s optimal period under regular price 

sjT  special order model’s optimal period under reduced price , 1,2, ,6j   . 

( )j

sTC  the total cost corresponding to special order policy, 1,2, ,6j   . 

( )j

nTC  the total cost without special order, 1,2, ,6j   . 

( ) ( )j

sjD Q

 
the saving cost for Case (1) to Case (6) , 1,2, ,6j   . 

0jq  the remnant stock level at time T , 1,2, ,6j   . 

    integer operator, integer value equal to or greater than its argument 

    integer operator, integer value equal to or less than its argument 

*
 the superscript representing optimal value 

Assumptions: 

1. The demand rate is constant and known. 

2. The rate of replenishment is infinite. 

3. Based on past statistics, the defective rate is small and known. 

4. For shortage is not allowed, the sufficient condition is  / 1s p   . 

5. In Model 1, the purchasing cost for the first regular order quantity is c k .  

6. The defective items are withdrawn from inventory when all order quantities are 

inspected. 

7. The time horizon is infinite.   

 

3. MODEL FORMULATION 

When suppliers offer a temporary discount to retailers, retailers typically respond 

with ordering additional items to take advantage of the price reduction. Saving cost is the 

difference between total cost when special order is taken and total cost when special cost 

is not taken. According to the time that supplier offers a temporary reduction to retailers, 

there are three models to be discussed. Model 1 considers the case when special order 

occurs at regular replenishment time. Model 2, special order occurs at non-regular 

replenishment time and before the end of screening time. Model 3, special order occurs at 

non-regular replenishment time and after the end of screening time.  

3.1. Model 1 

According to the special period length ends before or after screening time of last 

regular EOQ period length, we have following two sub-cases to be discussed. (i) Case (1) 
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: 
1 /n s n pt T t Q s   , as shown in Fig. 1. (ii) Case (2) : 

2 1/n p s nt Q s T t    , as shown 

in Fig. 2. The procurement cost for special order policy is ( ) sja c k Q  , the screening 

cost is 
sjwQ , and the holding cost is 

2 2( ) [(1 ) / 2 / ] sjc k b p p s Q   , where 1,2j  . The 

total cost corresponding to special order policy during 0 sjt T  , 1,2j  , is 

2
( ) 2(1 )

( ) ( ) ( )
2

j

s sj sj sj sj

p p
TC Q a c k Q wQ c k b Q

s

 
       

 
 (1) 

In Model 1, the first order is taken using regular EOQ at reduced price c k , others 

are taken at regular price c . For Case (1), the total cost without special order during the 

identical period length 1sT  is 

2
(1) 21

1 1 1

2
21

1 1

(1 )
( ) ( ) ( ) ( )

2

(1 ) 1
1 ( )( )

2 2

s

n s p s p s p

p

s

p p s n

p

T p p
TC Q a c k Q c Q Q wQ c k b Q

T s

T p p
cb Q Q q T t

T s





   
           

    

     
        

      

 (2) 

For Case (2), the total cost without special order during the identical period length 

2sT  is  

(2) 2

2 2 2

22 2
2 22 2

( ) ( ) ( )

(1 ) (1 )
( ) 1

2 2 2

s

n s p s p s

p

s

p p

p

T
TC Q a c k Q c Q Q wQ

T

T qp p p p
c k b Q cb Q

s T s  

 
      

  

       
           

       

  (3) 

The saving cost of Case (1) and Case (2) is 

( ) ( ) ( )( ) ( ) ( )j j j

sj n sj s sjD Q TC Q TC Q        1,2j             (4) 

Since (1 ) /sj sjT Q p   , (1 ) /p pT Q p   , 
sj

n p

p

T
t T

T

 
  
  

, 
sj

j p sj

p

T
q Q Q

T

 
  
  

 

and 
2 2[(1 ) / 2 / ] pa cb p p s Q   , where 1,2j  , we get 

2
(1) 2 1

1 1 1

1 1 1

1 1

(1 )
( ) ( ) (1 )

2

1

2

s

s s s p

p

s s s

p p s s p

p p p

Qp p k
D Q c k b Q kQ kQ a a

s c Q

Q Q Qp
a cb Q Q Q Q Q

Q Q Q





    
             

      

        
            
               

      (5) 
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2
(2) 2 2

2 2 2

2

2

2

(1 )
( ) ( ) (1 ) 2

2

2

s

s s s p

p

s

p s

p

Qp p k
D Q c k b Q kQ kQ a a

s c Q

Qcb
Q Q

Q





    
             

      

  
   
    

    (6) 

In Model 1, if the defective percentage for each order is zero, the screening rate 

quickly tends to infinite and the screening cost is zero, Model 1 is the same as Martin 

(1994) model. Martin (1994) considered the ordering cost is 
1 /s paQ Q , in this paper, the 

ordering cost is 1s

p

Q
a

Q

 
 
  

. 

3.2. Model 2 

According to the special period length ends before or after screening time of last 

regular EOQ period length, we have following two sub-cases to be discussed. (i) Case (3) 

: 
3 /n s n pt T t Q s   , as shown in Fig. 3. (ii) Case (4) : 

4 1/n p s nt Q s T t    , as shown 

in Fig. 4. Retailer places an economic order quantity 
pQ  at 0t  , the remnant stock level 

at t T  is 
0jq , 3,4j  . Because supplier offers a temporary discount at t T , retailer 

additionally places a special order quantity 
sjQ , 3,4j  . The procurement cost is 

2 ( )p sja cQ c k Q   , the screening cost is ( )p sjw Q Q , 3,4j  , and the holding cost is 

2
02

2 2

0 0 0

(1 )
( ) ( )( )

2

( ) ( )
( )

2 2

sj p p j

p sj p

sj j sj p p p j j p

p

Q Q Q qp p
cb Q c k b Q p Q p

s s

Q q Q p Q p Q Q q q Q p
Q p

s

 

  

  
     

  

      
    

  

  3,4j   

The total cost corresponding to special order policy during 0 sjt T  , 3,4j  , is 

2
( ) 2

2

0 0

2

0 0

(1 )
( ) 2 ( ) ( )

2

( )
( ) ( )( )

2

( )
( ) 3,4

2

j

s sj p sj p sj p

sj p p j sj j sj p

sj p

p p j j p

p

p p
TC Q a cQ c k Q w Q Q cb Q

s

Q Q Q q Q q Q p Q p
c k b Q p Q p

s

Q Q q q Q p
Q p j

s



 

 

 
        

 

     
     

  

   
    
  

    (7) 

For Case (3) and Case (4), if there is no temporary price discount occurs, the total 

cost without special order during the identical period length 
sjT , 3,4j  , is 
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(3) 3

3 3 3

2
23

31 3

( ) ( ) ( )

(1 ) 1
( )( )

2 2

s

n s s p s p

p

s

p p s n

p

T
TC Q a c Q Q w Q Q

T

T p p
cb Q Q q T t

T s

 
     

  

     
       

      

       (8) 

(4) 4

4 4 4

22
24 41

( ) ( ) ( )

(1 )

2 2

s

n s s p s p

p

s

p

p

T
TC Q a c Q Q w Q Q

T

T qp p
cb Q

T s 

 
     

  

     
     

      

                    (9) 

Since
2 2[(1 ) / 2 / ] pa cb p p s Q   , ( )(1 ) /sj sj pT Q Q p    , (1 ) /p pT Q p   , 

sj

n p

p

T
t T

T

 
  
  

 and 1

sj

j p p sj

p

T
q Q Q Q

T

 
   
  

, where 3,4j  , the saving cost of Case (3) 

and Case (4) is 

2
(3) 2 30

3 3 3

3 3 3 3

3 3

2 (2 )(1 )
( ) ( ) ( )

2

1

2

p p

s s s

s s s s

p p s s p

p p p p

pQ p p Q qp p
D Q c k b Q k c k b Q

s s

Q Q Q Qp
a a a cb Q Q Q Q Q

Q Q Q Q

  



     
           

     

         
               
                  

    (10) 

2
(4) 2 40

4 4 4

2

4 4

4

2 (2 )(1 )
( ) ( ) ( )

2

2
2

p p

s s s

s s

p s

p p

pQ p p Q qp p
D Q c k b Q k c k b Q

s s

Q Qcb
a a Q Q

Q Q

  



     
           

     

    
       
        

    (11) 

 

3.3. Model 3 

According to the special period length ends before or after screening time of last 

regular EOQ period length, we have following two sub-cases to be discussed. (i) Case (5) 

: 
5 /n s n pt T t Q s   , as shown in Fig. 5. (ii) Case (6) : 

6 1/n p s nt Q s T t    , as shown 

in Fig. 6. Retailer places an economic order quantity 
pQ  at 0t  , the remnant stock level 

at t T  is 
0jq , 5,6j  . Because supplier offers a temporary discount at t T , retailer 

additionally places a special order quantity 
sjQ , 5,6j  . The procurement cost is 

2 ( )p sja cQ c k Q   , the screening cost is ( )p sjw Q Q , 5,6j  , and the holding cost is 
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2 22
0 02

( )(1 )
( )

2 2

sj sj j sj j

p sj

Q Q q Q p qp p
cb Q c k b Q p

s s  

   
      

    

  5,6j   

The total cost corresponding to special order policy during 0 sjt T  , 5,6j  , is 

2
( ) 2

2 2 2

0 0

(1 )
( ) 2 ( ) ( )

2

( )
( )

2 2

j

s sj p sj p sj p

sj sj j sj j

p p
TC Q a cQ c k Q w Q Q cb Q

s

pQ Q q Q p q
c k b

s



 

 
        

 

    
     

    

 5,6j     (12) 

For Case (5) and Case (6), if there is no temporary price discount occurs, the total 

cost without special order during the identical period length 
sjT , 5,6j  , is 

(5) 5

5 5 5

2
25

51 5

( ) ( ) ( )

(1 ) 1
( )( )

2 2

s

n s s p s p

p

s

p p s n

p

T
TC Q a c Q Q w Q Q

T

T p p
cb Q Q q T t

T s

 
     

  

     
       

      

       (13) 

(6) 6

6 6 6

22
26 61

( ) ( ) ( )

(1 )

2 2

s

n s s p s p

p

s

p

p

T
TC Q a c Q Q w Q Q

T

T qp p
cb Q

T s 

 
     

  

     
     

      

                    (14) 

Since 
2 2[(1 ) / 2 / ] pa cb p p s Q   , ( )(1 ) /sj sj pT Q Q p    , (1 ) /p pT Q p   , 

sj

n p

p

T
t T

T

 
  
  

 and 5

1

s

j p p sj

p

T
q Q Q Q

T

 
   
  

, where 5,6j  , the saving cost of Case (5) 

and Case (6) is 

2
(5) 2 5

5 5 50 5

5 5 5

5 5

(1 ) 1
( ) ( ) [ ] ( )

2

(1 )

2

s

s s s

p

s s s

p p s s p

p p p

Qp p p
D Q c k b Q k c k bq Q a a

s Q

Q Q Qp cb
a Q Q Q Q Q

Q Q Q

 



   
           

    

       
           
              

  (15) 
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2
(6) 2

6 6 60 6

2

6 6

6

(1 ) 1
( ) ( ) [ ] ( )

2

2
2

s s s

s s

p s

p p

p p p
D Q c k b Q k c k bq Q a

s

Q Qcb
a Q Q

Q Q

 



  
        

 

    
      
        

       (16) 

 

4. THEORETICAL RESULTS 

In this section, we suggest properties of 
( ) ( )j

sjD Q , 1,2, ,6j   , and give  theorems 

to solve the proposed models. 

Property 4-1 
( ) ( )j

sjD Q  is a piecewise continous function in which jump values at 
sj pQ mQ  are 

2

( ) ( )

2
0 0

2 (1 ) / 2 1,3,5
lim (( ) ) lim (( ) )

2 / 2 2,4,6

pj j

p p

p

a p cbQ j
D m Q D m Q

a cbQ j 


 

  

   
    

 

 (17) 

where m  is a non-negative integer. 

Proof of Property 4-1 is given in appendix. 

Property 4-2 

Let m  is a non-negative integer, and 

0 1,2

3,4

5,6

i

i

i

i

 






 
 

                                          (18) 

0
2 (2 )

( )
p p i

pQ p p Q q
c k b

s


 

 
    

 
   3,4i                 (19) 

0(1 )( ) ip c k bq




 
     5,6i                               (20) 

( )
1

2( )

i p

iL

c k Q
m

c k a


 


    1,2, ,6i                           (21) 

[ (1 ) / ]

2( )

i p p

iR

c k p cbQ Q
m

c k a

   



  1,3,5i                    (22) 

( / )

2( )

i p p

iR

c k cbQ Q
m

c k a

  



       2,4,6i                   (23) 
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(a) ( ) ( )i

siD Q  is an increasing function of 
siQ  between 

pmQ  and ( 1) pm Q  when 

iLm m    , where 1,2, ,6i   .  

(b) ( ) ( )i

siD Q  is a decreasing function of 
siQ  between 

pmQ  and ( 1) pm Q  when 

iRm m    , where 1,2, ,6i   . 

(c) ( ) ( )i

siD Q  is a concave function of 
siQ  between 

pmQ  and ( 1) pm Q  when 

iL iRm m m        , where 1,2, ,6i   . 

Proof of Property 4-2 is given in appendix. 

Theorem 1 

Let          
2

1

(1 ) 1
( )

2 2

p p p
c k c

s 

  
     

 
                         (24) 

1

(1 ) ( 1) /
( )

2

i p

si

k p cbQ m
Q m

b

    



   1,3,5i             (25) 

2

1

1 1

2
2

1

(1 )(1 )( )
( ) ( 1) 2 ( 1)

2 2

1
2 ( )

4 2

p

p p

p kcQp c k a
DM m m a m

k p a
a cbQ k Q

b c

 



   
     

  


    



          (26) 

2

1 1

2

2

1

(1 )( )(1 )( )
( ) ( 1) 2 ( 1)

2 2

( ) 1
2

4 2

i p

i

i

p

p k cQp c k a
DM m m a m

k p
a cbQ

b



 





    
     

  

 
  



3,5i   (27) 

 (1) 2

1
0

( ) lim ( ) (1 ) ( 2 ) ( )R p p p

k a
h m D m Q a m kQ a m k Q

c c



              (28) 

 ( ) 2

0
( ) lim ( ) (1 ) [( ) 2 )]i

iR p i p

k
h m D m Q a m k Q a m

c
 


          5,3i    (29) 

2[( ) 3 ](1 ) 4 ( ) (1 ) / 2 /

2(1 )( )

i p

i

k cQ ca ka p a c k p p s
z

p c k a

           


 
 1,3,5i   (30) 
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For 1,3,5i  , if iz  is not an integer, let ei im z    . If iz  is an integer, let ei im z     

and 1ei im z    . The special order quantity 
siQ  and maximum value of ( ) ( )i

siD Q  can 

be found in the following: 

(a) When ei iLm m     

( ) if /

if /( ) / / (1 )

si iL si n p

si

si n psi iL p p p

Q m T t Q s
Q

T t Q sQ m Q Q Q s p

     
 

       

         (31) 

 
( ) *

( )

( )) if /
( )

if /max ( ), ( 1)

i iL si n pi

si i
si n psi i iL

DM m T t Q s
D Q

T t Q sD Q DM m

     
 

   

        (32) 

(b) When iL ei iRm m m         

( ) if /

if /( ) / / (1 )

si ei si n p

si

si n psi ei p p p

Q m T t Q s
Q

T t Q sQ m Q Q Q s p

  
 

     

           (33) 

 
( ) *

( )

( ) if /
( )

if /max ( 1), ( ), ( 1)

i ei si n pi

si i
si n pi ei si i ei

DM m T t Q s
D Q

T t Q sDM m D Q DM m

  
 

  

  (34) 

(c) When ei iRm m     

( ) if /

if /( ) / / (1 )

si iR si n p

si

si n psi iR p p p

Q m T t Q s
Q

T t Q sQ m Q Q Q s p

     
 

       

        (35) 

 ( ) *

( )

max ( ), ( 1) if /
( )

if /max{ ( 1), ( ), ( 1)}

i iR iR iR si n pi

si i
si n pi iR si iR iR

DM m h m T t Q s
D Q

T t Q sDM m D Q h m

          
 

         

 (36) 

Proof of Theorem 1 is given in the appendix.  

Theorem 2 

Let 
2

2

(1 ) 1
( )

2 2

p p
c k c

s 

 
     

 
   (37) 

 
2

( 1) /
( )

2

i p

si

k cbQ m
Q m

b

   



    2,4,6i      (38) 
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2
2

2

2 2 2

( )
( ) ( 1) 2 ( 1) ( )

2 2 4

p

p

kcQc k a k a
DM m m a m a k Q

b c 

  
         

   
 (39) 

2

2

2 2 2

( ) ( )( )
( ) ( 1) 2 ( 1)

2 2 4

i p i

i

k cQ kc k a
DM m m a m a

b

 

 

   
       

   
  4,6i 

 
(40) 

2( ) 3 4 ( ) (1 ) / 2 /

2( )

i p

i

k cQ ca ka a c k p p s
z

c k a

          



  2,4,6i   (41) 

For 2,4,6i  , if iz  is not an integer, let ei im z    . If iz  is an integer, let 

ei im z     and 1ei im z    . The special order quantity 
siQ  and maximum value of 

( ) ( )i

siD Q  can be found in the following: 

(a) When ei iLm m     

( ) if /

if /( ) / / (1 )

si iL p si n p

si

p si nsi iL p p p

Q m Q s T t T
Q

Q s T tQ m Q Q Q s p

      
 

       

 (42) 

 
( ) *

( )

( ) if /
( )

if /max ( ), ( 1)

i iL p si n pi

si i
p si nsi i iL

DM m Q s T t T
D Q

Q s T tD Q DM m

      
 

   

 (43) 

(b) When iL ei iRm m m         

( ) if /

if /( ) / / (1 )

si ei p si n p

si

p si nsi ei p p p

Q m Q s T t T
Q

Q s T tQ m Q Q Q s p

   
 

     

  (44) 

 
( ) *

( )

( ) if /
( )

if /max ( 1), ( ), ( 1)

i ei p si n pi

si i
p si ni ei si i ei

DM m Q s T t T
D Q

Q s T tDM m D Q DM m

   
 

  

 (45) 

(c) When ei iRm m     

( ) if /

if /( ) / / (1 )

si iR p si n p

si

p si nsi iR p p p

Q m Q s T t T
Q

Q s T tQ m Q Q Q s p

      
 

       

 (46) 
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  
 

 

( )

( ) * ( )

( )

max ( ), ( 1) / / (1 )

( ) max ( 1), ( ) / / (1 ) ,

( 1) / / (1 )

i

i iR si iR p p p

i i

si i iR si iR p p p

i

si iR p p p

DM m D Q m Q Q Q s p

D Q DM m D Q m Q Q Q s p

D Q m Q Q Q s p







           


            

       

 

if /

if /

p si n p

p si n

Q s T t T

Q s T t

  

 
                                           (47) 

Proof of Theorem 2 is the same as Theorem 1. For 1,2, ,6j   , comparing 

( ) *( )j

sjD Q  each other in Model 1 to Model 3, we can find maximum saving cost 

( ) *( )j

sjD Q  and special order quantity 
*

sjQ  in each Model. 

 

5. NUMERICAL EXAMPLES 

In this section, we use the same cost parameters of Hsu and Yu (2009) to illustrate the 

theorems proposed. The sensitivity analysis of major parameters on the optimal solutions 

will also be carried out.  

Example 1. Given $80 / ordera  , 0.1b  , $12 / unitc  , $24000 units/yrs  , 

$8000 units/yr  , 
30 40 900 unitsq q  , 

50 60 200 unitsq q  , $2 / unitw  , 0.1p   

and $4 / unitk   in Model 1. In Case (1), we find 1 41Lm    , 1 42Rm    , 1 43Rm     

and 
1 43em  , then 1 1e Rm m    . Because 1 1 1( ) 46721s s RQ Q m     satisfies 

10 /s n pT t Q s   , the maximum saving cost of Case (1) is 

 (1) *

1 1 1 1 1( ) max ( ), ( 1) 93553.2s R R RD Q DM m h m         , then the special order quantity 

is 
*

1 1( 1) 47431unitss R pQ m Q     . The result is shown in Fig. 7. In Case (2), we find  

2 41Lm    , 2 43Rm    , 2 44Rm     and 
2 43em  , then 2 2 2L e Rm m m        . Owing 

to 2 2 2( ) 47462s s eQ Q m   does not satisfy 
2/p s n pQ s T t T   , we take 

2 2 (43) / ( / )( /1 ) 47840s s p p pQ Q Q Q Q s p       into Eq.(6) and obtain 

(2) (47840) 93525.1D  . The maximum saving cost of Case (2) is 

 (2) * (2) (2)

2 2( ) max (42), (47840), (48943) 93525.8sD Q DM D D  , then the special order 

quantity is *

2 2 (42) 46766 unitss sQ Q  . The result is shown in Fig. 8.  Comparing 

(1) *

1( )sD Q  with (2) *

2( )sD Q  in Model 1, we can find maximum saving cost of Model 1 is 

(1) *

1( ) 93553.2sD Q   and special order quantity is *

1 47431 unitssQ  . The optimal 

ordering policies for Model 1 to Model 3 under different discounts are represented in 

Table 1. 

From Table 1, we can obtain following results: (a) Ordering quantity and saving cost 

increase as discount price increases. This implies that when supplier offers more 

temporary discount, retailers will order more quantity to save cost. (b) The rankings of 
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special order quantity * * *

1 5 3s s sQ Q Q   are not consistent with saving cost 

(5) * (3) * (1) *

5 3 1( ) ( ) ( )s s sD Q D Q D Q   for the same discount. The reason is the purchasing 

cost for the first economic order quantity in Model 1 is ( ) pc k Q , but the purchasing cost 

in Model 2 and Model 3 are 
pcQ . The difference 

pkQ  influences the ranking of saving 

cost. The largest saving cost in three models is (5) *

5( )sD Q  . The reason is the defective 

items are withdrawn from inventory before special order occurs. The holding cost does 

not involve defective items. 

Example 2. The sensitivity analysis is performed to study the effects of changes of major 

parameters on the optimal solutions. All the parameters are identical to Example 1 except 

the given parameter. The following inferences can be made based on Table 2.  

(a) Higher values of screening rate s  cause a higher value of special order quantity *

siQ  

and maximum saving cost ( ) *( )i

siD Q , 1,3,5i  . It implies that the retailer should 

take some actions to increase the item’s screening rate in order to save more cost. 

(b) Higher values of holding cost rate b  and purchasing cost c  cause a lower value of 

special order quantity *

siQ  and maximum saving cost ( ) *( )i

siD Q , 1,3,5i  . Hence, in 

order to increase saving cost, the retailer should have low holding cost rate and 

purchasing cost. 

(c) Higher values of remnant stock level 0iq  cause a lower value of special order 

quantity *

siQ  and maximum saving cost ( ) *( )i

siD Q , 3,5i  . It implies when remnant 

stock level is high, it don’t need to orders more special order quantity. It induces low 

saving cost.  

6. CONCLUSION 

In this article, we developed an inventory model to determine the optimal special 

order and maximum saving cost of imperfective items for retailers who use economic 

order quantity model and are faced with a temporary discount. According to the time that 

supplier offers a temporary reduction to retailers, we discuss three models in this article. 

Each model has two sub-cases to be discussed. In temporary discount problems, the 

ordering number is an integer variable, there are integer operators in objective function. It 

is hard to find closed-form solutions of their extreme values. A distinguishing feature of 

the proposed theorems is that they can easily apply to find closed-form solutions of 

temporary discount problems. The results in numerical examples and sensitivity analysis 

of key model parameters indicate following insights: (a) Both ordering quantity and 

saving cost increase as discount price increases; (b) For the same discount, Case (5) has 

larger saving cost than others. This means, in Case (5), retailers earn maximum saving 

cost; (c) Higher values of screening rate induce special order quantity and higher saving 

cost; (d) Higher values of holding cost rate and purchasing cost cause a lower value of 

special order quantity and saving cost.  

The further advanced research will extend the proposed models in several ways. For 

example, we can extend the imperfect model by allowing shortages the horizon may be 

finite. Also we can consider the demand rate as not been constant.  
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APPENDICES 

Proof of Property 4-1： 

We prove property of (1)

1( )sD Q  only, others are similar to the proof of 

(1)

1( )sD Q . Let 0   

 (1) 2

0
lim ( ) (1 ) ( 2 ) ( )p p p

k a
D m Q a m kQ a m k Q
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 (1) 2 2
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lim ( ) (1 ) ( 2 ) ( ) 2

2
p p p p
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D m Q a m kQ a m k Q a cbQ
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
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0 0
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lim ( ) lim ( ) 2

2
p p p

p
D m Q D m Q a cbQ

 
 
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This implies (1)

1( )sD Q  is a piecewise continous function in which jump values at 

1s pQ mQ  are 
22 (1 ) / 2pa p cbQ   .                                                                 

Proof of Property 4-2： 

We prove property of (1)

1( )sD Q  only, others are similar to the proof of (1)

1( )sD Q . During 

1 ( 1)p s pmQ Q m Q    
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This implies (1)

1( )sD Q  is a concave function during 
1 ( 1)p s pmQ Q m Q   . From 

Eq. (A5), if (1)

1( )sD Q  has (1)

1 1( ) / 0s sdD Q dQ   property during 
1 ( 1)p s pmQ Q m Q   , 

it will be happened at  

1 2

(1 ) ( 1) /
( )

2( ) [(1 ) / 2 / ] (1 ) /
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s

k p cbQ m
Q m

c k b p p s p cb
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
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  (A7) 

Since 
1( )sQ m  should satisfy 

1 ( 1)p s pmQ Q m Q   , we have 

1 1

[ (1 ) / ]
1

2( ) 2( )

p p p

L R

ckQ c k p cbQ Q
m m m

c k a c k a

 
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 
  (A8) 

Owing to m  is an integer, the region of m  should change to 1 1L Rm m m        . 

According to concavity of (1)

1( )sD Q  during 
1 ( 1)p s pmQ Q m Q   , (1)

1( )sD Q  is an 

increasing function of 
1sQ  for 1Lm m     and a decreasing function of 

1sQ  for 

11Rm m    .                                                           

Proof of Theorem 1 
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We prove property of (1) *

1( )sD Q  only, others are similar to the proof of (1) *

1( )sD Q . 

Taking 
1( )sQ m  into Eq. (A4) and let 

2

1

(1 ) 1
( )

2 2

p p p
c k c

s 

  
     

 
 

We have 

2

1

1 1

2
2

1

(1 )(1 )( )
( ) ( 1) 2 ( 1)

2 2

1
2 ( )

4 2

p

p p

p kcQp c k a
DM m m a m

k p a
a cbQ k Q

b c

 



   
     

  


    



 (A9) 

The firsr amd second derivatives of 
1( )DM m  respect to m  are respectively 
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It means that 
1( )DM m  is a concave function of m . Owing to m  is an integer, by 

1 1( ) ( 1) 0DM m DM m    and let  

2

1

( 3 )(1 ) 4 ( ) (1 ) / 2 /
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then 1m z     is the value that maximizes 
1( )DM m . By 

1 1( ) ( 1) 0DM m DM m   , then 1 1m z     is the value that maximizes 

1( )DM m . To sum up, if 1z  is not an integer, let 1 1 1 1em z z         ; 

otherwise, let 1 1em z     and 1 1 1em z    . The maximum value of 1( )DM m  

is 1 1( )eDM m . 

(a) When 1 1e Lm m    , it means 
1( )DM m  is a decreasing function of m  during 

1 1L Rm m m        . Hence, the maximum value of 
1( )DM m  during 

1 1L Rm m m         is 1 1( )LDM m    and the special order quantity is 



W.F.Lin, H.J. Chang/ Retailers Optimal Ordering Policies 239 

1 1 1( )s s LQ Q m    . Case (1) is justified only in the condition 
10 /s n pT t Q s   . If 

1sQ  is not satisfied 
10 /s n pT t Q s   , the maximum value of (1)

1( )sD Q  will 

happened at 
1 /s n pT t Q s  , i.e., 

1 1 1( ) / / (1 )s s L p p pQ Q m Q Q Q s p       . 

Because (1)

1( )sD Q  has positive jumps at break points, 1 1( 1)LDM m     maybe 

greater than (1)

1( )sD Q . So both (1)

1( )sD Q  and 1 1( 1)LDM m     should be compared 

to determine the global maxima. 

(b) When 1 1 1L e Rm m m        , it means 
1( )DM m  is a concave function of m  during 

1 1L Rm m m        . Hence, the maximum value of 
1( )DM m  during 

1 1L Rm m m         is 
1 1( )eDM m  and the special ordering quantity is 

1 1 1( )s s eQ Q m

. If 
1sQ  is not satisfied 

10 /s n pT t Q s   , the maximum value of (1)

1( )sD Q  will 

happened at 
1 /s n pT t Q s  , i.e., 1 1 1( ) / / (1 )s s e p p pQ Q m Q Q Q s p     . In this 

time, (1)

1( )sD Q  may be smaller than 
1 1( 1)eDM m   or 

1 1( 1)eDM m  . So 

1 1( 1)eDM m  、 (1)

1( )sD Q  and 
1 1( 1)eDM m   should be compared to determine the 

global maxima. 

(c) When 1 1e Rm m    , 
1( )DM m  is an increasing function of m  during 

1 1L Rm m m        . Because (1)

1( )sD Q  has positive jumps at break points, 

1 1( 1)R Rh m     maybe greater than 1 1( )RDM m   . We need to check whether 

1 1 1( )s s RQ Q m     is satisfied 
10 /s n pT t Q s    or not. If 

1sQ  is not satisfied the 

condition, the maximum value of (1)

1( )sD Q  will happened at 
1 /s n pT t Q s  , i.e.,  

1 1 1( ) / / (1 )s s R p p pQ Q m Q Q Q s p       . In this time, (1)

1( )sD Q  may be smaller 

than 1 1( 1)RDM m     or 1 1( 1)R Rh m    . So 1 1( 1)RDM m    、 (1)

1( )sD Q  and 

1 1( 1)R Rh m     should be compared to determine the global maxima.       

 

 
Table 1: The optimal ordering policies for three Models under different discounts 

discount Model 1 Model 2 Model 3 

k  
*

1sQ  
(1) *

1( )sD Q  
*

3sQ  
(3) *

3( )sD Q  
*

5sQ  
(5) *

5( )sD Q  

5 67286 166996.0 66208 168092.0 67286 171485.0 

4 47431 93553.2 46378 94414.2 47431 97138.3 

3 31989 46816.6 30958 47442.8 31989 49498.0 

2 19855 18770.5 18752 19166.5 9044 20545.7 

1  9928  4317.8  8824  4484.2 9061  5199.9 
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Table 2: Sensitivity analysis of some parameters on the optimal solutions 

parameter 
Model 1 Model 2 Model 3 

*

1sQ  
(1) *

1( )sD Q  
*

3sQ  
(3) *

3( )sD Q  
*

5sQ  
(5) *

5( )sD Q  

b  

0.20 24179 47277.3 22808 46635.7 23561 49560.7 

0.15 31633 62729.2 30733 62652.1 31553 65505.4 

0.10 47431 93553.2 46378 94414.2 47431 97138.3 

0.05 93621 185723.0 92357 188685.0 93597 191147.0 

0.01 460913 919615.0 460702 931429.0 460832 932764.0 

c  

18 27124 53258.5 26223 53181.4 27035 56025.8 

15 34545 67889.9 335991 68209.8 34531 71003.0 

12 47431 93553.2 46378 94414.2 47431 97138.3 

9 75222 150192.0 74098 151841.0 75150 154476.0 

6 187224 377685.0 185848 380670.0 187195 383136.0 

s  

36000 48252 95952.3 48044 96900.8 48170 99580.4 

30000 47903 94980.0 46887 95890.8 47822 98591.3 

24000 47431 93553.2 46378 94414.2 47431 97138.3 

18000 45905 91266.9 44900 92036.2 45825 94825.3 

12000 43732 87020.2 42740 87637.9 43654 90513.9 

30q  

1100   46328 93487.4   

1000   46333 93950.7   

900   46378 94414.2   

800   46423 94878.2   

700   46468 95342.7   

50q  

600     46479 95454.0 

500     46519 95872.5 

400     46559 96291.3 

300     47431 96711.5 

200     47431 97138.3 

 

 

 

 

 

Figure 1: Case (1) diagram 
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Figure 2: Case (2) diagram 
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Figure 5: Case (5) diagram 
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Figure 6: Case (6) diagram 
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Figure 3: Case (3) diagram 
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